
CSE 5243 INTRO. TO DATA MINING

Classification (Basic Concepts)
Yu Su, CSE@The Ohio State University

Slides adapted from UIUC CS412 by Prof. Jiawei Han and OSU CSE5243 by Prof. Huan Sun

2

Classification: Basic Concepts
¨ Classification: Basic Concepts

¨ Decision Tree Induction

¨ Model Evaluation and Selection

¨ Practical Issues of Classification

¨ Bayes Classification Methods

¨ Techniques to Improve Classification Accuracy: Ensemble Methods

¨ Summary

This class

Next class

3

Classification: Basic Concepts
¨ Classification: Basic Concepts

¨ Decision Tree Induction

¨ Model Evaluation and Selection

¨ Practical Issues of Classification

¨ Bayes Classification Methods

¨ Techniques to Improve Classification Accuracy: Ensemble Methods

¨ Summary

4

Decision Tree Induction: An Example

age?

overcast

student? credit rating?

<=30 >40

no yes yes

yes

31..40

no

fairexcellentyesno

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

q Training data set: Buys_computer
q The data set follows an example of Quinlan’s

ID3 (Playing Tennis)
q Resulting tree:

5

Algorithm for Decision Tree Induction
¨ Basic algorithm (a greedy algorithm)

¤ Tree is constructed in a top-down recursive divide-and-conquer manner

¤ At start, all the training examples are at the root
¤ Examples are partitioned recursively based on selected attributes
¤ Test attributes are selected on the basis of a heuristic or statistical measure (e.g.,

information gain)
¨ Conditions for stopping partitioning

¤ All examples for a given node belong to the same class, or
¤ There are no remaining attributes for further partitioning—majority voting is

employed for classifying the leaf, or
¤ There are no examples left

6

Algorithm Outline

¨ Split (node, {data tuples})
¤ A ← the best attribute for splitting the {data tuples}
¤ Decision attribute for this node ← A
¤ For each value of A, create new child node
¤ For each child node / subset:

n If one of the stopping conditions is satisfied: STOP
n Else: Split (child_node, {subset})

https://www.youtube.com/watch?v=_XhOdSLlE5c
ID3 algorithm: how it works

https://www.youtube.com/watch%3Fv=_XhOdSLlE5c

7

Algorithm Outline

¨ Split (node, {data tuples})
¤ A ← the best attribute for splitting the {data tuples}
¤ Decision attribute for this node ← A
¤ For each value of A, create new child node
¤ For each child node / subset:

n If one of the stopping conditions is satisfied: STOP
n Else: Split (child_node, {subset})

https://www.youtube.com/watch?v=_XhOdSLlE5c
ID3 algorithm: how it works

https://www.youtube.com/watch%3Fv=_XhOdSLlE5c

8

Brief Review of Entropy
¨ Entropy (Information Theory)

¤ A measure of uncertainty associated with a random variable
¤ Calculation: For a discrete random variable Y taking m distinct values {y1, y2, …, ym}

¤ Interpretation
n Higher entropy → higher uncertainty
n Lower entropy → lower uncertainty

¨ Conditional entropy

m = 2

9

Attribute Selection Measure: Information Gain (ID3/C4.5)

q Select the attribute with the highest information gain
q Let pi be the probability that an arbitrary tuple in D belongs to class Ci,

estimated by |Ci, D|/|D|
q Expected information (entropy) needed to classify a tuple in D:

q Information needed (after using A to split D into v partitions) to classify D:

q Information gained by branching on attribute A

)(log)(2
1

i

m

i
i ppDInfo å

=

-=

)(
||
||

)(
1

j

v

j

j
A DInfo

D
D

DInfo ´=å
=

(D)InfoInfo(D)Gain(A) A-=

10

Attribute Selection: Information Gain
¨ Class P: buys_computer = “yes”
¨ Class N: buys_computer = “no”

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

940.0)
14
5(log

14
5)

14
9(log

14
9)5,9()(22 =--== IDInfo

age pi ni I(pi, ni)
<=30 2 3 0.971
31…40 4 0 0
>40 3 2 0.971

Look at “age”:

694.0)2,3(
14
5

)0,4(
14
4)3,2(

14
5)(

=+

+=

I

IIDInfoage

11

Attribute Selection: Information Gain
¨ Class P: buys_computer = “yes”
¨ Class N: buys_computer = “no”

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

940.0)
14
5(log

14
5)

14
9(log

14
9)5,9()(22 =--== IDInfo

694.0)2,3(
14
5

)0,4(
14
4)3,2(

14
5)(

=+

+=

I

IIDInfoage

246.0)()()(=-= DInfoDInfoageGain age

Similarly,

048.0)_(
151.0)(
029.0)(

=
=
=

ratingcreditGain
studentGain
incomeGain

12

Recursive Procedure

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

1. After selecting age at the root node,
we will create three child nodes.

2. One child node is associated with red data
tuples.

3. How to continue for this child node?

Now, you will make D = {red data tuples}

and then select the best attribute to further split
D.

