RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-to-SQL **Parsers Wang et al, 2020**

- Overview (text-to-SQL)
- Motivation
- Literature
- RAT-SQL framework
- Relation Aware Self-Attention mechanism
- Experiments and error analysis

database: concert singer

Show all countries and the number of singers in each country.

SELECT Country, count(*) FROM Singer GROUP BY Country

Task: translating natural language utterance to SQL queries. **Application**: give people access to vast amounts of databases

Why text-to-SQL is a hard problem?

• Generalization to unseen databases and domains.

Why text-to-SQL is a hard problem?

• Schema encoding and linking

Natural Language Questic	on:		Desired SQL:
For the <mark>cars</mark> with 4 cylinders	, which model has the largest	horsepower?	SELECT T1.model
			FROM car_names AS T1 JOIN cars_data AS T2
Schema:			ON T1.make_id = T2.id
cars_data			WHERE T2.cylinders = 4
_	-		ORDER BY T2.horsepower DESC LIMIT 1
id mpg cylinders edispl	. horsepower weight accel	lerate year	
¥	madal lást	and maliana	Question . Column linking (unlyneum)
car_names	model_list	car_makers	Question → Column linking (unknown)
make id model make	model id maker model	id maker full_name country	, \rightarrow Question \rightarrow Table linking (unknown)
make_ta model make		indicer rull_name country	Column → Column foreign keys (known)

Figure 1: A challenging text-to-SQL task from the Spider dataset.

• Address schema encoding and linking problem in text-to-SQL in "RAT-SQL" via *Relation-Aware Self-Attention mechanism*.

 Achieves SOTA performance on *Spider* dataset (~8% improvement) for exact match.

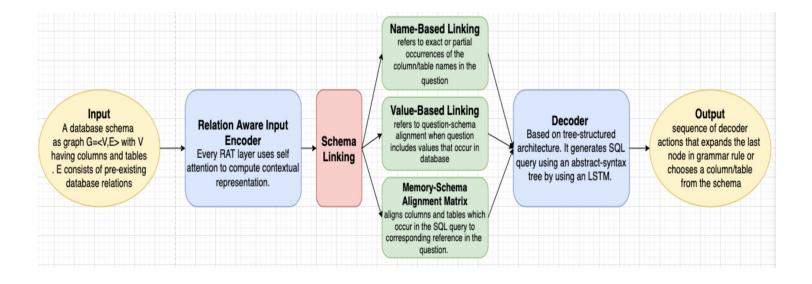
Dataset	#Q	# SQL	#DB	# Domain	# Table /DB	ORDER BY	GROUP BY	NESTED	HAVING
ATIS	5,280	947	1	1	32	0	5	315	0
GeoQuery	877	247	1	1	6	20	46	167	9
Scholar	817	193	1	1	7	75	100	7	20
Academic	196	185	1	1	15	23	40	7	18
IMDB	131	89	1	1	16	10	6	1	0
Yelp	128	110	1	1	7	18	21	0	4
Advising	3,898	208	1	1	10	15	9	22	0
Restaurants	378	378	1	1	3	0	0	4	0
WikiSQL	80,654	77,840	26,521		1	0	0	0	0
Spider	10,181	5,693	200	138	5.1	1335	1491	844	388

Table 1: Comparisons of text-to-SQL datasets. **Spider** is the *only one* text-to-SQL dataset that contains both databases with multiple tables in different domains and complex SQL queries. It was designed to test the ability of a system to generalize to not only new SQL queries and database schemas but also new domains.

Literature

- IRNet (Guo et al, 2019)
 - Does not capture binary relations, considers only unary
 - Schema encoder does not exploit schema relations fully.
- GNN (Bogin et al 2019)
 - Does not model context representation of question with schema in encoder.
 - Limits information propagation only to connected nodes defined in predefined graph of foreign keys.

