CSE 5243. Course Page & Schedule

- **Class Homepage:**

- **Class Schedule:**
 9:35-10:55 AM, Wed/Fri, Caldwell Lab 171

- **Office hours:**
 - **Instructor:** Yu Su @ DL783, Fri 11:00am-12:15pm (right after class)
 First week: No office hours
 - **TA:** Jiaqi Xu (xu.1629), Wed 03:00pm-04:00pm, Baker 406
CSE 5243. Textbook

- **Recommended but not required**
 - (Primary) Jiawei Han, Micheline Kamber and Jian Pei, *Data Mining: Concepts and Techniques (3rd ed)*, 2011
 - More resources: https://wiki.illinois.edu/wiki/display/cs412/2.+Course+Syllabus+and+Schedule
 - (Primary) Pang-Ning Tan, Michael Steinbach, and Vipin Kumar, *Introduction to Data Mining*, 2006
 - (Supplementary) Mohammed J. Zaki and Wagner Meira, Jr., *Data Mining Analysis and Concepts*, 2014
 - (Supplementary) Jure Leskovec, Anand Rajaraman, Jeff Ullman, *Mining of Massive Datasets*
 - More resources: http://www.mmds.org/
Homework, Course Projects, and Exams

- Participation: 10% (Online discussion and/or class participation)
- Homework: 50% (No Late Submissions!)
- Midterm exam: 20%
- Final exam: 20%

Need help and/or discussions?

- Carmen: https://osu.instructure.com/courses/76423/discussion_topics
 - Receive credits: answer questions on Carmen and engage in class discussion.

Check your homework/exam scores

- Carmen: https://osu.instructure.com/courses/76423/gradebook
10 TED talks on Big Data and Analytics

- https://www.promptcloud.com/blog/top-ted-talks-on-big-data/
- Shyan Sanker (Director at Palantir Technologies):
 - https://www.youtube.com/watch?time_continue=19&v=IteIQ3iKybU

5 TED talks on Data analytics for business leaders

Data analytics for beginners

- https://www.youtube.com/watch?v=66ko_cWSHBU (If you love sports, this TED Talk on data analytics is going to be an interesting watch)
Chapter 1. Introduction

- What is Data Mining?
- Why Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary
What is Data Mining?

- Data mining (knowledge discovery from data, KDD)
 - Extraction of interesting (non-trivial, implicit, previously unknown, and potentially useful) patterns or knowledge from huge amount of data

- Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.
What is Data Mining?

- Data mining (knowledge discovery from data, KDD)
 - Extraction of interesting (non-trivial, implicit, previously unknown, and potentially useful) patterns or knowledge from huge amount of data

- Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.

One of the best conferences to publish your research work: [SIGKDD](#) (check resources)
Knowledge Discovery (KDD) Process

- (Narrow view) Data mining plays an essential role in the knowledge discovery process
- (Broad view) Data mining is the knowledge discovery process

- Data Cleaning
- Data Integration
- Databases
- Data Warehouse
- Task-relevant Data
- Selection
- Data Mining
- Pattern Evaluation
Example: A Web Mining Framework

- Web mining usually involves
 - Data crawling and cleaning
 - Data integration from multiple sources
 - (Optional) Warehousing the data
 - (Optional) Data cube construction
 - Data selection for data mining
 - Data mining
 - Presentation of the mining results
 - Patterns and knowledge to be used or stored into knowledge base
KDD Process: A View from ML and Statistics

- Input Data → Data Pre-Processing
- Data Mining
- Post-Processing → Pattern Information Knowledge

- Data integration
- Normalization
- Feature selection
- Dimension reduction
- Pattern discovery
- Classification
- Clustering
- Outlier analysis
-
- Pattern evaluation
- Pattern selection
- Pattern interpretation
- Pattern visualization

- This is a view from typical machine learning and statistics communities
Data Science Is Multidisciplinary

Figure from: https://www.datasciencecentral.com/profiles/blogs/difference-of-data-science-machine-learning-and-data-mining
Chapter 1. Introduction

- What Is Data Mining?
- Why Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary
Why Data Mining?

