BERT: Pre-training of Deep
Bidirectional Transformers for
Language Understanding

Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova

arXiv:1810.04805

What is BERT?

e Bidirectional Encoder Representations from Transformers
e A contextualized language model that can be fine-tuned for a variety of tasks

1 - Semi-supervised training on large amounts 2 - Supervised training on a specific task with a
of text (books, wikipedia..etc). labeled dataset.

Supervised Learning Step

75% Spam

' Classifier

25% N

I Model:
Model: (pre-trained
|
I in step #1) .
| The two steps of how BERT is
| I developed. You can download the
| Dataset I o Sm model pre-trained in step 1 (trained
A | Dataset: S . on un-annotated data), and only
Obijective: Predict the masked word Dear Mr. Atreides, please find attached... |~ NotSpam Worry about flne—tunlng lt for Step 2

(langauge modeling)

BERT

e Bidirectional Encoder Representations from Transformers

e Bidirectional - Uses attention
o Attention considers content before and after a word rather than sequentially like an RNN

e Encoder Representations
o Condenses text into a vector that represents its meaning and components (features)

e Transformers
o Layered neural networks which use attention to encode the representations

Previous Models: ELMo

Creates embeddings based on the context it’s used in (contextualized word-embeddings)

It is a pair of LSTMs trained to take input vectors and predict the next word in a sequence
ELMo looks at the entire sentence before assigning each word an embedding

These vectors are then used as features in a downstream task

0.1% = Aardvark
Possible classes: ol Embedding of “stick” in “Let’s stick to” - Step #2
All English words 10% Improvisation

1- Concatenate hidden layers

0% | Zyzzyva

Layer

LSTM 2- Mgltiplg each vector byk
Layer #2 a weight based on the tas

X S

JEEE (JEEE N — L Loxs
LSTM [Lo) .
Layer #1 w w w SRR e
3- Sum the (now weighted)
vectors

f “stick” for this task in this contex

Embedding I I I I [-

Previous Models: OpenAl Transformer

e Often sentences will rely on information significantly distant from each other
An RNN may fail to capture this so instead an attention based system is used
o The OpenAl Transformer is a stack of Decoders which are trained to predict the next word in a sequence

o Decoders sequential data and mask all future information past the target token
e Transfer learning is done by formatting different problems as if they were sequential and adding a final
classifier layer

85% m i : .
- Ve
ish wor o o = 2 . i
8% Not Spam b crment S | premse | oo | opavess | Ewan |- Transtomer} - e |

0%

BN o
FENN + Softmax Similarity +
Fev— N T e T

12 R T e e
2

.

(S | Gome | oo | Avawerny [e
1

OpenAl

Transformer

BERT: The Next Step

OpenAl by using decoders, goes back to only considering information in 1-direction
BERT is instead a stack of encoders that looks at attention in both directions simultaneously
o To prevent the model from automatically recognizing the target word, it selectively masks (or replaces)
15% of the tokens and is trained to predict the missing term

e BERT is also trained on predicting likelihood sentence B follows sentence A
o This likelihood is based on the output vector for a given class label which is appended to the sequence

Use the output of the) % | Aardvark Predict likelihood 1% IsNext
masked word’s position ’P” g B | orovisation that sentence B

to predict the masked word) . belongs after 99% | NotNext
sentence A

FFNN + Softmax FFNN + Softmax
coe

Randomly mask T Tokenized

%
15% of tokens B Asky L Input cls] the man [MASK]

Input Input

Difference Between Architectures

BERT (Ours) OpenAl GPT

Figure 3: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAl GPT
uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-to-
left LSTMs to generate features for downstream tasks. Among the three, only BERT representations are jointly
conditioned on both left and right context in all layers. In addition to the architecture differences, BERT and
OpenAl GPT are fine-tuning approaches, while ELMo is a feature-based approach.