RAT SQL framework



Problem Formulation

Given: natural language question *Q* and schema *S*=<*C*, *T*>

Goal: Generate SQL program P represented as abstract syntax tree in the context-free grammar of SQL

Relation-Aware Self-Attention

Goal is to represent:

- pre-existing relational structure in the input (see later)
- soft relations between sequence elements in the same embedding (self-attention)

Relation-Aware Self-Attention

Self-attention in Transformers (Vaswani et al)

$$\boldsymbol{x}_{i} \iff \boldsymbol{q}_{i}, \boldsymbol{k}_{i}, \boldsymbol{v}_{i}$$
$$\alpha_{ij} = \operatorname{softmax}_{j} \frac{\boldsymbol{q}_{i} \boldsymbol{k}_{j}^{\mathsf{T}}}{\sqrt{\operatorname{dim}}}$$
$$\boldsymbol{y}_{i} = \sum_{j} \alpha_{ij} \boldsymbol{v}_{j}$$

Relation-Aware Self-attention in RAT-SQL (schema encoding)

 $\boldsymbol{x_i} \rightsquigarrow \boldsymbol{q_i}, \boldsymbol{k_i}, \boldsymbol{v_i}$

$$\alpha_{ij} = \operatorname{softmax}_{j} \frac{q_{i} (k_{j} + \beta_{ij})^{T}}{\sqrt{\dim}}$$

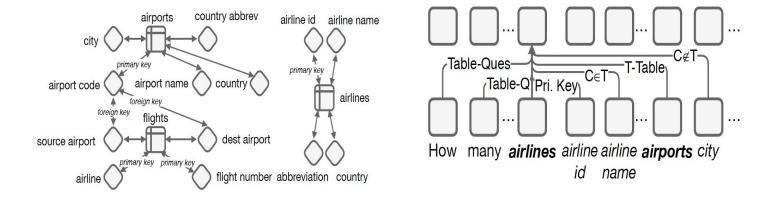
$$\mathbf{y}_{i} = \sum_{j} \alpha_{ij} (v_{j} + \varepsilon_{ij})$$
Relative positional embeddings
Arbitrary edge features

Pre-existing relations in schema

Type of x	Type of y	Edge label	Description		
Column	Column	Same-Table Foreign-Key-Col-F Foreign-Key-Col-R	 x and y belong to the same table. x is a foreign key for y. y is a foreign key for x. 		
Column	Table	Primary-Key-F Belongs-To-F	x is the primary key of y . x is a column of y (but not the primary key).		
Table	Column	Primary-Key-R Belongs-To-R	y is the primary key of x. y is a column of x (but not the primary key).		
Table	FOREIGN-KEY-TAB-F Table FOREIGN-KEY-TAB-R FOREIGN-KEY-TAB-B		ble Table FOREIGN-KEY-TAB-R Same as above, but x and y are rever		Table x has a foreign key column in y . Same as above, but x and y are reversed. x and y have foreign keys in both directions.

Input preprocessing

$$\mathcal{G}_Q = \langle \mathcal{V}_Q, \mathcal{E}_Q \rangle$$
$$\mathcal{V}_Q = \mathcal{V} \cup Q = \mathcal{C} \cup \mathcal{T} \cup Q$$



- Representation of every node in G: $X = (\boldsymbol{c}_1^{\text{init}}, \cdots, \boldsymbol{c}_{|\mathcal{C}|}^{\text{init}}, \boldsymbol{t}_1^{\text{init}}, \cdots, \boldsymbol{t}_{|\mathcal{T}|}^{\text{init}}, \boldsymbol{q}_1^{\text{init}}, \cdots, \boldsymbol{q}_{|Q|}^{\text{init}}).$
 - Glove processed through BiLSTM
 - Bert pre-trained embedding
- Initial representations are independent of relational information
- Encoder applies stack of self-attention

Schema Linking

- Name-based linking
 - Exact match
 - Partial match
- Value-based linking
 - Value based column name retrieval