- **The Explosive Growth of Data:** from terabytes to petabytes
 - Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society
Why Data Mining?

- The Explosive Growth of Data: from terabytes to petabytes
 - Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society
 - Major sources of data
 - Business: Web, e-commerce, transactions, stocks, …
 - Science: Remote sensing, bioinformatics, scientific simulation, …
 - Society and everyone: news, digital cameras, YouTube
A DAY IN DATA

The exponential growth of data is undisputed, but the numbers behind this explosion—fuelled by Internet of Things and the use of connected devices—are hard to comprehend, particularly when looked at in the context of one day.

500m
Tweets are sent every day

350m
Photos

306bn
Emails to be sent each day by 2020

294bn
Billions of emails are sent

4PB
Amount of data created by Facebook, Instagram, Twitter

4TB
Amount of data produced by connected cars

How much data is generated each day?—World Economic Forum

65bn
Messages sent over WhatsApp

463EB
463 exabytes of data will be created every day by 2025

3.9bn
People use emails

95m
Photos and videos are shared on Instagram

5bn
Searches made a day

3.5bn
Searches made a day from Google

1.4ZB
Accumulated digital universe of data

2030

2020
Why Data Mining?

- The Explosive Growth of Data: from terabytes to petabytes
 - Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society
 - Major sources of data
 - Business: Web, e-commerce, transactions, stocks, ...
 - Science: Remote sensing, bioinformatics, scientific simulation, ...
 - Society and everyone: news, digital cameras, YouTube

- We are drowning in data, but starving for knowledge!
- “Necessity is the mother of invention”—Data mining—Automated analysis of massive data sets
Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary
Multi-Dimensional View of Data Mining

- **Data to be mined**
 - Database data (extended-relational, object-oriented, heterogeneous), data warehouse, transactional data, stream, spatiotemporal, time-series, sequence, text and web, multi-media, graphs & social and information networks
Multi-Dimensional View of Data Mining

- **Data to be mined**
 - Database data (extended-relational, object-oriented, heterogeneous), data warehouse, transactional data, stream, spatiotemporal, time-series, sequence, text and web, multi-media, graphs & social and information networks

- **Knowledge to be mined (or: Data mining functions)**
 - Characterization, discrimination, association, classification, clustering, trend/deviation, outlier analysis, …
 - Descriptive vs. predictive data mining
 - Multiple/integrated functions and mining at multiple levels
Multi-Dimensional View of Data Mining

- **Data to be mined**
 - Database data (extended-relational, object-oriented, heterogeneous), data warehouse, transactional data, stream, spatiotemporal, time-series, sequence, text and web, multi-media, graphs & social and information networks

- **Knowledge to be mined (or: Data mining functions)**
 - Characterization, discrimination, association, classification, clustering, trend/deviation, outlier analysis, …
 - Descriptive vs. predictive data mining
 - Multiple/integrated functions and mining at multiple levels

- **Techniques utilized**
 - Data warehousing (OLAP), machine learning, statistics, pattern recognition, visualization, high-performance computing, etc.
Multi-Dimensional View of Data Mining

- **Data to be mined**
 - Database data (extended-relational, object-oriented, heterogeneous), data warehouse, transactional data, stream, spatiotemporal, time-series, sequence, text and web, multi-media, graphs & social and information networks

- **Knowledge to be mined (or: Data mining functions)**
 - Characterization, discrimination, association, classification, clustering, trend/deviation, outlier analysis, ...
 - Descriptive vs. predictive data mining
 - Multiple/integrated functions and mining at multiple levels

- **Techniques utilized**
 - Data warehousing (OLAP), machine learning, statistics, pattern recognition, visualization, high-performance computing, etc.

- **Applications adapted**
 - Retail, telecommunication, banking, fraud analysis, bio-data mining, stock market analysis, text mining, Web mining, etc.
Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary
Data Mining: On What Kinds of Data?

- Database-oriented data sets and applications
 - Relational database, data warehouse, transactional database
 - Object-relational databases, Heterogeneous databases and legacy databases

- Advanced data sets and advanced applications
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data (incl. bio-sequences)
 - Structure data, graphs, social networks and information networks
 - Spatial data and spatiotemporal data
 - Multimedia database
 - Text databases
 - The World-Wide Web
Survey

Your Name, ID, Major

Question 1: What do you think Data Mining is?

