
AutoKnow: Self-Driving Knowledge Collection
for Products of Thousands of Types

Dong et al.
Presented by Luke Song

Abstract
• Knowledge graph for products offered at online retail store (Amazon)

• Presents AUTOKNOW, automatic system that can conduct

A. taxonomy construction,

B. product property identification

C. knowledge extraction

D. anomaly detection

E. synonym discovery

• System is

A. Automatic: Requires little human intervention

B. Multi-scalable: Scalable in multiple dimensions (domains, products, and attributes)

C. Integrative: Exploit rich customer behavior logs

Outline
1. Background
2. Key Ideas
3. Model Architecture
4. Experimental Results
5. Conclusion
6. Discussion Time :)

Background
• Knowledge graph: Describes entities and relations between them

• Challenges for KG in the retail domain

A. Structure-sparsity: Thousands of product attributes, billions of existing
products, and millions of new products emerging on a daily basis without
consistent structure

B. Domain-complexity: Number of product types is towards millions and there
are various relationships between the types like sub-types, product attributes
vastly differ between types

C. Product-type-variety: Product attributes, value vocabularies, text patterns in
product titles and descriptions often differ for different types

Key Ideas

• Leverage graph structure that naturally applies to knowledge graphs and taxonomy,
and apply Graph Neural Network

• Take product categorization as input signals to train models, and combine our tasks
with product categorization for multi-task training to allow better performance

• Learn with limited labels to alleviate the burden of manual training data creation,
relying heavily on weak supervision (e.g., distant supervision) and on semi-
supervised learning

• Mine both facts and heterogeneous expressions for the same concept (i.e., type,
attribute value) from customer behavior logs, abundant in the retail domain

Background - Few key techniques

Key Ideas

• Operational system: Describes AutoKnow, a comprehensive end-to-end solution for
product knowledge collection, covering components from ontology construction
and enrichment, to data extraction, cleaning, and normalization

• Technical novelty: Range from NLP and graph mining to anomaly detection, and
leverage state- of-the-art techniques in GNN, transformer, and multi-task learning

• Empirical Study: Able to extend the existing ontology by 2.9X, and considerably
increase the quality of structured data, on average improving precision by 7.6% and
recall by 16.4%

Contribution

Key Ideas

• Knowledge graph: set of triples in the form of (subject, predicate, object)

• Focuses on specific type of KG called broad graph.

• Bipartite graph G = (N1, N2, E), where nodes in N1 represent entities of one particular
type, called the topic type, nodes in N2 represent attribute values (that can be
entities or atomic values), and edges in E connect each entity with its attribute
values

• Two sources of input: product catalog that includes product taxonomy, a set of
product attributes, a set of products, and attribute values for each product and
customer behavior logs, such as the query and purchase log, customer reviews, and
Q&A

Terminology

System Architecture

• Let C = (T, A, P) be a product catalog,

1. T = (T, H) denotes a product taxonomy with a set of product types T and the
hypernym relationships H between types in T

2. A denotes a set of product attributes

3. P = {PID, {T}, {(A,V)}} contains for each product (PID is the ID) a set of product types
{T } and a set of attribute-value pairs {(A, V)}.

• Let L denote customer behavior logs

• Product Knowledge Discovery takes C and L as input, enriches the product knowledge by
adding new types and hypernym relationships to T, and new product types and attribute
values for each product in P.

Formal Problem Definition

System Architecture
High Level View

System Architecture
High Level View

• Ontology suite: Taxonomy enrichment identifies new product types not existing in
input taxonomy T and decides the hypernym relationships between the newly
discovered types and existing types, using them to enrich T. Relation discovery decides
for each product type T ∈ T and attribute A ∈ A, whether A applies to type T and if so,
how important A is when customers make purchase decisions for these products,
captured by an importance score

• Data suite: The data suite contains three components: Data imputation, Data
cleaning, and Synonym discovery. Data imputation derives new (attribute, value) pairs
for each product in P from product profiles and existing structured attributes. Data
cleaning identifies anomalies from existing data in P and newly imputed values. Synonym
discovery associates synonyms between product types and attribute values.

System Architecture

• Given an existing product taxonomy T = (T, H), extend it with T = (T ∪ Tʹ ,H ∪ Hʹ),
where Tʹ is the set of new product types, and Hʹ is the additional set of hypernym
relationships between types in T and in Tʹ

• First discover new types Tʹ from product titles or customer search queries by
training a type extractor. Then, attach candidate types in Tʹ to the existing
taxonomy T by solving a hypernym classification problem

Ontology Suite - Taxonomy Enrichment

System Architecture

• Type extractor: Formulate type extraction as a “BIOE” sequential labeling problem

• To train, adopt distant supervision to generate the training labels

• For product titles, look for product types in Catalog provided by retailers (restricted
to the existing product types), and generate BIOE tags when types are explicitly and
exactly mentioned in their titles. For queries, look for the type of purchased
products in the query to generate BIOE tags

• New types from titles are taken as T, and those from queries, albeit noisier, will be
used for type attachment