Natural Language Questio	on:		Desired SQL:
For the <mark>cars</mark> with 4 cylinders	, which model has the largest	horsepower?	SELECT T1.model
			FROM car_names AS T1 JOIN cars_data AS T2
Schema:			ON T1.make_id = T2.id
cars data			WHERE T2.cylinders = 4
		•••	ORDER BY T2.horsepower DESC LIMIT 1
id mpg cylinders edisp	l <mark>horsepower</mark> weight accel	lerate year	
car_names	model_list	car_makers	\longrightarrow Question \rightarrow Column linking (unknown)
make id model make	model id maker model	id maker full_name country	> Question → Table linking (unknown)
make_ca model make			Column → Column foreign keys (known)

Figure 1: A challenging text-to-SQL task from the Spider dataset.

Memory-schema alignment matrix

Intuition: Tables and column names that appear in program P will appear in question Q

$$\tilde{L}_{i,j}^{\text{col}} = \frac{y_i W_Q^{\text{col}} (\boldsymbol{c}_j^{\text{final}} W_K^{\text{col}} + \boldsymbol{r}_{ij}^K)^\top}{\sqrt{d_x}}$$
(3)
$$\tilde{L}_{i,j}^{\text{tab}} = \frac{y_i W_Q^{\text{tab}} (\boldsymbol{t}_j^{\text{final}} W_K^{\text{tab}} + \boldsymbol{r}_{ij}^K)^\top}{\sqrt{d_x}}$$
$$L_{i,j}^{\text{col}} = \operatorname{softmax}_j \{\tilde{L}_{i,j}^{\text{col}}\} \qquad L_{i,j}^{\text{tab}} = \operatorname{softmax}_j \{\tilde{L}_{i,j}^{\text{tab}}\}$$

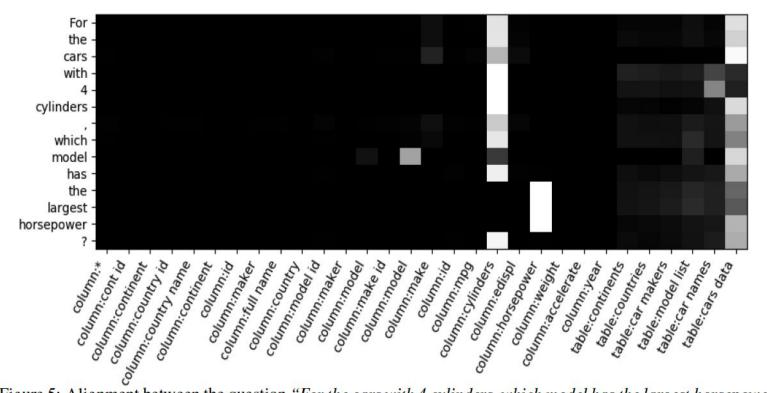


Figure 5: Alignment between the question *"For the cars with 4 cylinders, which model has the largest horsepower"* and the database car_1 schema (columns and tables) depicted in Figure 1.

Decoder/generation of SQL

- Follows the tree structured architecture of Yin and Neubig (2017)
 - expand into a grammar rule : APPLYRULE

APPLYRULE[R] | $a_{<t}, y$ = softmax_R (g(h_t))

 $f_{\text{LSTM}}\left(\left[\boldsymbol{a}_{t-1} \parallel \boldsymbol{z}_t \parallel \boldsymbol{h}_{p_t} \parallel \boldsymbol{a}_{p_t} \parallel \boldsymbol{n}_{f_t}\right], \ \boldsymbol{m}_{t-1}, \boldsymbol{h}_{t-1}\right)$

Decoder/generation of SQL

• choose a column/table from the schema (terminal): SELECTCOLUMN and SELECTTABLE.

$$\begin{split} \tilde{\lambda}_{i} &= \frac{h_{t} W_{Q}^{\text{sc}}(y_{i} W_{K}^{\text{sc}})^{T}}{\sqrt{d_{x}}} \qquad \lambda_{i} = \text{softmax}\{\tilde{\lambda}_{i}\}\\ \Pr(a_{t} = \text{SelectColumn}[i] \mid a_{< t}, y) = \sum_{j=1}^{|y|} \lambda_{j} L_{j,i}^{\text{col}} \end{split}$$

