Grounding Language Models to Real-World Environments

Yu Su The Ohio State University

Slides credit to my amazing student Yu Gu

Language Models Nail Everything?

¢	fetch_pic.js	🇬 push_to_git.py			
1 2 3 4 5 6 7	<pre>return fetch method: 'G headers: { 'Content }, })</pre>	-Type': 'application,	ov/planetary/apod /json',	?api_key=DEMO_KEY',	
8 9 10 11	.then(resp .then(json return j });		n())		

Natural language as a universal device for human-machine interaction?

Let's learn together. Bing is po	wered by AI, so surprises and mistakes are possible. Make sure to check the facts, and share feedback so we can learn and improve!	d
	Terms of Use Privacy Statement	
	Choose a conversation style Preview	
	More More More Precise	
		Bing Al
Get the most out of your searches with our b as a base and added AI for an even better ex	rand new engine! We've used Microsoft Bing's rich results perience.	
	1 of 8 🌑	
😥 🕞 Ask me anything		
0/2000		&

Dialogue

GLUE

Languag

Microsoft Bing Q SEARCH

Article Count Amount Tax T-Shirt XL....1 \$14,95 20% Jeans PDK.....2 \$39,90 20%

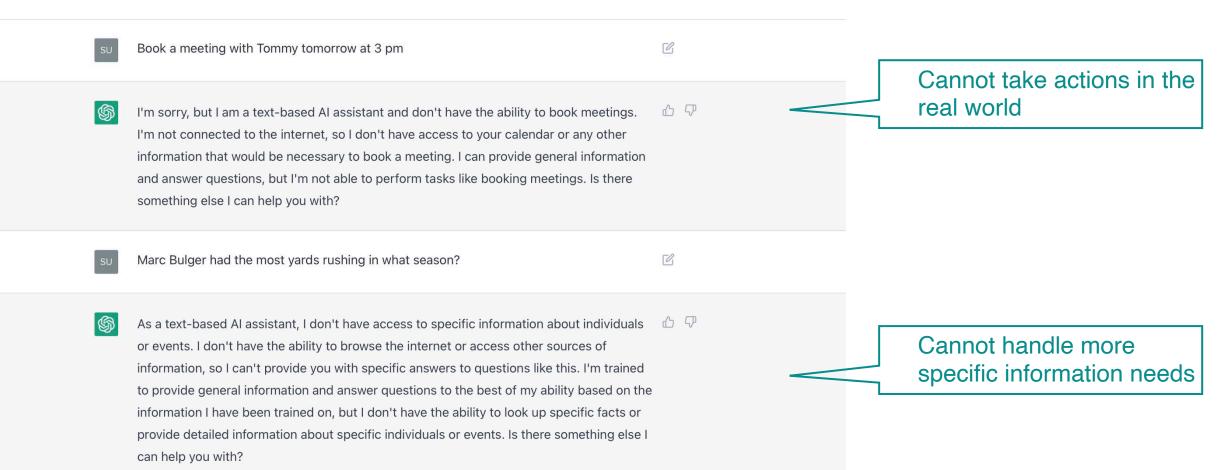
\$75,80 \$18,95 \$94,75

Vision

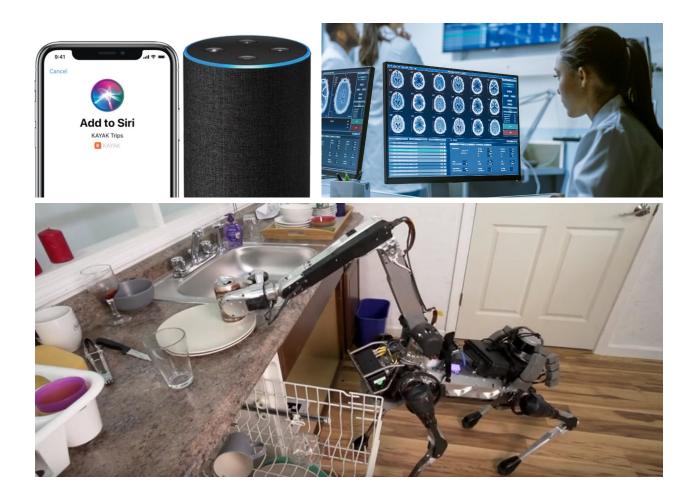
Audition

Multimodal Applications

Language Models: What's Missing?



Grounded Language Understanding: What and Why?

