Conversational Semantic Parsing

Submitted by Armen Aghajanyan et al (18, Sep 2020)

YIFEI Zhang(.5387)

Abstract

- 1. Proposes a semantic representation for task-oriented conversational systems that can represent concepts such as **co-reference and context carryove**r
- 2. Proposes a new family of Seq2Seq models for the **session-based** parsing.
- 3. Achieve better or comparable performance to the current state-of-the-art on ATIS, SNIPS, TOP and DSTC2.
- 4. Releases a new session-based, compositional task-oriented **parsing dataset** of 20k sessions consisting of 60k utterances.

Semantic Representation

Task oriented dialog system typically first parse user utterances to semantic frames comprised of Intents and slots

Intents: an abstract meaning which always refers to a sentence or sub-sentence. **Slots:** It is attribute or key, which should have a value.

```
Example (from ATIS):

Query: What flights are available from pittsburgh to baltimore on thursday

Intent: flight info

Slots:

- from_city: pittsburgh

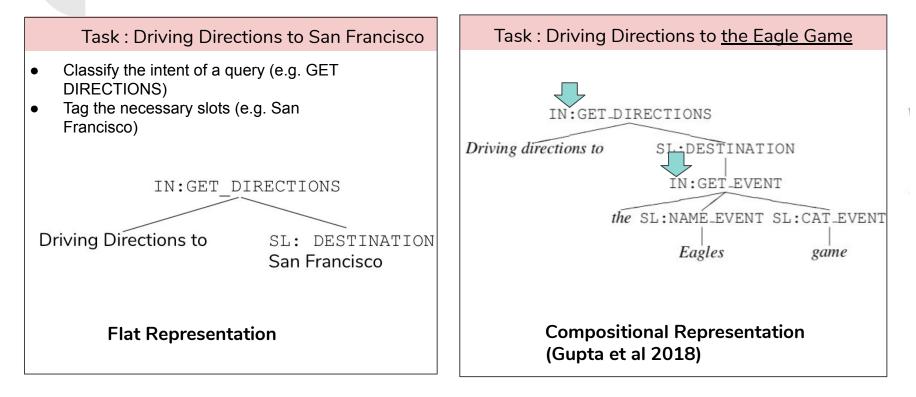
- to_city: baltimore

- depart_date: thursday

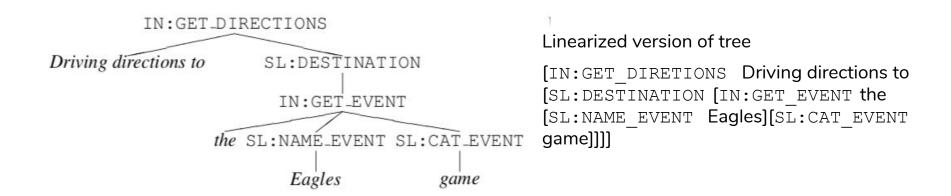
- depart_time: morning
```

Source: http://nlpprogress.com/

Semantic Representation



Compositional Representation (Gupta et al 2018)



Limitation: In-order traversal constraint disallow long-distance dependencies within semantic representation

eg: On Monday, set an alarm for 8am.

Want a single date-time slot: [SL DATETIME 8am on Monday]

Decoupled Representation

Convert Compositional Form into a logical form containing two label type (SLOT and INTENT) Removing all text in the compositional semantic parse that does not appear in a leaf slot

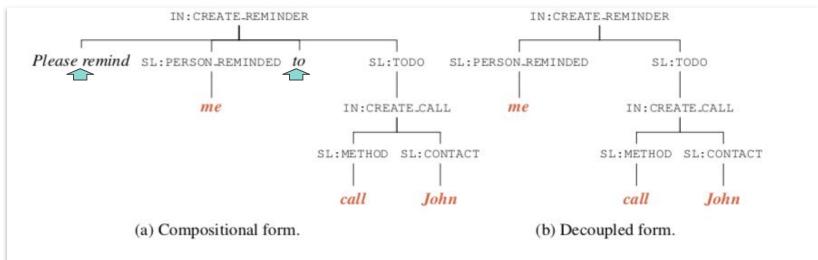
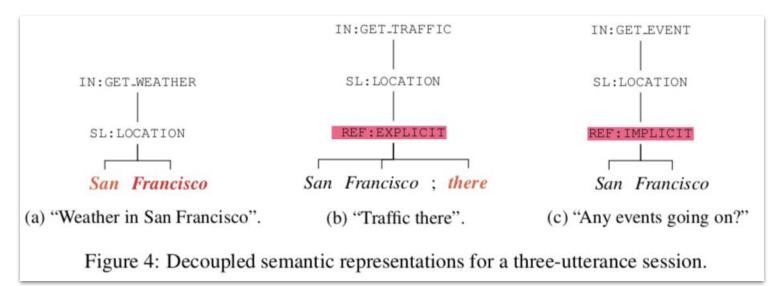