A recursive procedure.

13

How to Select Test Attribute?

¨ Depends on attribute types
¤ Nominal
¤ Ordinal
¤ Continuous

¨ Depends on number of ways to split
¤ 2-way split
¤ Multi-way split

14

Splitting Based on Nominal Attributes

¨ Multi-way split: Use as many partitions as distinct values.

¨ Binary split: Divides values into two subsets. Need to find optimal
partitioning.

CarType
Family

Sports

Luxury

CarType
{Family,
Luxury} {Sports}

CarType
{Sports,
Luxury} {Family}

OR

15

Splitting Based on Continuous Attributes

Taxable
Income
> 80K?

Yes No

Taxable
Income?

(i) Binary split (ii) Multi-way split

< 10K

[10K,25K) [25K,50K) [50K,80K)

> 80K

16

¨ Greedy approach:
¤ Nodes with homogeneous class distribution are preferred

C0: 5
C1: 5

C0: 9
C1: 1

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity

Ideally, data tuples at that node belong to the same class.

How to Determine the Best Split

17

Rethink about Decision Tree Classification

¨ Greedy approach:
¤ Nodes with homogeneous class distribution are preferred

¨ Need a measure of node impurity:

C0: 5
C1: 5

C0: 9
C1: 1

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity

18

Measures of Node Impurity

¨ Entropy:

¤ Higher entropy => higher uncertainty, higher node impurity

¨ Gini Index

¨ Misclassification error

19

Gain Ratio for Attribute Selection (C4.5)

¨ Information gain measure is biased towards attributes with a large
number of values

¨ C4.5 (a successor of ID3) uses gain ratio to overcome the problem
(normalization to information gain)

¤ The entropy of the partitioning, or the potential information generated by
splitting D into v partitions.

¤ GainRatio(A) = Gain(A)/SplitInfo(A) (normalizing Information Gain)

)
||
||

(log
||
||

)(2
1 D

D
D
D

DSplitInfo j
v

j

j
A ´-= å

=

20

¨ C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to
information gain)

¤ GainRatio(A) = Gain(A)/SplitInfo(A)

¨ Ex.

¤ gain_ratio(income) = 0.029/1.557 = 0.019

¨ The attribute with the maximum gain ratio is selected as the splitting attribute

Gain Ratio for Attribute Selection (C4.5)

)
||
||

(log
||
||

)(2
1 D

D
D
D

DSplitInfo j
v

j

j
A ´-= å

=

029.0)(=incomeGain

21

Gini Index (CART, IBM IntelligentMiner)
¨ If a data set 𝐷 contains examples from 𝑛 classes, gini index, 𝑔𝑖𝑛𝑖 𝐷 is defined as

𝑔𝑖𝑛𝑖 𝐷 = 1 − ∑!"#$ 𝑝!%, where 𝑝! is the relative frequency of class 𝑗 in 𝐷

¨ If a data set D is split on A into two subsets D1 and D2, the gini index after the split is
defined as:

¨ Reduction in impurity:

¨ The attribute provides the smallest 𝑔𝑖𝑛𝑖& 𝐷 (or, the largest reduction in impurity) is
chosen to split the node.

)(
||
||)(

||
||)(2

2
1

1 Dgini
D
D

Dgini
D
DDginiA +=

)()()(DginiDginiAgini A-=D

22

Binary Attributes: Computing Gini Index

! Splits into two partitions
! Effect of weighing partitions:

– Larger and Purer Partitions are sought for.

B?

Yes No

Node N1 Node N2

 Parent
C1 6
C2 6

Gini = ?

å
=

-=
n

j
p jDgini
1
21)(

23

Binary Attributes: Computing Gini Index

! Splits into two partitions
! Effect of weighting partitions:

– Larger and Purer Partitions are sought for.

B?

Yes No

Node N1 Node N2

 Parent
C1 6
C2 6

Gini = 0.500

 N1 N2
C1 5 1
C2 2 4

Gini=?