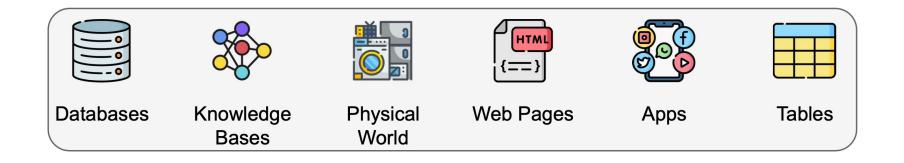


Grounded Language Understanding: Formal Definition

Given a natural language utterance *u* and a target environment *E*

$$\pi: (u, E) \rightarrow p, \text{ s.t. } \llbracket u \rrbracket_E = \llbracket p \rrbracket_E$$

Where p is a plan/program in a formal language, and $\llbracket \cdot \rrbracket_E$ is the denotation



Grounded Language Understanding: Formal Definition

Given a natural language utterance *u* and a target environment *E*

$\pi: (u, E) \rightarrow p, s.t. \llbracket u \rrbracket_E = \llbracket p \rrbracket_E$

Where p is a plan/program in a formal language, and $\llbracket \cdot \rrbracket_E$ is the denotation

Knowledge Bases *u*: What is the latest released computer emulator developed in Java?

p: (ARGMAX (AND ComputerEmulator (JOIN LanguagesUsed Java)) LatestReleaseDate)

Grounded Language Understanding: Formal Definition

Given a natural language utterance *u* and a target environment *E*

$\pi: (u, E) \rightarrow p, s.t. \llbracket u \rrbracket_E = \llbracket p \rrbracket_E$

Where p is a plan/program in a formal language, and $\llbracket \cdot \rrbracket_E$ is the denotation

u: Bring me a cup of coffee

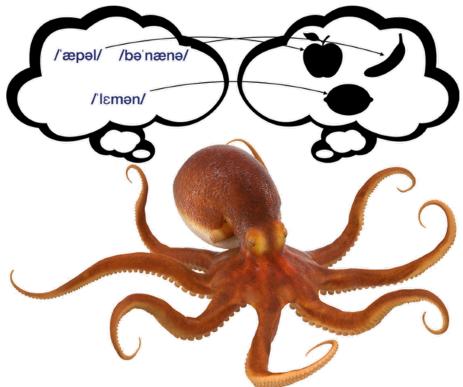
Physical World *p*: [turn left, move forward, pick up cup, turn around, move forward, ..., put cup in coffee maker, toggle coffee maker, ...]

The Symbol Grounding Problem

Language models are mostly trained with textual corpora

- BERT: Wikipedia (2.5B words) + BookCorpus (800M words)
- T5: C4 (two orders of magnitude larger)
- GPT-3: 45TB text data + others

Key challenge: How to ground textual symbols to different environments/formal languages



Pangu: A Unified Framework for Grounded Language Understanding

Yu Gu, Xiang Deng, Yu Su The Ohio State University

Q1 Find the right program over a KB

Question: Who has ever coached an ice hockey team in Canada?

Program:

- A. (AND cricket.cricket_coach (JOIN cricket.cricket_team.coach_inv (JOIN sports.sports_team.location Canada)))
- B. (AND ice_hockey.hockey_coach (JOIN ice_hockey.hockey_team.coach_inv (JOIN sports.sports_team.location Canada)))
- C. (AND ice_hockey.hockey_team (JOIN sports.sports_team.location Canada))

Q2 Write the corresponding KB program

Question: What's the classification of the M10 engine?

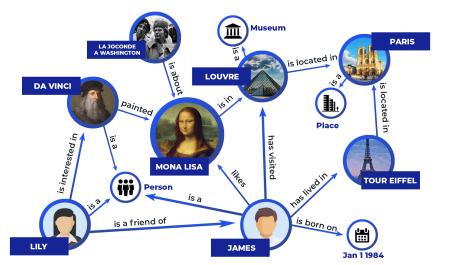
Program:

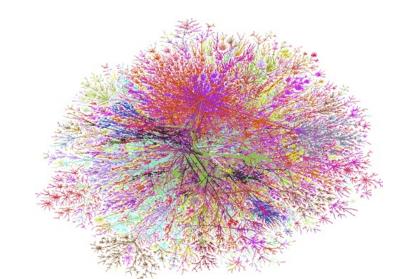
(AND automotive.engine_type (JOIN automotive.engine_type.used_in M10))

Why is Q2 harder?

