
Attention Is All You Need

Vaswani et al. NeurIPS 2017
Presented by Luke Song



Abstract

● Presents a new neural architecture named the Transformer

● Based solely on the attention mechanism widely used in SEQ2SEQ models

● More parallelizable compared to existing state-of-the-art (SOTA) models

● Achieves SOTA in 2 machine translation datasets



Outline
1. Important Background
2. Model Architecture
3. Experimental Results
4. Model Variation Study
5. Conclusion & Limitation
6. Discussion Time :)



Important Background
What is Attention Mechanism?

● Mechanism used to let individual tokens 
“attend” to other tokens regardless of 
the distance between them

● Transformer uses only self-attention 
which is attention onto the same 
sentence

● Think of self-attention as recalculating 
the representation of each token based 
on how its meaning is influenced by 
other tokens in the same sentence

Source: https://github.com/jessevig/bertviz

https://github.com/jessevig/bertviz


Model Architecture
High Level

● Input embedding is first added with 
Positional Encoding

● 3 components in each 
encoder/decoder: (Masked) Multi-Head 
Attention, Addition & Normalization, 
Feed Forward Network

Source: Attention Is All You Need



Model Architecture
Attention Function

● Mapping a query and set of key-value 
pairs to an output, where the query, 
keys, values, and output are all vectors

● Q: Queries
K: Keys
V: Values
d_k: dimension of k (64 in the paper)

● Uses a dot-product attention due to its 
empirical speed/space advantage

● Scale dot product by 1/sqrt(d_k) b/c 
large values of d_k may push softmax 
function to region where it has 
extremely small gradients

Source: Attention Is All You Need



Source: Illustrated Transformer



Source: Illustrated Transformer



Source: Illustrated Transformer



Source: Illustrated Transformer



Adding it all together...



Source: Illustrated Transformer



Source: Illustrated Transformer



Model Architecture
Multi-Head Attention

● Apply attention to different versions of 
Q, K, V 

● Expands model’s ability to focus on 
different positions

● Generates a multiple “representation 
subspaces” in order to give the model 
better representation of the input

● Uses 8 attention heads which are 
concatenated and fed into a linear layer 
at the end

Source: Attention Is All You Need



Source: Illustrated Transformer



Source: Illustrated Transformer



Source: Illustrated Transformer



Combining everything attention-wise...



Source: Illustrated Transformer



Before moving on..
• In encoder, all queries, keys, and values come from the same place

• In encoder-decoder attention layer, queries come from the previous decoder 
layer and keys and values come from the output of the encoder

• This mimics the typical encoder-decoder attention mechanism

• In decoder to ensure auto-regressive property, the model masks everything 
right to the current token being attended



Model Architecture
Positional Encoding

• Since attention mechanism in the 
Transformer does not attend each word 
auto-regressively (no recurrence nor 
convolution), model needs something to 
let it know the relative position of tokens 
in the sentence

• Positional Encoding is the combination 
of sine and cosine functions of different 
frequencies

• Advantages include distance between 
tokens being symmetrical and being 
easier to calculate distance between 
tokens

Source: Illustrated Transformer, Positional 
Embedding



Model Architecture
Layer Normalization & Residual Connection

• Layer normalization (Ba et al. 2016) is 
applied to output of sub-layer + input to 
sub-layer

• Layer normalization normalizes the input 
across the features

• Empirically shown to reduce training 
time

• Residual connection means there is a 
connection that skips few layers (in here 
1)

Source: Illustrated Transformer



Model Architecture
Position-wise Feed Forward Networks

• Fully connected feed-forward network

• Two linear transformations with a ReLU 
activation in between

• Inner layer has dimensionality of 2048

• Applied to each position separately and 
identically

Source: Illustrated Transformer



Combining all elements...



Source: Illustrated Transformer



Source: Illustrated Transformer



In case you are curious
Source: Illustrated Transformer



Why Self-Attention?

• Less total computational complexity per layer

• More parallelizable than existing fully autoregressive models

• Shorten the path between tokens to enable model to learn long-term 
dependency better

• Tang et al. (EMNLP 2018) claims that self-attention outperforms RNN/CNN as a 
semantic feature extractor and empirically show that it excels on word sense 
disambiguation task (but not subject-verb agreement over long distance!)



Experimental Results

● Achevies SOTA on 2 
machine translation dataset

● Less training cost than 
existing SOTA models



Model Variation Study

● Attention key size is 
important

● More heads doesn’t 
necessary mean better 
performance

● Learned positional 
embedding is not better than 
sinusoidal positional 
encoding



Conclusion & Limitation
● Introduces a groundbreaking new model that is solely based on attention

● Faster and better than existing models

● Still not fully parallelized due to decoder being auto-regressive

● Context is fixed length and cannot attend long-term dependency

● Stacking more encoders/decoders might lead to vanishing gradients



● “Attention Is All You Need,” Vaswani et al. NeurIPS 2017

● “Why Self-Attention? A Targeted Evaluation of Neural Machine Translation Architectures,” Tang et al. 
EMNLP 2018

● “The Annotated Transformer,” https://nlp.seas.harvard.edu/2018/04/03/attention.html

● “The Illustrated Transformer,” http://jalammar.github.io/illustrated-transformer/

● “Positional Embedding,” https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

● “BertViz,” https://github.com/jessevig/bertviz

References

https://nlp.seas.harvard.edu/2018/04/03/attention.html
http://jalammar.github.io/illustrated-transformer/
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/


Thank you! &
Discussion Time :)


