CSE 5243 INTRO. TO DATA MINING

Classification (Basic Concepts & Advanced Methods) Yu Su, CSE@The Ohio State University

Slides adapted from UIUC CS412 by Prof. Jiawei Han and OSU CSE5243 by Prof. Huan Sun

Classification: Advanced Methods

Lazy Learners and K-Nearest Neighbors

- Neural Networks
- Support Vector Machines

□ Additional Topics: Semi-Supervised Methods, Active Learning, etc.

Summary

Lazy vs. Eager Learning

Lazy vs. eager learning

- Lazy learning (e.g., instance-based learning): Simply stores training data (or only minor processing) and waits until it is given a test tuple
- **Eager learning** (the previously discussed methods): Given a set of training tuples, constructs a classification model before receiving new (e.g., test) data to classify
- Lazy: less time in training but more time in predicting
- Accuracy
 - Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form an implicit global approximation to the target function
 - Eager: must commit to a single hypothesis that covers the entire instance space

Lazy Learner: Instance-Based Methods

Instance-based learning:

Store training examples and delay the processing ("lazy evaluation") until a new instance must be classified

- Typical approaches
 - <u>k-nearest-neighbor approach</u>
 - Instances represented as points in a Euclidean space.

Case-based reasoning

Uses symbolic representations and knowledge-based inference

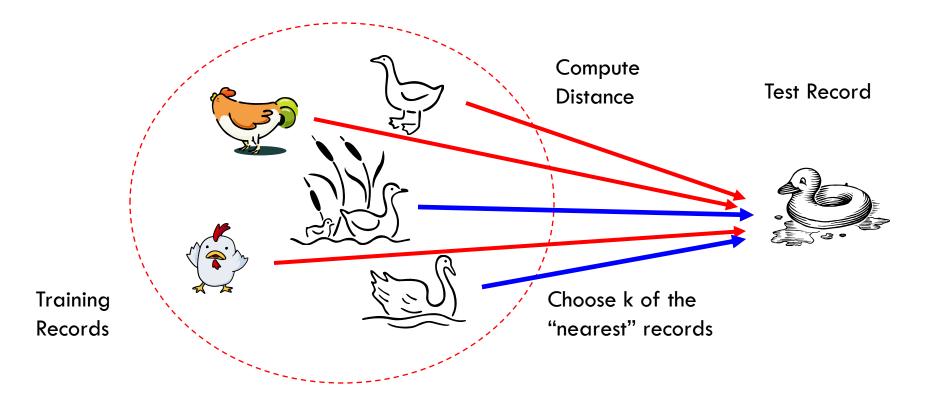
k-Nearest Neighbor (k-NN):

- □ Training method:
 - Save the training examples
- □ At prediction time:
 - Find the k training examples (x₁,y₁),...(x_k,y_k) that are <u>closest</u> to the test example x
 - **\square** Classify x as the most frequent class among those y_i 's.
- O(q) for each tuple to be classified. (Here q is the size of the training set.)

Nearest Neighbor Classifiers

Basic idea:

□ If it walks like a duck, quacks like a duck, then it's probably a duck



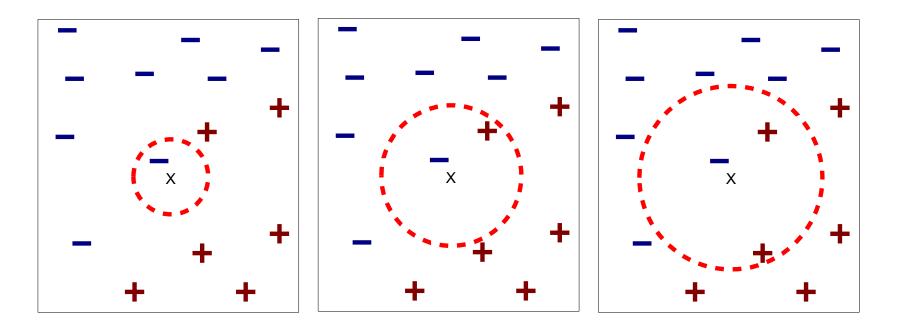
Nearest Neighbor Classifiers



- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Slides adapted from SlideShare