Results on Spider dataset

Model	Dev	Test
IRNet (Guo et al., 2019)	53.2	46.7
Global-GNN (Bogin et al., 2019b)	52.7	47.4
IRNet V2 (Guo et al., 2019)	55.4	48.5
RAT-SQL (ours)	62.7	57.2
With BERT:		
EditSQL + BERT (Zhang et al., 2019)	57.6	53.4
GNN + Bertrand-DR (Kelkar et al., 2020)	57.9	54.6
IRNet V2 + BERT (Guo et al., 2019)	63.9	55.0
RYANSQL V2 + BERT (Choi et al., 2020)	70.6	60.6
RAT-SQL + BERT (ours)	69.7	65.6

Split	Easy	Medium	Hard	Extra Hard	All			
RAT-S	RAT-SQL							
Dev	80.4	63.9	55.7	40.6	62.7			
Test	74.8	60.7	53.6	31.5	57.2			
RAT-S	RAT-SQL + BERT							
Dev	86.4	73.6	62.1	42.9	69.7			
Test	83.0	71.3	58.3	38.4	65.6			

Easy

What is the number of cars with more than 4 cylinders?

```
SELECT COUNT(*)
FROM cars_data
WHERE cylinders > 4
```

Meidum

For each stadium, how many concerts are there?

```
SELECT T2.name, COUNT(*)
FROM concert AS T1 JOIN stadium AS T2
ON T1.stadium_id = T2.stadium_id
GROUP BY T1.stadium id
```

Hard

Which countries in Europe have at least 3 car manufacturers?

```
SELECT T1.country_name
FROM countries AS T1 JOIN continents
AS T2 ON T1.continent = T2.cont_id
JOIN car_makers AS T3 ON
T1.country_id = T3.country
WHERE T2.continent = 'Europe'
GROUP BY T1.country_name
HAVING COUNT(*) >= 3
```

Extra Hard

What is the average life expectancy in the countries where English is not the official language?

```
SELECT AVG(life_expectancy)
FROM country
WHERE name NOT IN
  (SELECT T1.name
   FROM country AS T1 JOIN
    country_language AS T2
   ON T1.code = T2.country_code
   WHERE T2.language = "English"
   AND T2.is_official = "T")
```

Figure 3: SQL query examples in 4 hardness levels.

https://arxiv.org/pdf/1809.08887.pdf

Results on WikiSQL

	D	ev	Test		
Model	LF Acc%	Ex. Acc%	LF Acc%	Ex. Acc%	
IncSQL (Shi et al., 2018)	49.9	84.0	49.9	83.7	
MQAN (McCann et al., 2018)	76.1	82.0	75.4	81.4	
RAT-SQL (ours)	73.6	79.5	73.3	78.8	
Coarse2Fine (Dong and Lapata, 2018)	72.5	79.0	71.7	78.5	
PT-MAML (Huang et al., 2018)	63.1	68.3	62.8	68.0	

Model	Accuracy (%)
RAT-SQL + value-based linking	60.54 ± 0.80
RAT-SQL	55.13 ± 0.84
w/o schema linking relations	40.37 ± 2.32
w/o schema graph relations	35.59 ± 0.85

Error Analysis

- 39% of errors -> a limitation of schema linking
- 29% of errors -> Need of in-domain fine-tuning
 - 'Older than 21' -> Age > 21 or age < 21
- 18% of errors -> equivalent implementations of NL but a different SQL syntax

Model	Exact Match	Correctness
RAT-SQL	0.59	0.81
RAT-SQL + BERT	0.67	0.86

Table 7: Consistency of the two RAT-SQL models.

Key takeaways

- RAT-SQL presented a unified framework to address schema representation and schema linking challenges.
- Contextual representation of question with schema in encoder helps.
- Combining predefined hard schema relations with soft alignment on sequence elements (different from GNN) in encoder added value!