BERT: Input Representation

Predict likelihood
that sentence B
belongs after
sentence A

1% | IsNext

99% NotNext

FFNN + Softmax

Tokenized
Input

[CLS] the man [MASK] to

Input [CLS] the man [MASK] to the store [SEP] penguin [MASK] are flightless birds
L] L]
Sentence A Sentence B

BERT: Input Representation

(109] [(my] [(aog] [1=][cute] tser][e][ikes |[piay][##ing][15en |
Token

= = L + -+ b + + L b +
Segment
= = L + + L b + L b +

Crmeaios

Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmenta-
tion embeddings and the position embeddings.

Positional Embedding

e When using attention, word order is not retained unlike with sequential NN

e This can lead to ambiguity when comparing tokens within a sentence

o Ido not like the story of the movie, but I do like the cast
o Ido like the story of the movie, but I do not like the cast
o Same words but different order completely changes sentiment

e BERT encodes positional embeddings into tokens

o This encoding uses the same formula as presented in Attention is All You Need
pos = position

o 1= dimension Sin(pos/lOOOOQ’i/dmodcl)

d,,.4. = dimension size of model

= cos(pos /100002 dmeer)

Subword Embeddings

Imagine a corpus of ‘walker’, ‘walks’,

e In the pretraining step, Bert uses WordPiece ‘walked’
tokenization
o This encodes sub-word information into the language model so L mE=E

that in testing/usage an Out-Of-Vocabulary (OOV) token can still 2 llk=lk

have an embedding 3. wallk =walk

These subwords are selected since they
are common in the corpus and thus

The following algorithm is how WordPiece works: , e
likely. Now each component, including

1. Create a corpus

. . . letters, subwords, and entire words, are
Define a desired subword vocabulary size ’ ’ ’

. included in the dicti
Split word to sequence of characters fnciuded i the dictionaty

Build a language model based on step 3 data

GICNEWIN

Given OOV “walking” the model can use

Choose the new word unit out of all the possible ones that increases the . : . o
walk’” and ‘ing’ (which it learns from

likelihood on the training data the most when added to the model.

6. Repeating step 5 until reaching subword vocabulary size which is defined other words)

in step 2 or the likelihood increase falls below a certain threshold.

BERT: Transfer Learning

e In a neural network, each layer gathers different information

O

Earlier layers extract more general features while later layers get more specific/nuanced features

e Transfer learning reduces the need for in-domain data

(@)

O O O O

Pre-train a model on a large, general dataset and then fine-tune it for a task using a smaller, specific dataset
Pre-training makes early layers good at extracting general features

Attach new task-specific classification layers to this model, fine-tuning them for a specific task

All previous parameters, which were initialized in pre-training, are then further trained at a fine-tuning learning rate
This is common in computer vision

Output

Prediction

Kit fox
English setter
Egyptian cat

Great Dane

Mostly Feature Extraction

Hotdog

13

Fine-Tuning : ULM-FiT
e ULM-FiT introduced convention for transfer learning in language modeling

A. The model is trained over a large data set

B. Each layer of the model is fine tuned using parameters specific to that layer since each layer captures different information
a. The triangular learning rate is more aggressive, allowing for less data to make a large impact

C. Fine-tunes model for classification task

a. Concat Pooling: Concatenate as many layers as fit in memory to to retain detailed information
b. Gradual Unfreezing: Fine tune a layer at a time to prevent ‘catastrophic forgetting’

Layer 3 {
Ly Layer 3]

Layer 2

Layer 1 Layer 1 Layer 1 i

Embeddis Embedding
layer layer

The gold dollar or gold The best scene The best scene ever

(a) LM pre-training (b) LM fine-tuning (c) Classifier fine-tuning

BERT: Fine-Tuned for Different Tasks

e Using fine tuning, BERT can be geared towards a
variety of tasks

e For a given task, tokens are appended into the
sequence

BERT
E0E- - ()

Sentence 1 Sentence 2 Single Sentence

o The hidden state of this token is output for classification
tasks

Start/End Span (a) Sentence Pair Classification Tasks: (b) Single Sentence Classification Tasks:

MNLI, QQP, QNLI, STS-B, MRPC, SST-2, ColA
RTE, SWAG

StarvEnd Span

o—C O
=R OED 6

Question Paragraph Single Sentence

Masked Sentence A Masked Sentence B Question Paragraph

Unlabeled Sentence A and B Pair Question Answer Pair
(c) Question Answering Tasks: (d) Single Sentence Tagging Tasks:
SQuAD v1.1 CoNLL-2003 NER

Pre-training Fine-Tuning

Evaluation: GLUE Tasks

e General Language Understanding Evaluation benchmark

e Collection of diverse language understanding tasks

O

@)

MNLI: Multi-Genre Language Interference
m Entailment classification (Determine if 2 sentence are entailment/contradiction/neutral
QQP: Quora Question Pairs
m Determine if 2 questions asked on quora are semantically equivalent
QNLI: Question Natural Language Interference
m Stanford Question Answering Dataset converted to classification task
SST-2: Stanford Sentiment Treebank
m Single-sentence classification of movie review sentiment
CoLA: Corpus of Linguistic Acceptability
m Single sentence classification to see if a sentence is linguistically english
STS-B: Semantic Textual Similarity Benchmark
m Determine how similar 2 sentences are by semantic meaning
MRPC: Microsoft Research Paraphrase Corpus
m Sentence pairs gathered from the news to determine if they are semantically equivalent
RTE: Recognizing Textual Entailment
m Similar to MNLI but less training data
WNLI: Winograd NLI
m Small natural language inference dataset

Evaluation: Glue Results

Batch size of 32 and 3 epochs

Introduced softmax classification layer

Selected best fine-tuning learning rate on Dev set

BERT} .rge was unstable on some small datasets

o Performed random restarts that did different fine-tuning data shuffling and classifier layer

initialization

System MNLI-(m/mm)
392k
Pre-OpenAl SOTA 80.6/80.1
BiLSTM+ELMo+Attn 76.4/76.1
OpenAl GPT 82.1/81.4
BERTgAsE 84.6/83.4
BERTLarGE 86.7/85.9

QQP
363k
66.1
64.8
70.3
71.2
72.1

QNLI
108k
82.3
79.8
87.4
90.5
92.7

SST-2
67k
93.2
90.4
91.3
93.5
94.9

CoLA
8.5k
35.0
36.0
45.4
52.1
60.5

STS-B
5.7k
81.0
73.3
80.0
85.8
86.5

MRPC
3.5k
86.0
84.9
82.3
88.9
89.3

RTE
2.5k
61.7
56.8
56.0
66.4
70.1

Average
74.0
71.0
75.1
79.6
82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).

EM Fl1 EM Fl
Top Leaderboard Systems (Dec 10th, 2018)

Evaluation: SQuaD (1.1 & 2.0) e P o

Human - - 823 912
1 i #1 Ensemble - nl - - 860 917
e Stanford Question Answering Dataset 1 Ensembe aine, o - %007
o Collection of 100k crowdsourced Q:A pairs Published
)) - :)) BiDAF+ELMo (Single) - 856 - 858
o Given a question and passage from Wikipedia, the task is to predict the answer R Cu R I
substring (text span) from the passage BERTgase (Single) oue 80.8
BERTLARGE (Single) 84.1
. . . BERTLARGE (Ensemble) 85.8 R - -
BERT, arce: (Sgl+TriviaQA) 842 911 851 918
e Introduce a Start [S] and End [E] vector in fine tuning BERTuaxcr (SglTiviaQs) 842 911 851 913
o Gather of a given word T; being the start or end token for the span
: : Table 2: SQUAD 1.1 results. The BERT ensembl
by calculating a dot product followed by a softmax over all words in the Py system?;,hich us;e:[lilfft:rent :re-traini;; heck.
para gr aph points and fine-tuning seeds.
System Dev Test
EM F1 EM Fl
Top Leaderboard Systems (Dec 10th, 2018)
o Score of span is calculated by the above formula where j>=i e Single - MIR-MRC (F-Net) 503 80 2% 90
o Training objective is sum of log-likelihoods of the correct start and end W
1she
pOSitiOHS unet (Ensemble) - - 714 749
SLQA+ (Single) - 714 744
e Squad v2.0 introduces the chance that the text is not in the o
BERTLARGE (Smgle) 78.7 819 800 831
assage
p g Table 3: SQuAD 2.0 results. We exclude entries that
o A null answer has the start and end token at the [CLS] token use BERT as one of their components.