Definition of Nearest Neighbor



(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

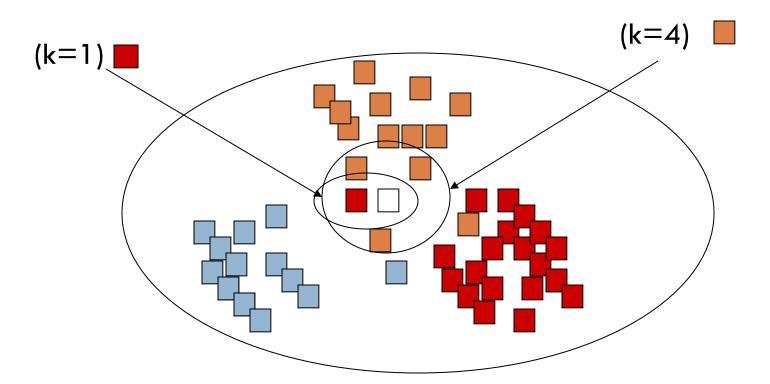
K-nearest neighbors of a record x are data points that have the k shortest distance to x

Data

- Two attributes: acid durability and strength
- Label: a special paper tissue is good or not
- X1 = Acid Durability, X2= Strength, Y =classification
 D1=(7, 7, Bad), D2= (7, 4, Bad), D3= (3, 4, Good), D4=(1, 4, Good)
- \Box Query: X1 = 3, and X2 = 7. Let us set K = 3.
- Distance metric: Euclidean distance
- Distance between query and all training examples.
 D1's Squared Distance to query (3, 7): (7-3)² + (7-7)² = 16
 D2's: 25, D3's: 9, D4's: 13
- □ Gather the category Y of the 3 nearest neighbors: Bad, Good, Good
- □ Majority voting for the predicted label: Good

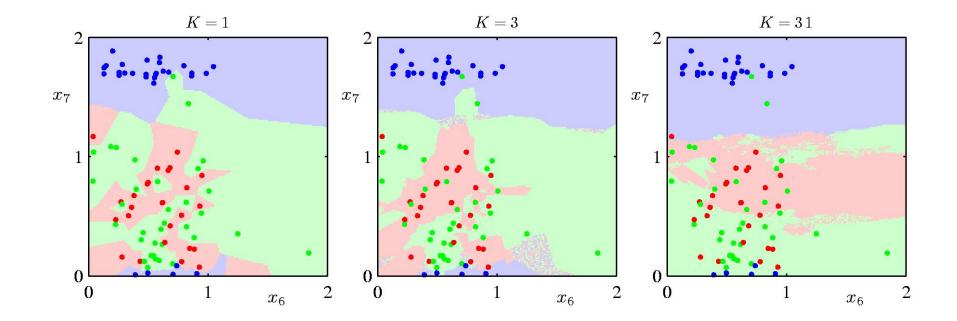
K-Nearest-Neighbour (k-NN) Classifier

How many neighbors should we count ?



Slides adapted from k-NN lectures given by Prof. Rong Jin at MSU

K-Nearest-Neighbour (k-NN) Classifier



• K acts as a smoother

Slides adapted from k-NN lectures given by Prof. Rong Jin at MSU

11

How to Choose K: Hold-out/Cross Validation

Divide training examples into two sets

□ A training set (80%) and a validation set (20%)

- Predict the class labels for validation set by using the examples in training set
- Choose the number of neighbors k that maximizes the classification accuracy

Discussion on the k-NN Algorithm

- \square k-NN for <u>real-valued prediction</u> for a given unknown tuple
 - Returns the mean values of the k nearest neighbors
- Distance-weighted nearest neighbor algorithm
 - Weight the contribution of each of the k neighbors according to their distance to the query x_q $\mathcal{W} \equiv \frac{1}{\mathcal{W} \equiv \frac{1}{\mathcal{W} = \frac{1}{$
 - Give greater weight to closer neighbors

$$w \equiv \frac{1}{d(x_q, x_i)^2}$$

- \square <u>Robust</u> to noisy data by averaging *k*-nearest neighbors
- <u>Curse of dimensionality</u>: distance between neighbors could be dominated by irrelevant attributes
 - To overcome it, axes stretch or elimination of the least relevant attributes