Gini(N1)
= 1 – (5/7)2 – (2/7)2

= 0.194

Gini(N2)
= 1 – (1/5)2 – (4/5)2

= 0.528

å
=

-=
n

j
p jDgini
1
21)(

24

Binary Attributes: Computing Gini Index

! Splits into two partitions
! Effect of weighting partitions:

– Prefer Larger and Purer Partitions.

B?

Yes No

Node N1 Node N2

 Parent
C1 6
C2 6

Gini = ?

 N1 N2
C1 5 1
C2 2 4
Gini=0.333

Gini(N1)
= 1 – (5/7)2 – (2/7)2

= 0.194

Gini(N2)
= 1 – (1/5)2 – (4/5)2

= 0.528

Gini(Children)
= 7/12 * 0.194 +

5/12 * 0.528
= 0.333

å
=

-=
n

j
p jDgini
1
21)(

weighting

25

Categorical Attributes: Computing Gini Index

¨ For each distinct value, gather counts for each class in the dataset
¨ Use the count matrix to make decisions

CarType
{Sports,
Luxury} {Family}

C1 3 1
C2 2 4
Gini 0.400

CarType

{Sports} {Family,Luxury}
C1 2 2
C2 1 5
Gini 0.419

CarType
Family Sports Luxury

C1 1 2 1
C2 4 1 1
Gini 0.393

Multi-way split
Two-way split

(find best partition of values)

26

Continuous Attributes: Computing Gini Index or Information Gain

¨ To discretize the attribute values
¤ Use Binary Decisions based on one splitting value

¨ Several Choices for the splitting value
¤ Number of possible splitting values = Number of distinct values -1

¤ Typically, the midpoint between each pair of adjacent values is considered as a
possible split point

n (ai+ai+1)/2 is the midpoint between the values of ai and ai+1

¨ Each splitting value has a count matrix associated with it
¤ Class counts in each of the partitions, A < v and A ³ v

¨ Simple method to choose best v
¤ For each v, scan the database to gather count matrix and compute its Gini index
¤ Computationally Inefficient! Repetition of work.

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Taxable
Income
> 80K?

Yes No

27

Continuous Attributes:
Computing Gini Index or expected information requirement

¨ For efficient computation: for each attribute,
Step 1: Sort the attribute on values

Cheat No No No Yes Yes Yes No No No No
 Taxable Income

60 70 75 85 90 95 100 120 125 220
 55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Possible Splitting Values
Sorted Values

Use midpoint

First decide the splitting value to discretize the attribute:

Step 1:

28

Continuous Attributes:
Computing Gini Index or expected information requirement

¨ For efficient computation: for each attribute,
Step 1: Sort the attribute on values
Step 2: Linearly scan these values, each time updating the count matrix

Cheat No No No Yes Yes Yes No No No No
 Taxable Income

60 70 75 85 90 95 100 120 125 220
 55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Possible Splitting Values
Sorted Values

First decide the splitting value to discretize the attribute:

Step 1:

Step 2:

For each splitting value, get its count matrix: how many data tuples have:
(a) Taxable income <=65 with class label “Yes” , (b) Taxable income
<=65 with class label “No”, (c) Taxable income >65 with class label “Yes”,
(d) Taxable income >65 with class label “No”.

29

Continuous Attributes:
Computing Gini Index or expected information requirement

¨ For efficient computation: for each attribute,
Step 1: Sort the attribute on values
Step 2: Linearly scan these values, each time updating the count matrix

Cheat No No No Yes Yes Yes No No No No
 Taxable Income

60 70 75 85 90 95 100 120 125 220
 55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Possible Splitting Values
Sorted Values

First decide the splitting value to discretize the attribute:

For each splitting value, get its count matrix: how many data tuples have:
(a) Taxable income <=72 with class label “Yes” , (b) Taxable income
<=72 with class label “No”, (c) Taxable income >72 with class label “Yes”,
(d) Taxable income >72 with class label “No”.

Step 1:

Step 2:

30

Continuous Attributes:
Computing Gini Index or expected information requirement

¨ For efficient computation: for each attribute,
Step 1: Sort the attribute on values
Step 2: Linearly scan these values, each time updating the count matrix

Cheat No No No Yes Yes Yes No No No No
 Taxable Income

60 70 75 85 90 95 100 120 125 220
 55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Possible Splitting Values
Sorted Values

First decide the splitting value to discretize the attribute:

For each splitting value, get its count matrix: how many data tuples have:
(a) Taxable income <=80 with class label “Yes” , (b) Taxable income
<=80 with class label “No”, (c) Taxable income >80 with class label “Yes”,
(d) Taxable income >80 with class label “No”.