Question 2: What project have you done so far that you think is most relevant to Data Mining?
• Not necessarily research project; can be your course project or any hackathon event you participated in.

Question 3: What do you expect to learn from this course?

Briefly answer each question with a few sentences.
Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary
Data Mining Functions: Pattern Discovery

- Frequent patterns
 - What items do you frequently purchase together on Amazon?
Data Mining Functions: Pattern Discovery

- **Frequent patterns**
 - What items do you frequently purchase together on Amazon?

- **Association and Correlation Analysis**
Data Mining Functions: Pattern Discovery

- **Frequent patterns**
 - What items do you frequently purchase together on Amazon?

- **Association and Correlation Analysis**

- A typical association rule
 - Diaper \rightarrow Beer [0.5%, 75%] (support, confidence)

- How to mine such patterns and rules efficiently in large datasets?
- How to use such patterns for classification, clustering, and other applications?
- More: friend recommendation, motif discovery, malware detection, fraud detection, etc.
Data Mining Functions: Classification

- Classification and label prediction
 - Construct models (functions) based on some training examples
 - Describe and distinguish classes or concepts for future prediction
 - Ex. 1. Classify countries based on (climate)
 - Ex. 2. Classify cars based on (gas mileage)
 - Predict some unknown class labels
Data Mining Functions: Classification

- Classification and label prediction
 - Construct models (functions) based on some training examples
 - Describe and distinguish classes or concepts for future prediction
 - Ex. 1. Classify countries based on (climate)
 - Ex. 2. Classify cars based on (gas mileage)
 - Predict some unknown class labels
- Typical methods
 - Decision trees, naïve Bayesian classification, support vector machines, neural networks, rule-based classification, pattern-based classification, logistic regression, ...
Data Mining Functions: Classification

- Classification and label prediction
 - Construct models (functions) based on some training examples
 - Describe and distinguish classes or concepts for future prediction
 - Ex. 1. Classify countries based on (climate)
 - Ex. 2. Classify cars based on (gas mileage)
 - Predict some unknown class labels

- Typical methods
 - Decision trees, naïve Bayesian classification, support vector machines, neural networks, rule-based classification, pattern-based classification, logistic regression, …

- Typical applications:
 - Credit card fraud detection, direct marketing, classifying stars, diseases, web pages, …
Data Mining Functions: Cluster Analysis

- Unsupervised learning (i.e., Class label is unknown)
- Group data to form new categories (i.e., clusters), e.g., cluster houses to find distribution patterns
Data Mining Functions: Cluster Analysis

- Unsupervised learning (i.e., Class label is unknown)
- Group data to form new categories (i.e., clusters), e.g., cluster houses to find distribution patterns
- Principle: Maximizing intra-class similarity & minimizing interclass similarity
- Many methods and applications
Data Mining Functions: Outlier Analysis

- Outlier analysis
 - Outlier: A data object that does not comply with the general behavior of the data
 - Noise or exception?—One person’s garbage could be another person’s treasure
Data Mining Functions: Outlier Analysis

- Outlier analysis
 - Outlier: A data object that does not comply with the general behavior of the data
 - Noise or exception?—One person’s garbage could be another person’s treasure
 - Methods: by product of clustering or regression analysis, …
 - Useful in fraud detection, rare events analysis
Data Mining Functions: Time and Ordering: Sequential Pattern, Trend and Evolution Analysis

- Sequence, trend and evolution analysis
 - Trend, time-series, and deviation analysis
 - e.g., regression and value prediction
 - Sequential pattern mining
 - e.g., buy digital camera, then buy large memory cards
 - Periodicity analysis
- Motifs and biological sequence analysis
 - Approximate and consecutive motifs
- Similarity-based analysis
- Mining data streams
 - Ordered, time-varying, potentially infinite, data streams
Graph mining

- Finding frequent subgraphs (e.g., chemical compounds), trees (XML), substructures (web fragments)
Data Mining Functions: Structure and Network Analysis