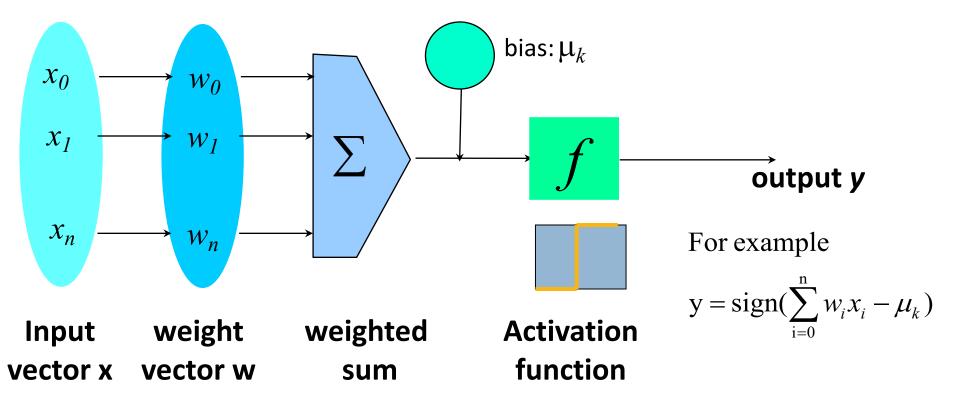
Classification: Advanced Methods

- Lazy Learners and K-Nearest Neighbors
- Neural Networks
- Support Vector Machines
- Bayesian Belief Networks
- □ Additional Topics: Semi-Supervised Methods, Active Learning, etc.
- Summary

Neural Network for Classification

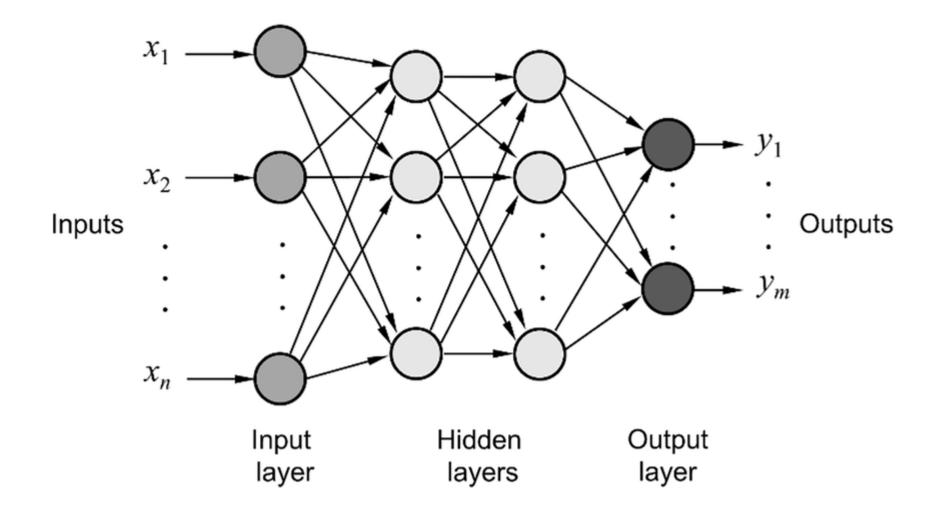
- Started by psychologists and neurobiologists to develop and test computational analogues of neurons
- A neural network: A set of connected input/output units where each connection has a weight associated with it
 - During the learning phase, the network learns by adjusting the weights so as to be able to predict the correct class label of the input tuples
- □ Also referred to as **connectionist learning** due to the connections between units
- Backpropagation: A **neural network** learning algorithm

Neuron: A Hidden/Output Layer Unit



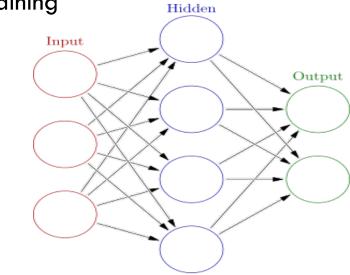
- An n-dimensional input vector x is mapped into variable y by means of the scalar product and a nonlinear function mapping
- The inputs to unit are outputs from the previous layer. They are multiplied by their corresponding weights to form a weighted sum, which is added to the bias associated with unit. Then a nonlinear activation function is applied to it.

