
BERT: Pre-training of Deep
Bidirectional Transformers for

Language Understanding
Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova

arXiv:1810.04805

What is BERT?
● Bidirectional Encoder Representations from Transformers

● A contextualized language model that can be fine-tuned for a variety of tasks

The two steps of how BERT is

developed. You can download the

model pre-trained in step 1 (trained

on un-annotated data), and only

worry about fine-tuning it for step 2.

BERT
● Bidirectional Encoder Representations from Transformers

● Bidirectional - Uses attention

○ Attention considers content before and after a word rather than sequentially like an RNN

● Encoder Representations

○ Condenses text into a vector that represents its meaning and components (features)

● Transformers

○ Layered neural networks which use attention to encode the representations

3

Previous Models: ELMo
● Creates embeddings based on the context it’s used in (contextualized word-embeddings)

● It is a pair of LSTMs trained to take input vectors and predict the next word in a sequence

● ELMo looks at the entire sentence before assigning each word an embedding

● These vectors are then used as features in a downstream task

Previous Models: OpenAI Transformer
● Often sentences will rely on information significantly distant from each other

● An RNN may fail to capture this so instead an attention based system is used

● The OpenAI Transformer is a stack of Decoders which are trained to predict the next word in a sequence

○ Decoders sequential data and mask all future information past the target token

● Transfer learning is done by formatting different problems as if they were sequential and adding a final

classifier layer

BERT: The Next Step
● OpenAI, by using decoders, goes back to only considering information in 1-direction

● BERT is instead a stack of encoders that looks at attention in both directions simultaneously

○ To prevent the model from automatically recognizing the target word, it selectively masks (or replaces)

15% of the tokens and is trained to predict the missing term

● BERT is also trained on predicting likelihood sentence B follows sentence A

○ This likelihood is based on the output vector for a given class label which is appended to the sequence

Difference Between Architectures

BERT: Input Representation

BERT: Input Representation

Positional Embedding
● When using attention, word order is not retained unlike with sequential NN

● This can lead to ambiguity when comparing tokens within a sentence

○ I do not like the story of the movie, but I do like the cast

○ I do like the story of the movie, but I do not like the cast

○ Same words but different order completely changes sentiment

● BERT encodes positional embeddings into tokens

○ This encoding uses the same formula as presented in Attention is All You Need

○ pos = position

○ i = dimension

○ d
model

= dimension size of model

Subword Embeddings
● In the pretraining step, Bert uses WordPiece

tokenization

○ This encodes sub-word information into the language model so

that in testing/usage an Out-Of-Vocabulary (OOV) token can still

have an embedding

The following algorithm is how WordPiece works:

1. Create a corpus

2. Define a desired subword vocabulary size

3. Split word to sequence of characters

4. Build a language model based on step 3 data

5. Choose the new word unit out of all the possible ones that increases the

likelihood on the training data the most when added to the model.

6. Repeating step 5 until reaching subword vocabulary size which is defined

in step 2 or the likelihood increase falls below a certain threshold.

Imagine a corpus of ‘walker’, ‘walks’,

‘walked’

1. w|a = wa

2. l|k = lk

3. wa|lk = walk

These subwords are selected since they

are common in the corpus and thus

likely. Now each component, including

letters, subwords, and entire words, are

included in the dictionary

Given OOV “walking” the model can use

‘walk’ and ‘ing’ (which it learns from

other words)

BERT: Transfer Learning
● In a neural network, each layer gathers different information

○ Earlier layers extract more general features while later layers get more specific/nuanced features

● Transfer learning reduces the need for in-domain data

○ Pre-train a model on a large, general dataset and then fine-tune it for a task using a smaller, specific dataset

○ Pre-training makes early layers good at extracting general features

○ Attach new task-specific classification layers to this model, fine-tuning them for a specific task

○ All previous parameters, which were initialized in pre-training, are then further trained at a fine-tuning learning rate