1 You need to learn the grammar

2 You need to know the environment specifics

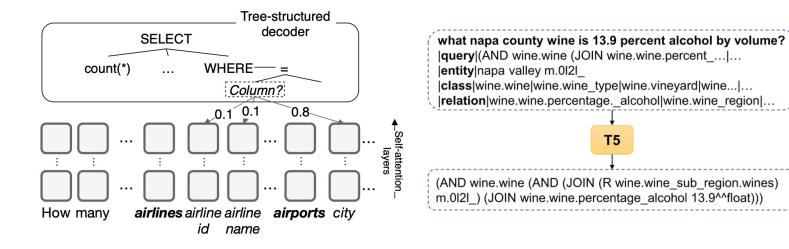


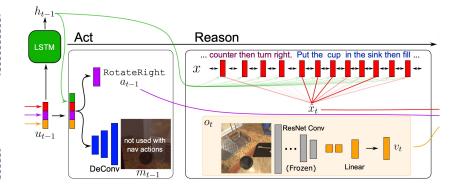


Directly generating plans (programs) may not be the optimal way of using LMs for grounded language understanding

A unified framework that models grounded language understanding as a discrimination task

Autoregressive generation with Seq2Seq LMs

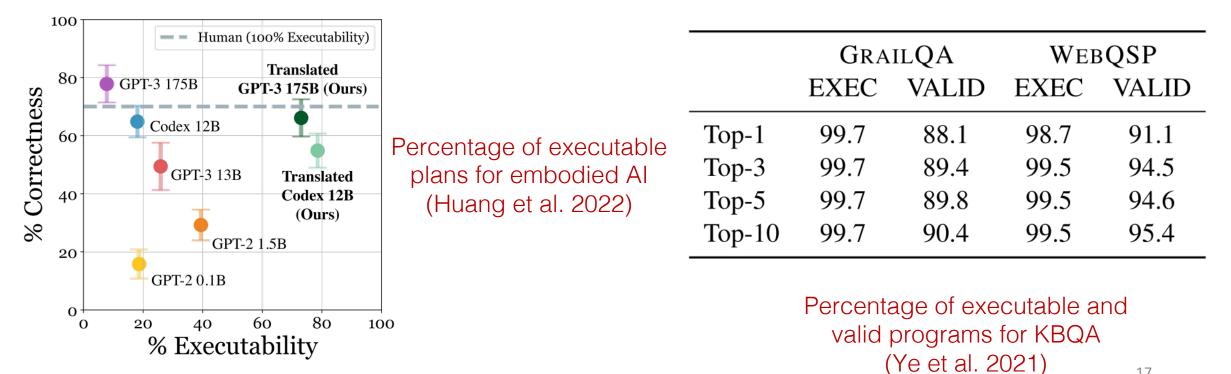




Text-to-SQL Parsing (Wang et al. 2020)

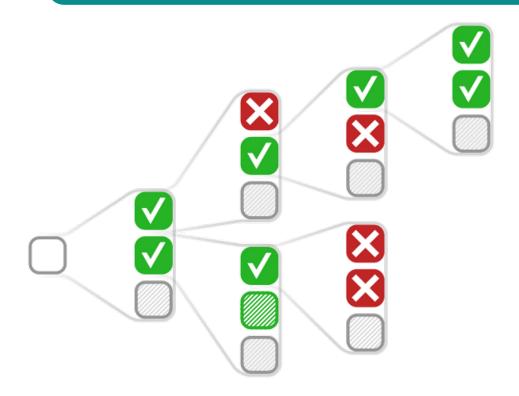
KBQA (Shu et al. 2022) Embodied Al (Shridhar et al. 2019) ₁₆

Autoregressive generation can produce invalid plans



17

A possible fix: constrained decoding



Example Decoding Rules

- The first token must be '('
- The token after '(' can be 'AND', 'JOIN', 'ARGMAX' ..

Picard (Scholak et al. 2021)

Constrained decoding can be shortsighted and hard to control

Question: Neil Diamond composed what TV song?