A Multi-Layer Fully-Connected Feed-Forward Neural Network



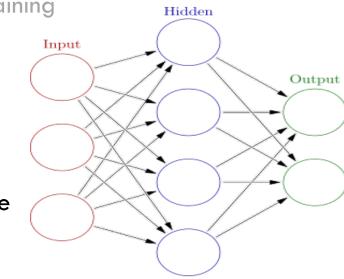
How a Multi-Layer Neural Network Works

- The inputs to the network correspond to the attributes measured for each training tuple
- Inputs are fed simultaneously into the units making up the input layer
- □ They are then weighted and fed simultaneously to a **hidden layer**



How a Multi-Layer Neural Network Works

- The inputs to the network correspond to the attributes measured for each training tuple
 Input
- Inputs are fed simultaneously into the units making up the input layer
- They are then weighted and fed simultaneously to a hidden layer
- The number of hidden layers is arbitrary
- The weighted outputs of the last hidden layer are input to units making up the output layer, which emits the network's prediction



How a Multi-Layer Neural Network Works

Hidden

Output

- The inputs to the network correspond to the attributes measured for each training tuple
 Input
- Inputs are fed simultaneously into the units making up the input layer
- They are then weighted and fed simultaneously to a hidden layer
- □ The number of hidden layers is arbitrary
- The weighted outputs of the last hidden layer are input to units making up the output layer, which emits the network's prediction
- The network is feed-forward: None of the weights cycles back to an input unit or to an output unit of a previous layer
- From a statistical point of view, networks perform nonlinear regression
 - Given enough hidden units and enough training samples, they can closely approximate any function

Defining a Network Topology

Decide the network topology

- Specify # of units in the input layer, # of hidden layers (if > 1), # of units in each hidden layer, and # of units in the output layer
- (Optional) Normalize the input values for each attribute measured in the training tuples, e.g., to [0.0, 1.0]
- Output, if for classification and more than two classes, one output unit per class is used
- □ Assign initial values to parameters (usually random sampling from normal distribution)
- Once a network has been trained and its accuracy is **unacceptable**, repeat the training process with a different network topology or a different set of initial weights

Backpropagation

- **Backpropagation:** The *de facto* supervised learning algorithm for neural networks
 - Short for "backward propagation of errors"
- Iteratively process a set of training tuples & compare the network's prediction with the actual known target value
- For each training tuple, the weights are modified to minimize error (squared error, cross entropy, et.c) between the network's prediction and the actual target value
- Modifications are made in the "backwards" direction: from the output layer, through each hidden layer down to the first hidden layer, hence "backpropagation"

Input

Output

□ Steps

22

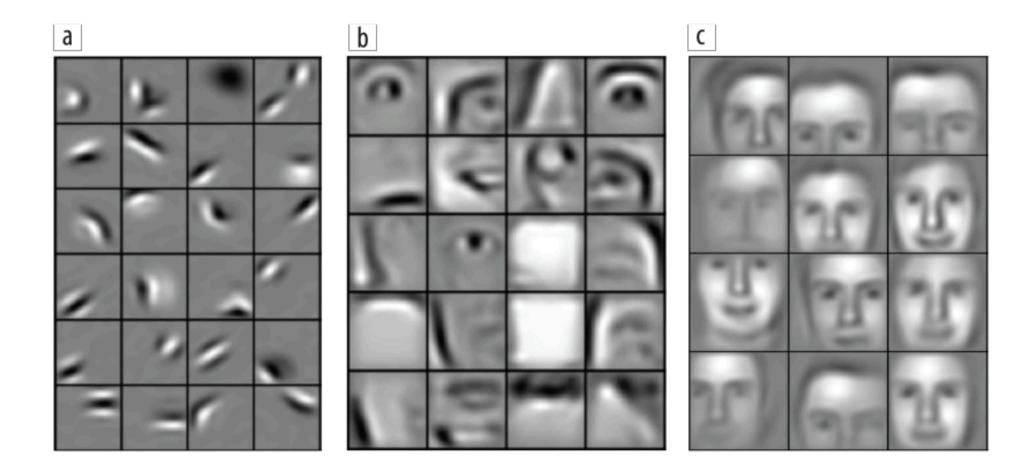
- Initialize weights to small random numbers, associated with biases
- Propagate the inputs forward (by applying activation function)
- Backpropagate the error (by updating weights and biases)
- Terminating condition (when error is very small, etc.)
- Good news: backpropagation is readily supported in all neural network
- libraries like Tensorflow and PyTorch.