Figure 1: Compositional and decoupled semantic representations for the single utterance "Please remind me to call John".

Session-Based Semantic Parsing

Introduce a new reference(REF) label type



Co-references - Explicit reference Slot-carryover: Implicit reference

Model -Seq2Seq Architecture

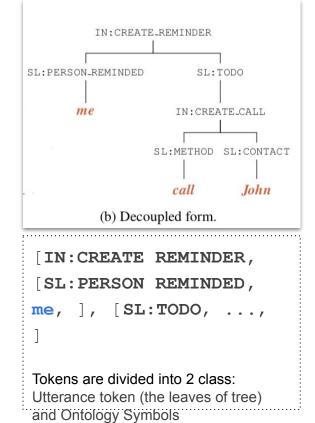
Encoder :

 $e_1, ..., e_T = \text{Encoder}(w_1, ..., w_T)$ Bidirectional LSTM / Transformer

Decoder:

Every decoding step, the model can either **<u>generate an element from the</u> <u>ontology</u>**, or <u>**copy a token**</u> from the source sequence

 $\begin{array}{l} \textbf{Ontology Generation Distribution} \\ \textbf{x}_{t} = \text{Decoder} \left(\textbf{e}_{1}, ..., \textbf{e}_{t}; \textbf{d}_{t-1}; \textbf{s}_{t-1} \right), \\ \textbf{p}_{t}^{\text{g}} = \text{softmax} \left(\text{Linear}_{g}[\textbf{x}_{t}] \right), \\ \textbf{W}^{\theta} \textbf{x} + \textbf{b}^{\theta} \\ \textbf{W}^{\theta} \textbf{x} + \textbf{b}^{\theta} \\ \textbf{W}^{\theta} \textbf{x} + \textbf{b}^{\theta} \\ \end{array} \begin{array}{l} \textbf{Utterance Copy Distribution (attention distribution)} \\ \textbf{p}_{t}^{\text{c}}, \textbf{\omega}_{t} = \text{MhAttention} \left(\textbf{e}_{1}, ..., \textbf{e}_{t}; \text{Linear}_{c}[\textbf{x}_{t}] \right), \\ \textbf{W}^{\theta} \textbf{x} + \textbf{b}^{\theta} \\ \textbf{W}^{\theta} \textbf{x} + \textbf{b}^{\theta} \\ \textbf{p}_{t}^{c} = p_{t}^{\alpha} \cdot \textbf{p}_{t}^{g} + \left(1 - p_{t}^{\alpha} \right) \cdot \textbf{p}_{t}^{c}. \\ p_{t}^{\alpha} = \sigma \left(\text{Linear}_{\alpha} [\textbf{x}_{t} || \textbf{\omega}_{t}] \right) \end{array}$



Model - Encoder and Decoder

1. RNN based

Encoder: 2 Stacked bidirectional LSTM + Decoder: UniDirectional LSTM

Extentened Version (Incorporating Contextualized word vector EIMo Embeddings)

2. Transformer

Encoder: RoBERTa +Decoder: 3 Layers Transformer

Encoder: BART+ Decoder: BART

Experiment

DataSet Released(SB-TOP): 20K annotated session in 4 Domains: calling, weather, music and reminder.(Allow for mixture of domain within a session) <u>http://dl.fbaipublicfiles.com/sbtop/SBTOP.zip</u>

Collection: Crowdsourced Workers to write session, then ask 2nd group of annotators to annotate.