Gold: (JOIN Composer Neil_Diamond) (AND TV_Song #0)

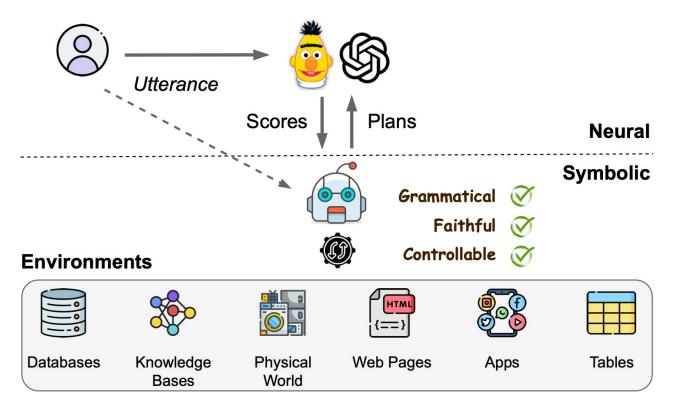
Predicted: (JOIN Composer Neil_Diamond) (JOIN Song #0) (AND Recording #1)

6 steps later

Our Proposal: Pangu Framework

Goals:

- Allow LMs to focus on discrimination
- Generic for different tasks



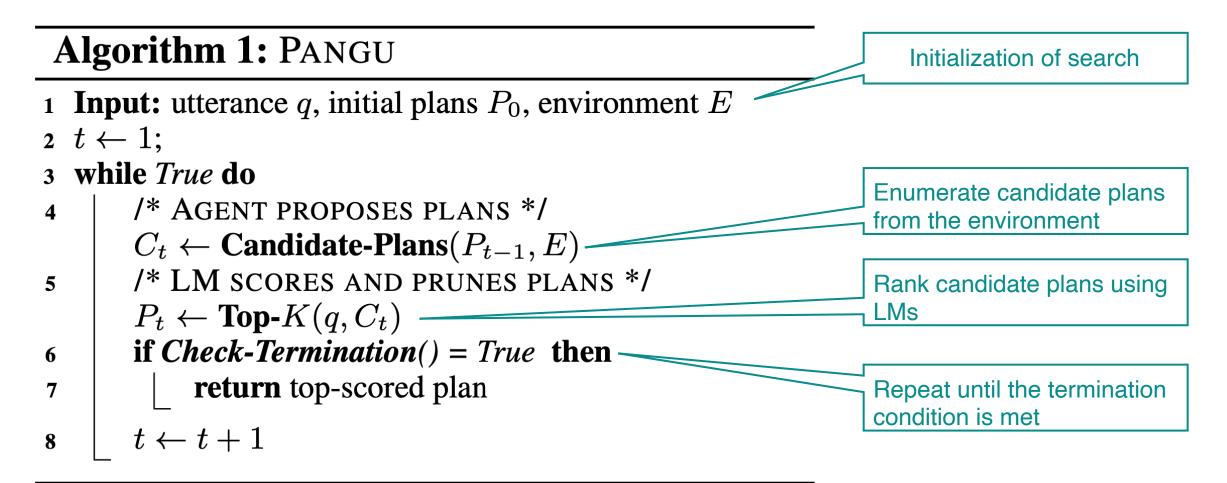
A symbolic agent searches the environment to propose valid candidate plans, while a neural LM scores the plans to guide the search process

Key Assumptions

1 A complex plan can be expanded from smaller sub-plans incrementally

Valid action space at each step is much smaller compared with decoding

Our Proposal: Framework



Our Proposal: Instantiation

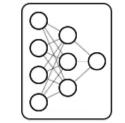
8

Testbed:

KBQA

LMs:

- BERT
- T5
- Codex



New SoTA on KBQA

Prior Art	78.7
Pangu w/ BERT-base	79.9
Pangu w/ T5-base	79.9
Pangu w/ T5-3B	81.7

F1 on GrailQA (i.i.d. + non-i.i.d., ~45K training examples)

Prior Art	34.3
Pangu w/ BERT-base	52.0
Pangu w/ T5-base	53.3
Pangu w/ T5-3B	62.2

Prior Art	78.8
Pangu w/ BERT-base	77.9
Pangu w/ T5-base	77.3
Pangu w/ T5-3B	79.6

F1 on GraphQuestions (non-i.i.d., ~2K training examples)

F1 on WebQSP (i.i.d., ~3K training examples)

Findings:

Particularly strong performance for non-i.i.d. generalization

Stable gain from increased model size

In-Context Learning with LLMs

Prior Art	78.7
Codex 10-shot	48.9
Codex 100-shot	53.3
Codex 1000-shot	56.4

F1 on GrailQA
(i.i.d. + non-i.i.d., ~45K
training examples)

Prior Art	34.3
Codex 10-shot	42.8
Codex 100-shot	43.3
Codex 1000-shot	44.3

Prior Art	78.8
Codex 10-shot	45.9
Codex 100-shot	54.5
Codex 1000-shot	68.3

F1 on GraphQuestions (non-i.i.d., ~2K training examples)