From Neural Networks to Deep Learning

- □ Train networks with many layers (vs. shallow nets with just 1 or 2 hidden layers)
- Multiple layers work to build an improved feature space
 - First layer learns 1st order features (e.g., edges, ...)
 - 2nd layer learns higher order features (combinations of first layer features, combinations of edges, etc.)
 - In current models, layers often learn in an unsupervised mode and discover general features of the input space—serving multiple tasks related to the unsupervised instances (image recognition, etc.)
 - Then final layer features are fed into supervised layer(s)
 - And entire network is often subsequently tuned using supervised training of the entire net, using the initial weightings learned in the unsupervised phase
 - Could also do fully supervised versions (back-propagation)

Deep Learning – Object Recognition

24



Layer 1

Layer 2

Layer 3

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations – ICML 2019

Deep Learning – Conversational Agents



https://ai.googleblog.com/2020/01/towards-conversational-agent-that-can.html

Deep Learning - DeepFake

Classification: Advanced Methods

- Lazy Learners and K-Nearest Neighbors
- Neural Networks
- Support Vector Machines

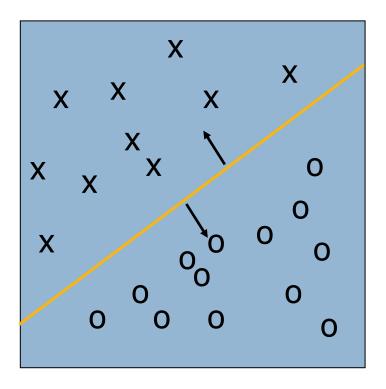
- Bayesian Belief Networks
- Additional Topics: Semi-Supervised Methods, Active Learning, etc.

Summary

Classification: A Mathematical Mapping

Classification: predicts categorical class labels

- E.g., Personal homepage classification
 - $x_i = (x_1, x_2, x_3, ...), y_i = +1 \text{ or } -1$
 - x₁:# of word "homepage"
 - x₂: # of word "welcome"
- □ Mathematically, $x \in X = \Re^n$, $y \in Y = \{+1, -1\}$,
 - We want to derive a function f: $X \rightarrow Y$
- Linear Classification
 - Binary classification problem
 - Data above the red line belongs to class 'x'
 - Data below red line belongs to class 'o'
 - Examples: SVM, Perceptron, Probabilistic Classifiers



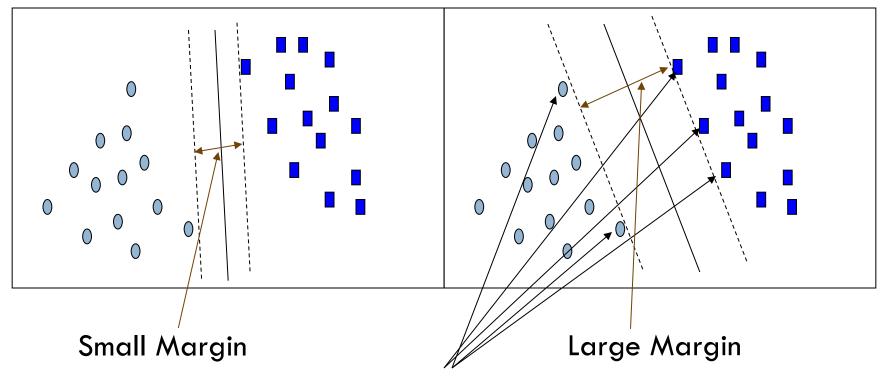
SVM—Support Vector Machines

- A relatively new (compared to decision tree or naïve bayes) classification method for both <u>linear and nonlinear</u> data
- It uses a <u>nonlinear mapping</u> to transform the original training data into a higher dimension
- With the new dimension, it searches for the linear optimal separating hyperplane (i.e., "decision boundary")
- With an appropriate nonlinear mapping to a sufficiently high dimension, data from two classes can always be separated by a hyperplane
- SVM finds this hyperplane using support vectors ("essential" training tuples) and margins (defined by the support vectors)

