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Abstract
• Knowledge graph for products offered at online retail store (Amazon) 

• Presents AUTOKNOW, automatic system that can conduct 

A. taxonomy construction,  

B. product property identification  

C. knowledge extraction  

D. anomaly detection 

E. synonym discovery  

• System is 

A. Automatic: Requires little human intervention 

B. Multi-scalable: Scalable in multiple dimensions (domains, products, and attributes) 

C. Integrative: Exploit rich customer behavior logs
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Background
• Knowledge graph: Describes entities and relations between them 

• Challenges for KG in the retail domain 

A. Structure-sparsity: Thousands of product attributes, billions of existing 
products, and millions of new products emerging on a daily basis without 
consistent structure 

B. Domain-complexity: Number of product types is towards millions and there 
are various relationships between the types like sub-types, product attributes 
vastly differ between types 

C. Product-type-variety: Product attributes, value vocabularies, text patterns in 
product titles and descriptions often differ for different types 



Key Ideas

• Leverage graph structure that naturally applies to knowledge graphs and taxonomy, 
and apply Graph Neural Network 

• Take product categorization as input signals to train models, and combine our tasks 
with product categorization for multi-task training to allow better performance  

• Learn with limited labels to alleviate the burden of manual training data creation, 
relying heavily on weak supervision (e.g., distant supervision) and on semi- 
supervised learning  

• Mine both facts and heterogeneous expressions for the same concept (i.e., type, 
attribute value) from customer behavior logs, abundant in the retail domain 

Background - Few key techniques



Key Ideas

• Operational system: Describes AutoKnow, a comprehensive end-to-end solution for 
product knowledge collection, covering components from ontology construction 
and enrichment, to data extraction, cleaning, and normalization  

• Technical novelty: Range from NLP and graph mining to anomaly detection, and 
leverage state- of-the-art techniques in GNN, transformer, and multi-task learning  

• Empirical Study: Able to extend the existing ontology by 2.9X, and considerably 
increase the quality of structured data, on average improving precision by 7.6% and 
recall by 16.4% 

Contribution



Key Ideas

• Knowledge graph: set of triples in the form of (subject, predicate, object)  

• Focuses on specific type of KG called broad graph.  

• Bipartite graph G = (N1, N2, E), where nodes in N1 represent entities of one particular 
type, called the topic type, nodes in N2 represent attribute values (that can be 
entities or atomic values), and edges in E connect each entity with its attribute 
values 

• Two sources of input: product catalog that includes product taxonomy, a set of 
product attributes, a set of products, and attribute values for each product and 
customer behavior logs, such as the query and purchase log, customer reviews, and 
Q&A 

Terminology



System Architecture

• Let C = (T, A, P) be a product catalog, 

1. T = (T, H) denotes a product taxonomy with a set of product types T and the 
hypernym relationships H between types in T 

2. A denotes a set of product attributes 

3. P = {PID, {T}, {(A,V)}} contains for each product (PID is the ID) a set of product types 
{T } and a set of attribute-value pairs {(A, V )}. 

• Let L denote customer behavior logs  

• Product Knowledge Discovery takes C and L as input, enriches the product knowledge by 
adding new types and hypernym relationships to T, and new product types and attribute 
values for each product in P. 

Formal Problem Definition



System Architecture
High Level View



System Architecture
High Level View

• Ontology suite: Taxonomy enrichment identifies new product types not existing in 
input taxonomy T and decides the hypernym relationships between the newly 
discovered types and existing types, using them to enrich T. Relation discovery decides 
for each product type T ∈ T and attribute A ∈ A, whether A applies to type T and if so, 
how important A is when customers make purchase decisions for these products, 
captured by an importance score 

• Data suite: The data suite contains three components: Data imputation, Data 
cleaning, and Synonym discovery. Data imputation derives new (attribute, value) pairs 
for each product in P from product profiles and existing structured attributes. Data 
cleaning identifies anomalies from existing data in P and newly imputed values. Synonym 
discovery associates synonyms between product types and attribute values. 



System Architecture

• Given an existing product taxonomy T = (T, H), extend it with T = (T ∪ Tʹ ,H ∪ Hʹ ), 
where Tʹ is the set of new product types, and Hʹ is the additional set of hypernym 
relationships between types in T and in Tʹ 

• First discover new types Tʹ from product titles or customer search queries by 
training a type extractor. Then, attach candidate types in Tʹ to the existing 
taxonomy T by solving a hypernym classification problem

Ontology Suite - Taxonomy Enrichment



System Architecture

• Type extractor: Formulate type extraction as a “BIOE” sequential labeling problem  

• To train, adopt distant supervision to generate the training labels  

• For product titles, look for product types in Catalog provided by retailers (restricted 
to the existing product types), and generate BIOE tags when types are explicitly and 
exactly mentioned in their titles. For queries, look for the type of purchased 
products in the query to generate BIOE tags  

• New types from titles are taken as T, and those from queries, albeit noisier, will be 
used for type attachment 

Ontology Suite - Taxonomy Enrichment - Type Extractor



System Architecture

• Type attachment: solve a binary classification problem, where the classifier determines if the 
hypernym relationship exists between two types T ∈ T, Tʹ ∈ Tʹ  