- **Graph mining**
 - Finding frequent subgraphs (e.g., chemical compounds), trees (XML), substructures (web fragments)

- **Information network analysis**
 - Social networks: actors (objects, nodes) and relationships (edges)
 - e.g., author networks in CS, terrorist networks
 - Multiple heterogeneous networks
 - A person could be multiple information networks: friends, family, classmates, …
 - Knowledge graphs: knowledge backbone of AI systems
Data Mining Functions: Structure and Network Analysis

- **Graph mining**
 - Finding frequent subgraphs (e.g., chemical compounds), trees (XML), substructures (web fragments)

- **Information network analysis**
 - Social networks: actors (objects, nodes) and relationships (edges)
 - e.g., author networks in CS, terrorist networks
 - Multiple heterogeneous networks
 - A person could be multiple information networks: friends, family, classmates, …
 - Knowledge graphs: knowledge backbone of AI systems

- **Web mining**
 - Web is a big information network: from PageRank to Google
 - Analysis of Web information networks
 - Web community discovery, opinion mining, usage mining, …
Evaluation of Knowledge

- Are all mined knowledge interesting?
 - One can mine tremendous amounts of “patterns”
 - Some may fit only certain dimension space (time, location, …)
 - Some may not be representative, may be transient, …
Evaluation of Knowledge

- Are all mined knowledge interesting?
 - One can mine tremendous amount of “patterns”
 - Some may fit only certain dimension space (time, location, …)
 - Some may not be representative, may be transient, …

- Evaluation of mined knowledge → directly mine only interesting knowledge?
 - Descriptive vs. predictive
 - Coverage
 - Typicality vs. novelty
 - Accuracy
 - Timeliness
 - …
Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary
Data Mining: Confluence of Multiple Disciplines

- Machine Learning
- Pattern Recognition
- Statistics
- Applications
- High-Performance Computing
- Visualization
- Database Technology
- Algorithm
Why Confluence of Multiple Disciplines?

- Tremendous amount of data
 - Algorithms must be scalable to handle big data
- High-dimensionality of data
 - Micro-array may have tens of thousands of dimensions
- High complexity of data
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data
 - Structure data, graphs, social and information networks
 - Spatial, spatiotemporal, multimedia, text and Web data
 - Software programs, scientific simulations
- New and sophisticated applications
Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary
Applications of Data Mining

- Web page analysis: classification, clustering, ranking
- Collaborative analysis & recommender systems
- Biological and medical data analysis
- Data mining and software engineering
- Data mining and text analysis
- Data mining and social and information network analysis
- Built-in (invisible data mining) functions in Google, MS, Yahoo!, LinkedIn, Facebook, …
Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary
Major Issues in Data Mining (1)

- Mining Methodology
 - Mining various and new kinds of knowledge
 - Mining knowledge in multi-dimensional space
 - Data mining: An interdisciplinary effort
 - Boosting the power of discovery in a networked environment
 - Handling noise, uncertainty, and incompleteness of data
 - Pattern evaluation and pattern- or constraint-guided mining
Major Issues in Data Mining (1)

- **Mining Methodology**
 - Mining various and new kinds of knowledge
 - Mining knowledge in multi-dimensional space
 - Data mining: An interdisciplinary effort
 - Boosting the power of discovery in a networked environment
 - Handling noise, uncertainty, and incompleteness of data
 - Pattern evaluation and pattern- or constraint-guided mining

- **User Interaction & Human-Machine Collaboration**
 - Interactive mining
 - Incorporation of background knowledge
 - Presentation and visualization of data mining results
Major Issues in Data Mining (2)

- Efficiency and Scalability
 - Efficiency and scalability of data mining algorithms
 - Parallel, distributed, stream, and incremental mining methods

- Diversity of data types
 - Handling complex types of data
 - Mining dynamic, networked, and global data repositories

- Data mining and society
 - Social impacts of data mining
 - Privacy-preserving data mining
Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary
A Brief History of Data Mining Society

