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From language models to language agents

[1] AutoGPT https://github.com/Significant-Gravitas/Auto-GPT
[2] LangChain https://www.langchain.com
[3] BabyAGI https://babyagi.org
[4] Generative Agents https://github.com/joonspk-research/generative_agents
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* This diagram is inspired by Shunyu Yao and Yu Gu

https://github.com/Significant-Gravitas/Auto-GPT
https://www.langchain.com/
https://babyagi.org/


• The concept of agent has been introduced in AI since 
its dawn. What’s different this time around?
• Contemporary AI agents use language as a vehicle for 

both thought and communication, a trait that was 
unique to humans.
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But why?

https://www.demandsage.com/chatgpt-statistics/
Wei et al., 2022

Russel & Norvig, 2020

Therefore, these contemporary AI agents capable of using language 
for thought and communication should be called “language agents,” 

for language being their most salient trait. 
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55

https://wayve.ai/thinking/lingo-natural-language-autonomous-driving/

https://www.reddit.com/r/ChatGPT/comments/16jvl4x/wait_actually_yes/

Language for thought
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Evolution of biological intelligence: an analogy
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Language agents: a conceptual framework



• Animals store memory through synaptic plasticity; artificial neural 
networks also store information in their weights (≈ synaptic strengths)
• In-context learning ≈	working memory 
• Long-term memory: LLMs’ parametric memory or vector database?
• Why can LLMs understand and generate language? 
• Conjecture: LLMs may have internalized a compact “linguistic 

representation” by compressing the pre-training corpus, similar to how 
humans learn and memorize
• But can an LLM truly “understand” a concept (e.g., “apple”) without 

actually “seeing” the physical object?
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Memory
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Textual twin world theory



• Each environment is a unique context for interpreting natural language
• Grounding, i.e., linking of (natural language) concepts to contexts, 

becomes a central challenge
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Grounding
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• Mind2Web: Towards a Generalist Agent for the Web
NeurIPS 2023 D&B Track (Spotlight)

• LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large Language 
Models 
ICCV 2023

• Don't Generate, Discriminate: A Proposal for Grounding Language Models to Real-World 
Environments
ACL 2023 (Outstanding Paper Award)

• Adaptive Chameleon or Stubborn Sloth: Revealing the Behavior of Large Language 
Models in Knowledge Conflicts
Arxiv preprint 2023
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For the rest of the talk
Grounded in Environment

Grounded in (LLM) Context



Grounded language understanding

12

Given a natural language utterance 
! and a target environment "

#: (!, ")	à (, s.t. ! ! = ( !
Where ! is a plan/program in a formal language, and " ! is the denotation



Grounded language understanding
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Given a natural language utterance 
! and a target environment "

#: (!, ")	à (, s.t. ! ! = ( !
Where ! is a plan/program in a formal language, and " ! is the denotation

!: What is the latest released computer emulator developed in Java? 

#: (ARGMAX (AND ComputerEmulator 
                              (JOIN LanguagesUsed Java)) 
                     LatestReleaseDate) 



Grounded language understanding
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Given a natural language utterance 
! and a target environment "

#: (!, ")	à (, s.t. ! ! = ( !
Where ! is a plan/program in a formal language, and " ! is the denotation

!: Find Elon Musk's profile and follow 

#: [ (TYPE, [searchbox] Search, “Elon Musk”), 
      (CLICK, <a href=“/elonmusk”>Elon Musk</a>), 
      (CLICK, [button] Subscribe) ]



Grounded language understanding
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Given a natural language utterance 
! and a target environment "

#: (!, ")	à (, s.t. ! ! = ( !
Where ! is a plan/program in a formal language, and " ! is the denotation

!: Bring me a cup of coffee 

#: [turn left, move forward, pick up cup, turn around, move forward,  
     …, put cup in coffee maker, toggle coffee maker, …]



Mind2Web: Towards a Generalist Agent for the Web

Xiang Deng, Yu Gu, Boyuan Zheng, 
Shijie Chen, Samuel Stevens, Boshi Wang, 

Huan Sun, Yu Su

NeurIPS 2023 D&B Track (Spotlight)
https://osu-nlp-group.github.io/Mind2Web
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LLM-Planner: Few-Shot Grounded Planning for 
Embodied Agents with Large Language Models

Chan Hee Song, Jiaman Wu, Clayton 
Washington, Brian M. Sadler, Wei-Lun Chao, Yu Su

ICCV
https://dki-lab.github.io/LLM-Planner





Pangu: A Unified Framework for Grounded 
Language Understanding

Yu Gu, Xiang Deng, Yu Su
The Ohio State University

ACL 2023 (Outstanding Paper Award)
Slides credit to Yu Gu
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Q1: Find the right program over a KB
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Question: Who has ever coached an ice hockey team 
in Canada?

Program:
A. (AND cricket.cricket_coach (JOIN cricket.cricket_team.coach_inv (JOIN 

sports.sports_team.location Canada)))

B. (AND ice_hockey.hockey_coach (JOIN ice_hockey.hockey_team.coach_inv (JOIN 
sports.sports_team.location Canada)))

C. (AND ice_hockey.hockey_team (JOIN sports.sports_team.location Canada))



Q1: Find the right program over a KB

23

Question: Who has ever coached an ice hockey team 
in Canada?