○ This is common in computer vision

13

Fine-Tuning : ULM-FiT
● ULM-FiT introduced convention for transfer learning in language modeling

A. The model is trained over a large data set

B. Each layer of the model is fine tuned using parameters specific to that layer since each layer captures different information

a. The triangular learning rate is more aggressive, allowing for less data to make a large impact

C. Fine-tunes model for classification task

a. Concat Pooling: Concatenate as many layers as fit in memory to to retain detailed information

b. Gradual Unfreezing: Fine tune a layer at a time to prevent ‘catastrophic forgetting’

BERT: Fine-Tuned for Different Tasks
● Using fine tuning, BERT can be geared towards a

variety of tasks

● For a given task, tokens are appended into the

sequence

○ The hidden state of this token is output for classification

tasks

Evaluation: GLUE Tasks
● General Language Understanding Evaluation benchmark

● Collection of diverse language understanding tasks

○ MNLI: Multi-Genre Language Interference

■ Entailment classification (Determine if 2 sentence are entailment/contradiction/neutral

○ QQP: Quora Question Pairs

■ Determine if 2 questions asked on quora are semantically equivalent

○ QNLI: Question Natural Language Interference

■ Stanford Question Answering Dataset converted to classification task

○ SST-2: Stanford Sentiment Treebank

■ Single-sentence classification of movie review sentiment

○ CoLA: Corpus of Linguistic Acceptability

■ Single sentence classification to see if a sentence is linguistically english

○ STS-B: Semantic Textual Similarity Benchmark

■ Determine how similar 2 sentences are by semantic meaning

○ MRPC: Microsoft Research Paraphrase Corpus

■ Sentence pairs gathered from the news to determine if they are semantically equivalent

○ RTE: Recognizing Textual Entailment

■ Similar to MNLI but less training data

○ WNLI: Winograd NLI

■ Small natural language inference dataset

Evaluation: Glue Results
● Introduced softmax classification layer

● Batch size of 32 and 3 epochs

● Selected best fine-tuning learning rate on Dev set

● BERT
Large

was unstable on some small datasets

○ Performed random restarts that did different fine-tuning data shuffling and classifier layer

initialization

Evaluation: SQuaD (1.1 & 2.0)
● Stanford Question Answering Dataset

○ Collection of 100k crowdsourced Q:A pairs

○ Given a question and passage from Wikipedia, the task is to predict the answer

substring (text span) from the passage

● Introduce a Start [S] and End [E] vector in fine tuning

○ Gather probability of a given word T
i
being the start or end token for the span

by calculating a dot product followed by a softmax over all words in the

paragraph

○ Score of span is calculated by the above formula where j>= i

○ Training objective is sum of log-likelihoods of the correct start and end

positions

● Squad v2.0 introduces the chance that the text is not in the

passage

○ A null answer has the start and end token at the [CLS] token

○ Compare the probability of null answer vs best non-null answer

Evaluation: SWAG
● Situations With Adversarial Generations dataset

○ 113k sentence-pair completion examples

○ Given a sentence, the task is to choose the most plausible

continuation among four choices

● In fine-tuning, they concatenated the given sentence with

each of the 4 sentences and labelled accordingly

Ablation Studies

BERT: Feature Extraction
● ELMo and Word2Vec both allowed for word vectors to be output and then used for a downstream task

● While fine tuning a model typically works better for an overall task, this feature extraction is useful for

quick prototyping and for especially low resource tasks

● In BERT, we use a combination of hidden layers to create a vector representation

○ The best combination is dependent on the final task

Conclusion & Limitation
● BERT builds on several advancements in NLP in recent years

● BERT presents a new cutting edge for language models than can be quickly

applied to a variety of tasks and domains

○ It especially opens up opportunities on working in low-resource tasks

● Base BERT has the limitation of only being able to handle 512 tokens at a time,

which limits its ability to to work on data sets with larger sample components