SVM—History and Applications

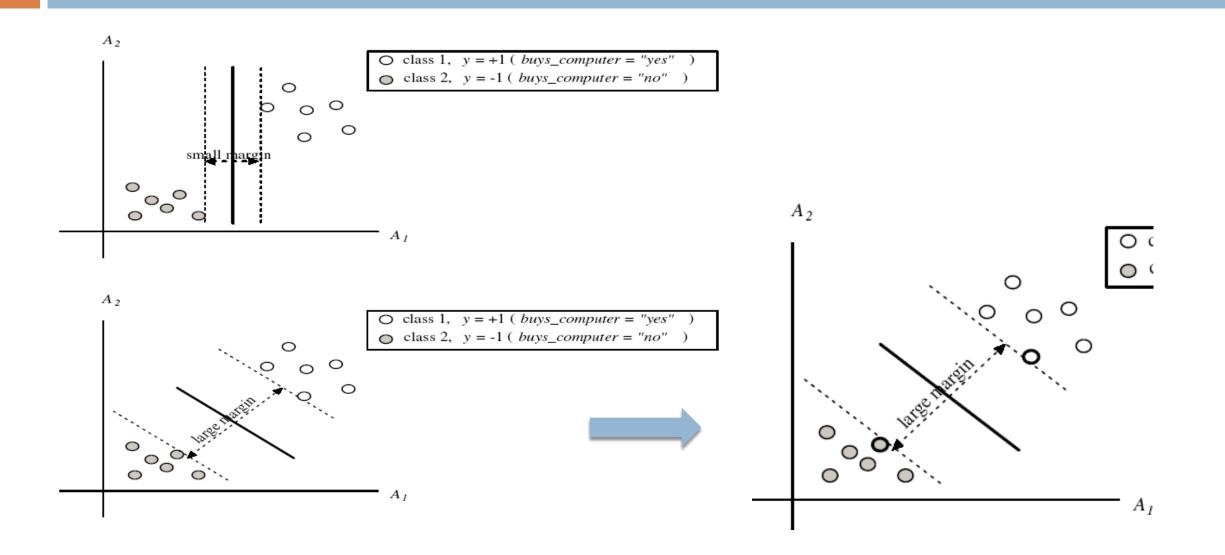
- Vapnik and colleagues (1992)—groundwork from Vapnik & Chervonenkis' statistical learning theory in 1960s
- <u>Features</u>: training can be slow but accuracy is high owing to their ability to model complex nonlinear decision boundaries (margin maximization)
- <u>Used for</u>: classification and numeric prediction
- Applications:
 - handwritten digit recognition, object recognition, speaker identification, benchmarking time-series prediction tests

General Philosophy: Maximum Margin Principle

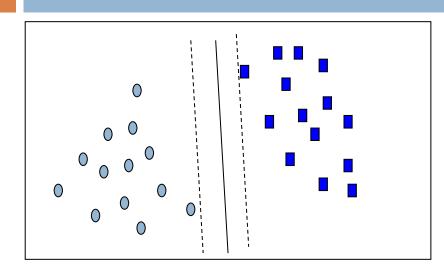


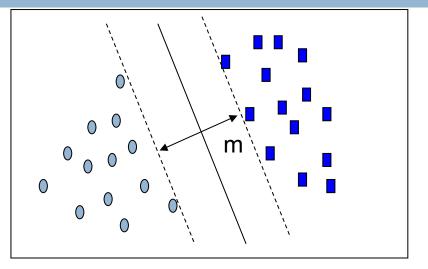
Support Vectors

SVM—Margins and Support Vectors



SVM—When Data Is Linearly Separable





Let data D be $(X_1, y_1), ..., (X_{|D|}, y_{|D|})$, where X_i is the set of training tuples associated with the class labels y_i There are infinite lines (<u>hyperplanes</u>) separating the two classes but we want to <u>find the best one</u> (the one that minimizes classification error on unseen data)

SVM searches for the hyperplane with the largest margin, i.e., maximum marginal hyperplane (MMH)

SVM—Linearly Separable

A separating hyperplane can be written as

$$\mathbf{W} \bullet \mathbf{X} + \mathbf{b} = \mathbf{0}$$

where $\mathbf{W} = \{w_1, w_2, ..., w_n\}$ is a weight vector and b a scalar (bias)

- □ For 2-D it can be written as: $w_0 + w_1 x_1 + w_2 x_2 = 0$
- □ The hyperplane defining the sides of the margin:

 $\begin{array}{l} \mathsf{H}_1: \, \mathsf{w}_0 \, + \, \mathsf{w}_1 \, \, \mathsf{x}_1 \, + \, \mathsf{w}_2 \, \, \mathsf{x}_2 \geq 1 & \text{ for } \mathsf{y}_i = +1 \text{, and} \\ \\ \mathsf{H}_2: \, \mathsf{w}_0 \, + \, \mathsf{w}_1 \, \, \mathsf{x}_1 \, + \, \mathsf{w}_2 \, \, \mathsf{x}_2 \leq -1 \ \text{ for } \mathsf{y}_i = -1 \end{array}$

- Any training tuples that fall on hyperplanes H₁ or H₂ (i.e., the sides defining the margin) are support vectors
- This becomes a constrained (convex) quadratic optimization problem:
 - Quadratic objective function and linear constraints → Quadratic Programming (QP) → Lagrangian multipliers

SVM—Linearly Inseparable

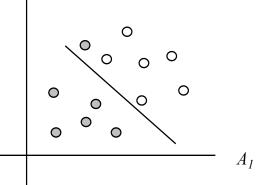
Transform the original input data into a higher dimensional space

Example 6.8 Nonlinear transformation of original input data into a higher dimensional space. Consider the following example. A 3D input vector $\mathbf{X} = (x_1, x_2, x_3)$ is mapped into a 6D space Z using the mappings $\phi_1(X) = x_1, \phi_2(X) = x_2, \phi_3(X) = x_3, \phi_4(X) = (x_1)^2, \phi_5(X) = x_1x_2$, and $\phi_6(X) = x_1x_3$. A decision hyperplane in the new space is $d(\mathbf{Z}) = \mathbf{WZ} + b$, where W and Z are vectors. This is linear. We solve for W and b and then substitute back so that we see that the linear decision hyperplane in the new (Z) space corresponds to a nonlinear second order polynomial in the original 3-D input space, A_2

$$d(Z) = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 (x_1)^2 + w_5 x_1 x_2 + w_6 x_1 x_3 + b$$

= $w_1 z_1 + w_2 z_2 + w_3 z_3 + w_4 z_4 + w_5 z_5 + w_6 z_6 + b$

Search for a linear separating hyperplane in the new space



Why Is SVM Effective on High Dimensional Data?

- The complexity of trained classifier is characterized by the <u># of support vectors</u> rather than the dimensionality of the data
- The support vectors are the <u>essential or critical training examples</u> —they lie closest to the decision boundary (MMH)
- If all other training examples were removed and the training was repeated, the same separating hyperplane would still be found
- The number of support vectors found can be used to compute an <u>(upper) bound on the expected error rate</u> of the SVM classifier, which is independent of the data dimensionality
- Thus, an SVM with a small number of support vectors can have good generalization, even when the dimensionality of the data is high

Kernel Functions for Nonlinear Classification

- Instead of computing the dot product on the transformed data, it is mathematically equivalent to applying a kernel function K(X_i, X_i) to the original data, i.e.,
 - $\Box \quad \mathsf{K}(\mathsf{X}_{\mathsf{i}}, \mathsf{X}_{\mathsf{j}}) = \Phi(\mathsf{X}_{\mathsf{i}}) \ \Phi(\mathsf{X}_{\mathsf{j}})$
- Typical Kernel Functions

Polynomial kernel of degree h: $K(X_i, X_j) = (X_i \cdot X_j + 1)^h$

Gaussian radial basis function kernel : $K(X_i, X_j) = e^{-\|X_i - X_j\|^2/2\sigma^2}$

Sigmoid kernel : $K(X_i, X_j) = \tanh(\kappa X_i \cdot X_j - \delta)$

SVM can also be used for classifying multiple (> 2) classes and for regression analysis (with additional parameters)

SVM Related Links

- □ SVM Website: <u>http://www.kernel-machines.org/</u>
- Representative implementations
 - LIBSVM: an efficient implementation of SVM, multi-class classifications, nu-SVM, one-class SVM, including also various interfaces with java, python, etc.
 - SVM-light: simpler but performance is not better than LIBSVM, support only binary classification and only in C
 - **SVM-torch**: another recent implementation also written in C

Summary: Classification

Basic methods

Decision tree / Naïve Bayes classifier

Advanced methods

K-nearest neighbors / Neural network / Support vector machine

Ensemble methods

Bagging / boosting / random forest

Practical issues

Evaluation: confusion matrix/accuracy/precision/recall/F-1/ROC, hold-out, cross-validation

Overfitting / underfitting