Ontology Suite - Taxonomy Enrichment - Type Extractor

System Architecture

• Type attachment: solve a binary classification problem, where the classifier determines if the
hypernym relationship exists between two types T ∈ T, Tʹ ∈ Tʹ

1. Construct a graph where the nodes represent types, products, and queries, and the edges
represent various relationships including 1) product co-viewing, 2) a query leading to a
product purchase, 3) the type mentioned in a query or a product (according to the
extraction)

2. The type representation for each T ∈ T ∪ Tʹ is combined with semantic features (e.g., word
embedding) of the type names and fed to the classifier

• Use distant supervision to train: use the type hypernym pairs in the existing taxonomy as the
supervision to generate positive labels, and generate five negative labels by randomly replacing
the hyponym type with other product types

Ontology Suite - Taxonomy Enrichment - Type Attachment

System Architecture

• Given a product taxonomy T = (T, H) and a set of product attributes A, decides for each
(T , A) ∈ T×A, (1) whether attribute A applies to products of type T, denoted by (T , A) →
{0, 1}, and (2) how important A is for purchase decisions

• Train a classification model (random forest) using two types of features:

1. Seller behavior: Captured by coverage of attribute values for a particular product
type, and frequency of mentioning attribute values in product profiles

2. Buyer behavior: Captured by frequency of mentioning attribute values in search
queries, reviews, Q&A sessions, etc.

• Train a classification model to decide attribute applicability, and a regression model to
decide attribute importance

Ontology Suite - Relation Discovery

System Architecture

• Given product information (PID, {T }, {(A, V)}), extracts new (A, V) pairs for each product from its
profiles (i.e., title, description, and bullets)

(y_1,y_2,…y_L) = CRF(CondSelfAtt(BiLSTM(ex_1,ex_2,…,e_xL),e_T))

• Where e_T is the pre-trained hyperbolic-space embedding of product type T , known to preserve
the hierarchical relation between taxonomy nodes. CondSelfAtt is the conditional self attention
layer that allows e_T to influence the attention weights.

• Trains sequence tagging and product categorization at the same time, with a shared BiLSTM
layer to better identify tokens that indicate the product type, and address the problem that
products can be mis-classified or product type information can be missing in a catalog

• Adopt a distant supervision approach to automatically generate the training sequence labels by
text matching between product profiles and available attribute values in the catalog

Data Suite - Data Imputation

System Architecture

• Given product information (PID, {T }, {(A, V)}), identifies (A, V) pairs that are incorrect for the product, such as (A = flavor, V = “1 lb.
box”) for a box of chocolate and (A = color, V = “100% Cotton”) for a shirt

• Propose transformer-based neural net model that jointly processes signals from textual product profile (D) and the product
taxonomy T via a multi-head attention mechanism

• Input is the concatenation of token sequences in D, T andV
• Embedding e_i is generated from the addition of pre-trained FastText embedding, segment embedding vector that indicates to

which source sequence (D, T or V) token i belongs, and positional embedding indicates the relative location of token i in the
sequence

• Passes through a dense layer followed by a sigmoid node to produce a single score between 0 and 1
• Distant supervision to automatically generate training labels from the input Catalog. We generate positive examples by selecting

high-frequency values that appear in multiple brands, then for each positive example we randomly apply one of the following three
procedures to generate a negative example: 1) We build a vocabulary vocab(A) for each attribute A and replace a catalog value V of A
with a randomly selected value from vocab(A); 2) We randomly select n-grams from the product title that does not contain the
catalog value V , where n is a random number drawn according to the distribution of lengths of tokens in vocab(A); 3) We randomly
pick the value of another attribute Aʹ ︎ A to replace V

Data Suite - Data Cleaning

System Architecture

1. Apply collaborative filtering on customer co-view behavior signals to retain product
pairs with high similarity, and take their attribute values as candidate pairs for synonyms.

2. Train a simple logistic regression model to decide if a candidate pair has exactly the
same meaning

• Features used include edit distance, pre-trained MT-DNN model score, and features
regarding distinct vs. common words

• Distinct vs. common words play a critical role, which focuses on three sets of words:
words appearing only in the first candidate but not the second, and vice versa, and words
shared by the two candidates. Between every two out of these three sets, edit distance
and embedding similarity are computed and used as features

Data Suite - Synonym Finding

Experimental Results
• Size of raw data is huge:

• Performance evaluated on:

1. triples with product types such as (product-1, hasType, Television)

2. triples with attribute values such as (product-2, hasBrand, Sony)

3. triples depicting entity relations such as (chocolate, isSynonymOf, choc)

• New metrics:

• Defect rate: percentage of (product, attribute) pairs with missing or incorrect values

• Applicability: percentage of products where attribute A applies

Experimental Results
Product Type Triples

Experimental Results
Attribute Triples

Experimental Results
Relation Triples

Conclusion
• May need to fundamentally reconsider the way we model taxonomy and classify

products b/c it’s not usually a tree structure

• Large volume of noises can deteriorate the performance of the imputation and
cleaning models

• Need more data than just the text data