Step 1:

Step 2:

31

Continuous Attributes:
Computing Gini Index or expected information requirement

¨ For efficient computation: for each attribute,
Step 1: Sort the attribute on values
Step 2: Linearly scan these values, each time updating the count matrix

Cheat No No No Yes Yes Yes No No No No
 Taxable Income

60 70 75 85 90 95 100 120 125 220
 55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Possible Splitting Values
Sorted Values

First decide the splitting value to discretize the attribute:

For each splitting value, get its count matrix: how many data tuples have:
(a) Taxable income <=172 with class label “Yes” , (b) Taxable income
<=172 with class label “No”, (c) Taxable income >172 with class label
“Yes”, (d) Taxable income >172 with class label “No”.

Step 1:

Step 2:

32

Continuous Attributes:
Computing Gini Index or expected information requirement

¨ For efficient computation: for each attribute,
Step 1: Sort the attribute on values
Step 2: Linearly scan these values, each time updating the count matrix
Step 3: Computing Gini index and choose the split position that has the least Gini index

Cheat No No No Yes Yes Yes No No No No
 Taxable Income

60 70 75 85 90 95 100 120 125 220
 55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Possible Splitting Values
Sorted Values

First decide the splitting value to discretize the attribute:

Step 1:

Step 2:

Step 3:

For each splitting value v (e.g., 65), compute its Gini index:

)(
||
||)(

||
||)(2

2
1

1
_ Dgini

D
D

Dgini
D
DDgini IncomeTaxable += Here D1 and D2 are two partitions based on v: D1 has

taxable income <=v and D2 has >v

33

Continuous Attributes:
Computing Gini Index or expected information requirement

¨ For efficient computation: for each attribute,
Step 1: Sort the attribute on values
Step 2: Linearly scan these values, each time updating the count matrix
Step 3: Computing Gini index and choose the split position that has the least Gini index

Cheat No No No Yes Yes Yes No No No No
 Taxable Income

60 70 75 85 90 95 100 120 125 220
 55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Possible Splitting Values
Sorted Values

First decide the splitting value to discretize the attribute:

Step 1:

Step 2:

Step 3:

For each splitting value v (e.g., 72), compute its Gini index:

)(
||
||)(

||
||)(2

2
1

1
_ Dgini

D
D

Dgini
D
DDgini IncomeTaxable += Here D1 and D2 are two partitions based on v: D1 has

taxable income <=v and D2 has >v

34

Continuous Attributes:
Computing Gini Index or expected information requirement

¨ For efficient computation: for each attribute,
Step 1: Sort the attribute on values
Step 2: Linearly scan these values, each time updating the count matrix
Step 3: Computing Gini index and choose the split position that has the least Gini index

Cheat No No No Yes Yes Yes No No No No
 Taxable Income

60 70 75 85 90 95 100 120 125 220
 55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Possible Splitting Values
Sorted Values

First decide the splitting value to discretize the attribute:

Step 1:

Step 2:

Step 3:

Choose this splitting value (=97) with the least Gini index to discretize Taxable Income

35

Continuous Attributes:
Computing Gini Index or expected information requirement

¨ For efficient computation: for each attribute,
Step 1: Sort the attribute on values
Step 2: Linearly scan these values, each time updating the count matrix
Step 3: Computing expected information requirement and choose the split position that has the least value

Cheat No No No Yes Yes Yes No No No No
 Taxable Income

60 70 75 85 90 95 100 120 125 220
 55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Info ? ? ? ? ? ? ? ? ? ? ?

Possible Splitting Values
Sorted Values

First decide the splitting value to discretize the attribute:

Step 1:

Step 2:

Step 3:

Similarly to calculating Gini index, for each splitting value, compute Info_{Taxable Income}:

)(
||
||

)(
2

1
j

j

j
IncomeTaxable DInfo

D
D

DInfo ´=å
=

-

If Information Gain is used
for attribute selection,

36

Continuous Attributes:
Computing Gini Index or expected information requirement

¨ For efficient computation: for each attribute,
Step 1: Sort the attribute on values
Step 2: Linearly scan these values, each time updating the count matrix
Step 3: Computing Gini index and choose the split position that has the least Gini index

Cheat No No No Yes Yes Yes No No No No
 Taxable Income

60 70 75 85 90 95 100 120 125 220
 55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Possible Splitting Values
Sorted Values