o Compare the probability of null answer vs best non-null answer

Evaluation: SWAG

e Situations With Adversarial Generations dataset

o 113k sentence-pair completion examples

o Given a sentence, the task is to choose the most plausible System Test

continuation among four choices ESIM+GloVe 52.7
ESIM+ELMo 59.2

OpenAl GPT 78.0
BERTBAsE

BERTLArGE 86.3

e In fine-tuning, they concatenated the given sentence with [REEERECS Lol - 850
Human (5 annotations)! - 88.0

each of the 4 sentences and labelled accordingly o 4 SWAG Dov and Toot acomra—

Ablation Studies

Dev Set
Tasks MNLI-m QNLI MRPC SST-2 SQuAD
(Acc) (Acc) (Acc) (Acc) (F1)

BERTBAsE 84.4 884 86.7 92.7 88.5
No NSP 83.9 849 865 926 87.9
LTR & NoNSP 82.1 843 775 921 77.8

+ BiLSTM 82.1 84.1 757 916 84.9

Hyperparams Dev Set Accuracy

#L #H #A LM (ppl) MNLI-m MRPC SST-2

3 768 12 5.84 77.9 79.8 88.4

6 768 3 524 80.6 82.2 90.7

6 768 12 4.68 81.9 84.8 913
12 768 12 3.99 84.4 86.7 929
12 1024 16 354 85.7 869 933
Table 5: Ablation over the pre-training tasks using the 24 1024 16 3.23 86.6 87.8 937
BERTgAsg architecture. “No NSP” is trained without -
the next sentence prediction task. “LTR & No NSP” is
trained as a left-to-right LM without the next sentence
prediction, like OpenAl GPT. “+ BiLSTM” adds a ran-
domly initialized BiLSTM on top of the “LTR + No

NSP” model during fine-tuning.

Table 6: Ablation over BERT model size. #L = the
number of layers; #H = hidden size; #A = number of at-
tention heads. “LM (ppl)” is the masked LM perplexity
of held-out training data.

BERT: Feature Extraction

e ELMo and Word2Vec both allowed for word vectors to be output and then used for a downstream task

e While fine tuning a model typically works better for an overall task, this feature extraction is useful for

quick prototyping and for especially low resource tasks

e In BERT, we use a combination of hidden layers to create a vector representation

o The best combination is dependent on the final task

Generate Contexualized Embeddings The output of h encoder layer along
each token’s path can be us
feature representing that token

Lo
| | | cerm |
LT I LIl

N C— —

mun] lEess] LI

R C— —

o
o
o o o
Il
CLLI T e
o
o
1T
I

Hel

But which one should we use?

What is the best contextualized embedding for “Help” in that context?

Dev F1 Score
First Layer 91.0

Last Hidden Layer 94.9

Sum All 12
Layers

Second-to-Last
Hidden Layer

Sum Last Four
Hidden

Concat Last
Four Hidden

Conclusion & Limitation

e BERT builds on several advancements in NLP in recent years

e BERT presents a new cutting edge for language models than can be quickly
applied to a variety of tasks and domains

o It especially opens up opportunities on working in low-resource tasks

e Base BERT has the limitation of only being able to handle 512 tokens at a time,
which limits its ability to to work on data sets with larger sample components