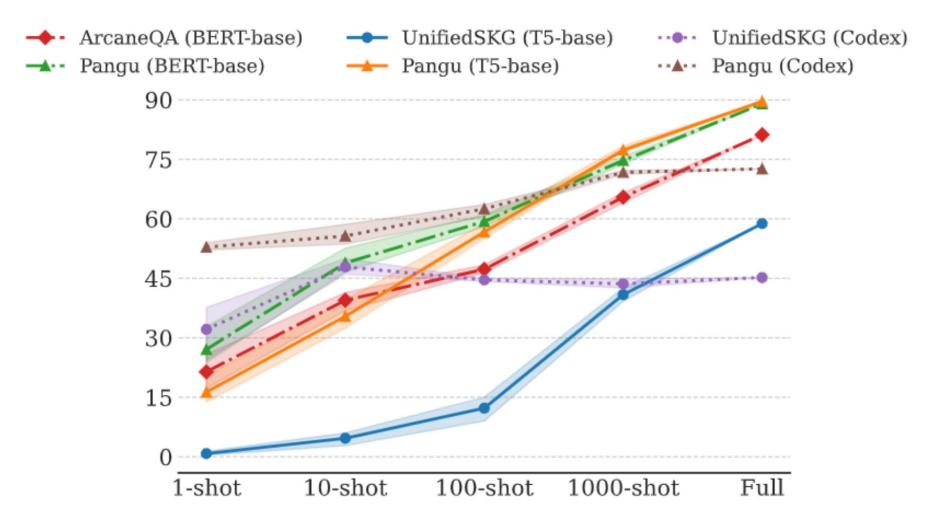
> F1 on WebQSP (i.i.d., ~3K training examples)

Findings:

SoTA performance on GraphQ with only 10 training examples

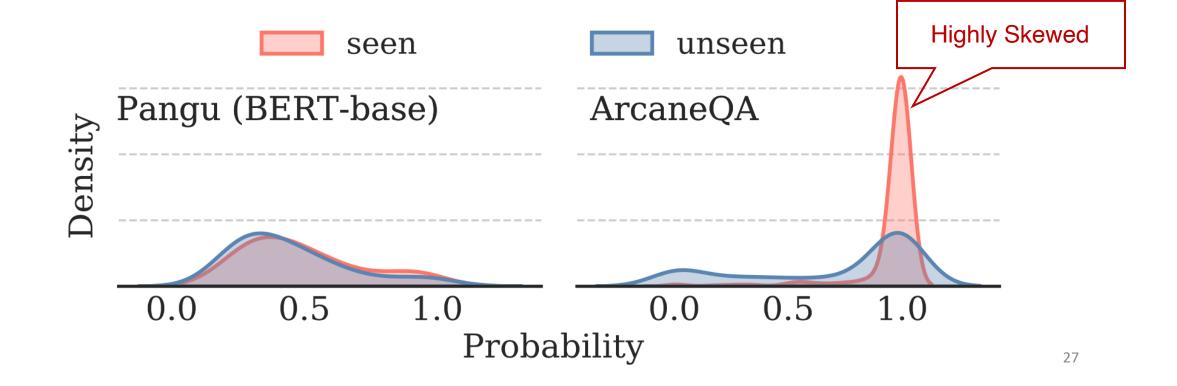
Marginal gain from more training data for non-i.i.d.

Pangu Improves Sample Efficiency



Pangu vs. Constrained Decoding

Autoregressive models tend to overfit seen structures during training



LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large Language Models

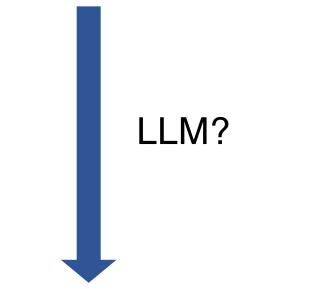
Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M. Sadler, Wei-Lun Chao, Yu Su

Language-driven Embodied Agents

- Embodied agents follow language instructions to complete tasks in a physical environment
- Long-horizon tasks: 50+ steps
- Diverse tasks and environments
- Can LLMs help?