Program:
A. (AND cricket.cricket_coach (JOIN cricket.cricket_team.coach_inv (JOIN 

sports.sports_team.location Canada)))

B. (AND ice_hockey.hockey_coach (JOIN ice_hockey.hockey_team.coach_inv (JOIN 
sports.sports_team.location Canada)))

C. (AND ice_hockey.hockey_team (JOIN sports.sports_team.location Canada))



Q2: Write the corresponding KB program
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Question: What's the classification of the M10 engine?

Program:



Q2: Write the corresponding KB program
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Question: What's the classification of the M10 engine?

Program:
(AND automotive.engine_type (JOIN automotive.engine_type.used_in M10))



Why is Q2 harder?

                  You need to learn the grammar

       You need to know the environment specifics
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Pangu:

A unified framework that models 
grounded language understanding as 

a discrimination task
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Our proposal: Pangu

Goals:
§ Allow LMs to focus on 

discrimination
§ Generic for different tasks

A symbolic agent searches the environment to propose valid candidate 
plans, while a neural LM scores the plans to guide the search process 
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Algorithmic definition
Initialization of search

Propose candidate plans 
from the environment

Rank candidate plans using 
a language model

Repeat until the termination 
condition is met
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Instantiation for KBQA

Testbed:
§ KBQA 
 45M entities 
 3B facts

LMs:
§ BERT
§ T5
§ Codex
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New SoTA for KBQA
Prior Art 78.7
Pangu w/ BERT-base 79.9
Pangu w/ T5-base 79.9
Pangu w/ T5-3B 81.7

Prior Art 34.3
Pangu w/ BERT-base 52.0
Pangu w/ T5-base 53.3
Pangu w/ T5-3B 62.2

Prior Art 78.8
Pangu w/ BERT-base 77.9
Pangu w/ T5-base 77.3
Pangu w/ T5-3B 79.6

F1 on GrailQA
(i.i.d. + non-i.i.d., ~45K 

training examples) 

F1 on GraphQuestions
(non-i.i.d., ~2K training 

examples) 

F1 on WebQSP
(i.i.d., ~3K training 

examples) 

Findings:
     Particularly strong performance
         for non-i.i.d. generalization

         Stable gain from increased
         model size
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In-context learning with LLMs
Prior Art 78.7
Codex 10-shot 48.9
Codex 100-shot 53.3
Codex 1000-shot 56.4

Prior Art 34.3
Codex 10-shot 42.8
Codex 100-shot 43.3
Codex 1000-shot 44.3

Prior Art 78.8
Codex 10-shot 45.9
Codex 100-shot 54.5
Codex 1000-shot 68.3

F1 on GrailQA
(i.i.d. + non-i.i.d., ~45K 

training examples) 

F1 on GraphQuestions
(non-i.i.d., ~2K training 

examples) 

F1 on WebQSP
(i.i.d., ~3K training 

examples) 

Findings:
     SoTA performance on GraphQ
         with only 10 training examples

         Marginal gain from more
         training data for non-i.i.d.
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Pangu vs. Constrained Decoding
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Autoregressive models tend to overfit seen 
structures during training

Highly Skewed



• Mind2Web: Towards a Generalist Agent for the Web
NeurIPS 2023 D&B Track (Spotlight)

• LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large Language 
Models 
ICCV 2023

• Don't Generate, Discriminate: A Proposal for Grounding Language Models to Real-World 
Environments
ACL 2023 (Outstanding Paper Award)

• Adaptive Chameleon or Stubborn Sloth: Revealing the Behavior of Large Language 
Models in Knowledge Conflicts
Arxiv preprint 2023
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For the rest of the talk
Grounded in Environment

Grounded in (LLM) Context



Adaptive Chameleon or Stubborn Sloth: 
Revealing the Behavior of Large Language Models in 

Knowledge Conflicts
Jian Xie*, Kai Zhang*, Jiangjie Chen, Renze Lou, Yu Su

https://arxiv.org/abs/2305.13300



Parametric Memory vs. External Evidence 

How receptive are LLMs to external evidence? 



Counter-memory



Eliciting parametric and counter-memory



LLMs are highly 
receptive 
(or deceivable?)

• When only counter-memory is presented as 
evidence, LLMs are very happy to change their mind

• However, only when the evidence is presented in a 
coherent and convincing way

• LLMs can be easily deceived by adversarial tools!

Only 
this is 
shown



• When conflicting evidence (both supportive and 
conflicting) is present, LLMs show a strong confirmation 
bias and tend to cling to their parametric memory

• Challenges for LLMs to unbiasedly orchestrate multiple 
pieces of conflicting evidence, a common scenario faced 
by generative search engines

Both 
are 

shown

LLMs show 
confirmation bias
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What’s the journey ahead of us?
• Is NLP dead/solved?

• Absolutely not. It’s the most exciting time for NLP ever!

• However, instead of natural language processing, perhaps we 
should focus on natural language programming next
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Natural language programming

Language Agent



Language Agents: Foundations, Prospects, and Risks

Yu Su, Diyi Yang, Shunyu Yao and Tao Yu

EMNLP 2024 Tutorial
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