1. Construct a graph where the nodes represent types, products, and queries, and the edges 
represent various relationships including 1) product co-viewing, 2) a query leading to a 
product purchase, 3) the type mentioned in a query or a product (according to the 
extraction) 

2. The type representation for each T ∈ T ∪ Tʹ is combined with semantic features (e.g., word 
embedding) of the type names and fed to the classifier 

• Use distant supervision to train: use the type hypernym pairs in the existing taxonomy as the 
supervision to generate positive labels, and generate five negative labels by randomly replacing 
the hyponym type with other product types 

Ontology Suite - Taxonomy Enrichment - Type Attachment



System Architecture

• Given a product taxonomy T = (T, H) and a set of product attributes A, decides for each 
(T , A) ∈ T×A, (1) whether attribute A applies to products of type T, denoted by (T , A) → 
{0, 1}, and (2) how important A is for purchase decisions  

• Train a classification model (random forest) using two types of features:  

1. Seller behavior: Captured by coverage of attribute values for a particular product 
type, and frequency of mentioning attribute values in product profiles  

2. Buyer behavior: Captured by frequency of mentioning attribute values in search 
queries, reviews, Q&A sessions, etc.  

• Train a classification model to decide attribute applicability, and a regression model to 
decide attribute importance 

Ontology Suite - Relation Discovery 



System Architecture

• Given product information (PID, {T }, {(A, V )}), extracts new (A, V ) pairs for each product from its 
profiles (i.e., title, description, and bullets)  

(y_1,y_2,…y_L) = CRF(CondSelfAtt(BiLSTM(ex_1,ex_2,…,e_xL ),e_T ))  

• Where e_T is the pre-trained hyperbolic-space embedding of product type T , known to preserve 
the hierarchical relation between taxonomy nodes. CondSelfAtt is the conditional self attention 
layer that allows e_T to influence the attention weights.  

• Trains sequence tagging and product categorization at the same time, with a shared BiLSTM 
layer to better identify tokens that indicate the product type, and address the problem that 
products can be mis-classified or product type information can be missing in a catalog  

• Adopt a distant supervision approach to automatically generate the training sequence labels by 
text matching between product profiles and available attribute values in the catalog 

Data Suite - Data Imputation  



System Architecture

• Given product information (PID, {T }, {(A, V )}), identifies (A, V ) pairs that are incorrect for the product, such as (A = flavor, V = “1 lb. 
box”) for a box of chocolate and (A = color, V = “100% Cotton”) for a shirt  

• Propose transformer-based neural net model that jointly processes signals from textual product profile (D) and the product 
taxonomy T via a multi-head attention mechanism  

• Input is the concatenation of token sequences in D, T andV  
• Embedding e_i is generated from the addition of pre-trained FastText embedding, segment embedding vector that indicates to 

which source sequence (D, T or V) token i belongs, and positional embedding indicates the relative location of token i in the 
sequence  

• Passes through a dense layer followed by a sigmoid node to produce a single score between 0 and 1  
• Distant supervision to automatically generate training labels from the input Catalog. We generate positive examples by selecting 

high-frequency values that appear in multiple brands, then for each positive example we randomly apply one of the following three 
procedures to generate a negative example: 1) We build a vocabulary vocab(A) for each attribute A and replace a catalog value V of A 
with a randomly selected value from vocab(A); 2) We randomly select n-grams from the product title that does not contain the 
catalog value V , where n is a random number drawn according to the distribution of lengths of tokens in vocab(A); 3) We randomly 
pick the value of another attribute Aʹ ︎ A to replace V 

Data Suite - Data Cleaning  



System Architecture

1. Apply collaborative filtering on customer co-view behavior signals to retain product 
pairs with high similarity, and take their attribute values as candidate pairs for synonyms.  

2. Train a simple logistic regression model to decide if a candidate pair has exactly the 
same meaning  

• Features used include edit distance, pre-trained MT-DNN model score, and features 
regarding distinct vs. common words  

• Distinct vs. common words play a critical role, which focuses on three sets of words: 
words appearing only in the first candidate but not the second, and vice versa, and words 
shared by the two candidates. Between every two out of these three sets, edit distance 
and embedding similarity are computed and used as features 

Data Suite - Synonym Finding   



Experimental Results
• Size of raw data is huge:  

• Performance evaluated on: 

1. triples with product types such as (product-1, hasType, Television) 

2. triples with attribute values such as (product-2, hasBrand, Sony) 

3. triples depicting entity relations such as (chocolate, isSynonymOf, choc)  

• New metrics: 

• Defect rate: percentage of (product, attribute) pairs with missing or incorrect values  

• Applicability: percentage of products where attribute A applies 



Experimental Results
Product Type Triples



Experimental Results
Attribute Triples



Experimental Results
Relation Triples



Conclusion
• May need to fundamentally reconsider the way we model taxonomy and classify 

products b/c it’s not usually a tree structure 

• Large volume of noises can deteriorate the performance of the imputation and 
cleaning models  

• Need more data than just the text data