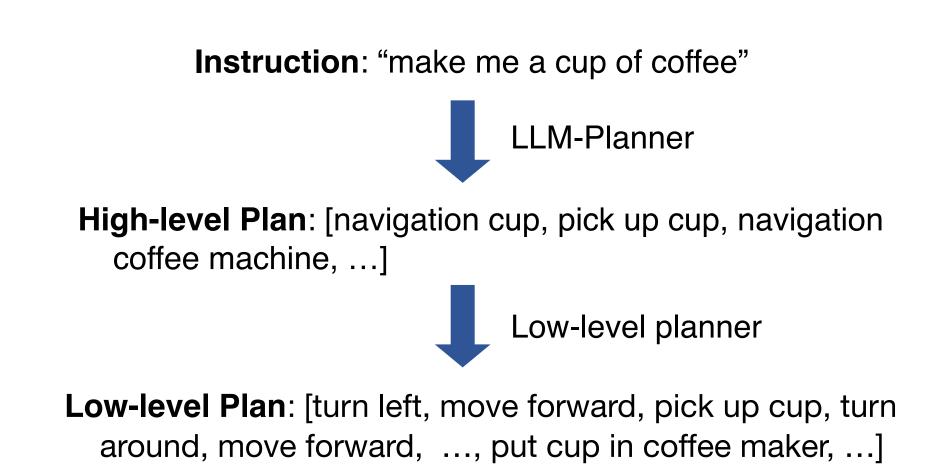
Embodied Agent Planning with LLMs?

Instruction: "make me a cup of coffee"



Low-level Plan: [turn left, move forward, pick up cup, turn around, move forward, ..., put cup in coffee maker, ...]

Embodied Agent Planning with LLMs?

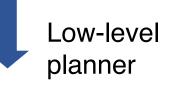


Dynamic Grounded Planning

Instruction: "make me a cup of coffee"

LLM-Planner

High-level Plan: [navigation cup, pick up cup, navigation coffee machine, ...]



Low-level Plan: [Turn left, move forward, pick up cup, turn around, move forward, ..., put cup in coffee maker, ...]

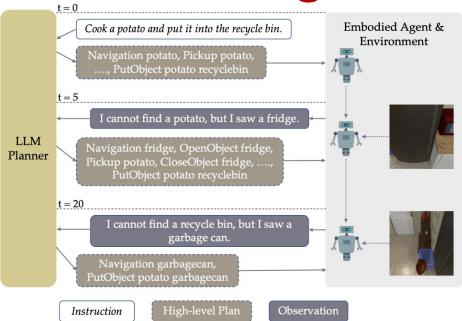


Figure 1. An illustration of LLM-Planner for high-level planning. After receiving the natural language instruction (t = 0), LLM-Planner first generates a high-level plan by prompting a large language model (*e.g.*, GPT-3). When the embodied agent gets stuck during the execution of the current plan (t = 5 and 20), LLM-Planner re-plans based on observations from the environment to generate a more grounded plan, which may help the agent get unstuck. The commonsense knowledge in the LLM (*e.g.*, food is often stored in a fridge) allows it to produce plausible high-level plans and re-plan based on new information from the environment.

Cook the potato and put it into the recycle bin.

Create a high-level plan for completing a household task using the allowed actions and visible objects.

Allowed actions: OpenObject, CloseObject, PickupObject, PutObject, ToggleObjectOn, ToggleObjectOff, SliceObject, Navigation

<In-context Examples>

Task description: Cook the potato and put it into the recycle bin. Completed plans: Visible objects are microwave, fridge, garbagecan, chair Next Plans:

LLM generates the high-level plan

Plan: Navigation potato, PickupObject potato, ...

Evaluation on ALFRED

- LLM-Planner achieves competitive performance with only **100** training examples
- Existing methods can barely complete any task under the same low-data setting

Model	SR	GC	HLP ACC
Full-data setting: 21,023 (instruction, trajectory) pairs			
E.T. [27]	8.57	18.56	_
HiTUT [40]	13.87	20.31	_
M-TRACK [36]	16.29	22.60	_
FILM [26]	27.80	38.52	_
LEBP [18]	28.30	36.79	_
Few-shot setting: 100 (instruction, high-level plan) pairs			
HLSM [3]	0.61	3.72	0.00
FILM [26]	0.20	6.71	0.00
SayCan [1]	9.88	22.54	37.57
LLM-Planner (Static) + HLSM	15.83	20.99	43.24
LLM-Planner + HLSM	16.42	23.37	46.59 - 68.31

SR: Success Rate, GC: Goal Completion Rate, HLP ACC: High-level Planning Accuracy

What's the journey ahead of us?

- Is NLP dead?
- Absolutely not. It's the most exciting time for NLP ever!
- However, instead of *natural language processing*, perhaps we should focus on *natural language programming* next

Thanks &