Dataset	Characteristic	
ТОР	31k training: Navigation, event, and navigation to event domain	
SNIPS-NLU	Playlist, Restaurant, Weather, Music, RateBook, etc.	
ATIS	Airline Travel Information Systems	
DSTC2	DSTC 2 (Restaurant Information Domain), Over 2k sessions	Multiple Turns
Internal Dataset	170k training, annotated with flat representation (from variety of domain: weather, communication, music, weather, device control)	Cover 140 distinct intent
Internal Dataset	67k training, annotated with hierarchical representation	Cover 60 intent in communication domain

Experiment

Table 1: Frame accuracy of the decoupled models on semantic parsing tasks. \dagger indicates results from Hakkani-Tür et al. (2016); \ddagger , from Goo et al. (2018); *, from Zhang et al. (2018); ×, from Chen et al. (2019a).

(a) Accuracy on TOP.

(b) Accuracy on ATIS and SNIPS. (c) Accuracy on internal datasets.

Model	Acc.	Model	ATIS	SNIPS	Model	Acc.
RNNG	80.86	Joint biRNN [†]	80.7	73.2	Multi-domain (170k)	
RNNG + Ensembling RNNG + ELMo	83.84 83.93	Slot gated [‡] CapsuleNLU*	82.2 83.4	75.5 80.9	Decoupled ELMo Decoupled RoBERTa	86.03 87.32
Decoupled biLSTM	79.51 64.50	Joint BERT [×] Joint BERT CRF [×]	88.2 88.6	92.8 92.6	Decoupled BART	88.29
Decoupled transformer Decoupled ELMo	84.85	Decoupled BART	89.25	91.00	Single-domain (67	
Decoupled RoBERTa Decoupled BART	84.52 87.10	Best Seq2SeqPtr	87.12	87.14	 Decoupled ELMo Decoupled RoBERTa 	90.52 91.51
Best Seq2SeqPtr	86.67				Decoupled BART	92.16

New Release DataSet(SB-TOP)

Table 2: Decoupled model architecture results over the SB-TOP dataset. FA is exact match between canonicalized predicted and tree structures. Ref Only FA does not distinguish between implicit/explicit references. Intent accuracy is accuracy over top level intents while Inner Parse Accuracy is FA not considering top level intent.

Model	Oracle@Beam	FA	Ref-only FA	Intent Acc.	Inner Parse Acc.
Humans	1	55.04	57.4	84.32	60.12
Decoupled biLSTM	1	48.48	49.19	78.60	52.74
	5	60.24	69.88	93.71	72.01
Decoupled ELMo	1	51.22	52.03	80.93	55.07
	5	62.58	70.08	94.73	72.11
Decoupled BART	1	53.45	54.18	82.46	56.84
	5	65.19	72.78	96.67	76.45

Experiment (Slot Carryover)

Table 3: Performance of the decoupled models on a state tracking task (DSTC2).

Model	Accuracy	Slot distance			
	с. С	0	1	2	≥ 3
LSTM-based (Naik et al., 2018)	_	92.42	91.11	91.34	87.99
Pointer network decoder (Chen et al., 2019b)		92.70	92.04	92.90	91.39
Transformer decoder (Chen et al., 2019b)		93.00	92.69	92.80	89.49
GLAD (Zhong et al., 2018)	74.5	—	—) 	_
Decoupled biLSTM	88.3	93.34	94.73	95.28	95.73
Decoupled RoBERTa	89.8	91.98	92.94	93.58	94.28
Decoupled BART	90.2	94.21	95.47	95.90	97.05

Related Work

Traditional work on Semantic Parsing(question answering or task- oriented request understanding) has focused on mapping utterances to **logical form** representations (Zelle and Mooney, 1996; Zettle- moyer and Collins, 2005; Kwiatkowksi et al., 2010; Liang, 2016; van Noord et al., 2018).

Logical Form Lambda Calculus Encoding

a) What states border Texas $\lambda x.state(x) \wedge borders(x, texas)$

Intent-slot representations have less expressive power, but have the major advantage of being simple enough to enable the creation of large-scale datasets. Gupta et al. (2018) introduce a hierarchical intent-slot representation, more expressive.

Recent approaches: RNNGs (Gupta et al., 2018), RNNGs augmented with ensembling and re-ranking techniques or contextual embeddings (Einolghozati et al., 2018), sequence-to-sequence recurrent neural networks augmented with pointer mechanisms (Jia and Liang, 2016), capsule networks (Zhang et al., 2019), and Transformer-based architectures (Rongali et al., 2020).