- 1989 IJCAI Workshop on Knowledge Discovery in Databases
 - Knowledge Discovery in Databases (G. Piatetsky-Shapiro and W. Frawley, 1991)
- 1991-1994 Workshops on Knowledge Discovery in Databases
 - Advances in Knowledge Discovery and Data Mining (U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, 1996)
- 1995-1998 International Conferences on Knowledge Discovery in Databases and Data Mining (KDD’95-98)
 - Journal of Data Mining and Knowledge Discovery (1997)
- ACM SIGKDD conferences since 1998 and SIGKDD Explorations
- More conferences on data mining
- ACM Transactions on KDD (2007)
Conferences and Journals on Data Mining

- KDD Conferences
 - ACM SIGKDD Int. Conf. on Knowledge Discovery in Databases and Data Mining (KDD)
 - SIAM Data Mining Conf. (SDM)
 - (IEEE) Int. Conf. on Data Mining (ICDM)
 - European Conf. on Machine Learning and Principles and practices of Knowledge Discovery and Data Mining (ECML-PKDD)
 - Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD)
 - Int. Conf. on Web Search and Data Mining (WSDM)

- Other related conferences
 - DB conferences: ACM SIGMOD, VLDB, ICDE, EDBT, ICDT, …
 - Web and IR conferences: WWW, SIGIR, WSDM
 - ML conferences: ICML, NIPS
 - PR conferences: CVPR,

- Journals
 - Data Mining and Knowledge Discovery (DAMI or DMKD)
 - IEEE Trans. On Knowledge and Data Eng. (TKDE)
 - KDD Explorations
 - ACM Trans. on KDD
Where to Find References? DBLP, CiteSeer, Google

- **Data mining and KDD (SIGKDD)**
 - Conferences: ACM-SIGKDD, IEEE-ICDM, SIAM-DM, PKDD, PAKDD, etc.
 - Journal: Data Mining and Knowledge Discovery, KDD Explorations, ACM TKDD

- **Database systems (SIGMOD)**
 - Conferences: ACM-SIGMOD, ACM-PODS, VLDB, IEEE-ICDE, EDBT, ICDT, DASFAA

- **AI & Machine Learning**
 - Conferences: Machine learning (ML), AAAI, IJCAI, COLT (Learning Theory), CVPR, NIPS, etc.
 - Journals: Machine Learning, Artificial Intelligence, Knowledge and Information Systems, IEEE-PAMI, etc.
Where to Find References? DBLP, CiteSeer, Google

- **Web and IR**
 - Conferences: SIGIR, WWW, CIKM, etc.
 - Journals: WWW: Internet and Web Information Systems

- **Statistics**
 - Conferences: Joint Stat. Meeting, etc.
 - Journals: Annals of statistics, etc.

- **Visualization**
 - Conference proceedings: CHI, ACM-SIGGraph, etc.
 - Journals: IEEE Trans. visualization and computer graphics, etc.
Future of Data Science

Data Science Is Multidisciplinary

https://www.youtube.com/watch?v=hxXlJnjC_HI (Future of Data Science @ Stanford)

Related events in OSU:

DataFest
Hackathon
Conduct research in labs

Figure from: https://www.datasciencecentral.com/profiles/blogs/difference-of-data-science-machine-learning-and-data-mining
Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary
Summary

- Data mining: Discovering interesting patterns and knowledge from massive amount of data
- A natural evolution of science and information technology, in great demand, with wide applications
- A KDD process includes data cleaning, data integration, data selection, transformation, data mining, pattern evaluation, and knowledge presentation
- Mining can be performed in a variety of data
- Data mining functionalities: characterization, discrimination, association, classification, clustering, trend and outlier analysis, etc.
- Data mining technologies and applications
- Major issues in data mining
Recommended Reference Books

- J. Han, M. Kamber, and J. Pei, *Data Mining: Concepts and Techniques*. Morgan Kaufmann, 3rd ed. 2011
Future of Data Science

Data Science Is Multidisciplinary

https://www.youtube.com/watch?v=hxXIJnjC_HI

Related events in OSU:

DataFest
Hackathon
Conduct research in labs

Figure from: https://www.datasciencecentral.com/profiles/blogs/difference-of-data-science-machine-learning-and-data-mining