First decide the splitting value to discretize the attribute:

Step 1:

Step 2:

Step 3:

Choose this splitting value (=97 here) with the least Gini index or expected information requirement to discretize Taxable Income

37

Continuous Attributes:
Computing Gini Index or expected information requirement

¨ For efficient computation: for each attribute,
Step 1: Sort the attribute on values
Step 2: Linearly scan these values, each time updating the count matrix
Step 3: Computing Gini index and choose the split position that has the least Gini index

Cheat No No No Yes Yes Yes No No No No
 Taxable Income

60 70 75 85 90 95 100 120 125 220
 55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Possible Splitting Values
Sorted Values

First decide the splitting value to discretize the attribute:

Step 1:

Step 2:

Step 3:

At each level of the decision tree, for attribute selection, (1) First, discretize a continuous attribute by deciding the splitting value;
(2) Then, compare the discretized attribute with other attributes in terms of Gini Index reduction or Information Gain.

38

Continuous Attributes:
Computing Gini Index or expected information requirement

¨ For efficient computation: for each attribute,
Step 1: Sort the attribute on values
Step 2: Linearly scan these values, each time updating the count matrix
Step 3: Computing Gini index and choose the split position that has the least Gini index

Cheat No No No Yes Yes Yes No No No No
 Taxable Income

60 70 75 85 90 95 100 120 125 220
 55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Possible Splitting Values
Sorted Values

First decide the splitting value to discretize the attribute:

Step 1:

Step 2:

Step 3:

At each level of the decision tree, for attribute selection, (1) First, discretize a continuous attribute by deciding the splitting value;
(2) Then, compare the discretized attribute with other attributes in terms of Gini Index reduction or Information Gain.

For each attribute,
only scan the data
tuples once

39

Another Impurity Measure: Misclassification Error

¨ Classification error at a node t :

¤ P(i|t) means the relative frequency of class i at node t.

¨ Measures misclassification error made by a node.
n Maximum (1 - 1/nc) when records are equally distributed among all classes,

implying most impurity
n Minimum (0.0) when all records belong to one class, implying least impurity

)|(max1)(tiPtError
i

-=

40

Examples for Misclassification Error

C1 0
C2 6

C1 2
C2 4

C1 1
C2 5

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1

Error = 1 – max (0, 1) = 1 – 1 = 0

P(C1) = 1/6 P(C2) = 5/6

Error = 1 – max (1/6, 5/6) = 1 – 5/6 = 1/6

P(C1) = 2/6 P(C2) = 4/6

Error = 1 – max (2/6, 4/6) = 1 – 4/6 = 1/3

)|(max1)(tiPtError
i

-=

41

Comparison among Impurity Measure
For a 2-class problem:

)1,(max1 ppError --=

)1(1 22 ppGini --= -

)1log()1()log(ppppEntropy ----=

42

Other Attribute Selection Measures

¨ CHAID: a popular decision tree algorithm, measure based on χ2 test for independence

¨ C-SEP: performs better than info. gain and gini index in certain cases

¨ G-statistic: has a close approximation to χ2 distribution

¨ MDL (Minimal Description Length) principle (i.e., the simplest solution is preferred):

¤ The best tree as the one that requires the fewest # of bits to both (1) encode the
tree, and (2) encode the exceptions to the tree

¨ Multivariate splits (partition based on multiple variable combinations)

¤ CART: finds multivariate splits based on a linear comb. of attrs.

¨ Which attribute selection measure is the best?

¤ Most give good results, none is significantly superior than others

43

Decision Tree Based Classification

¨ Advantages:
¤ Inexpensive to construct
¤ Extremely fast at classifying unknown records
¤ Easy to interpret for small-sized trees
¤ Accuracy is comparable to other classification techniques for many simple

data sets

44

Example: C4.5

¨ Simple depth-first construction.
¨ Uses Information Gain Ratio
¨ Sorts Continuous Attributes at each node.
¨ Needs entire data to fit in memory.
¨ Unsuitable for Large Datasets.

¤ Needs out-of-core sorting.

¨ You can download the software online, e.g.,
http://www2.cs.uregina.ca/~dbd/cs831/notes/ml/dtrees/c4.5/tutorial.html

http://www2.cs.uregina.ca/~dbd/cs831/notes/ml/dtrees/c4.5/tutorial.html

45

Classification: Basic Concepts
¨ Classification: Basic Concepts

¨ Decision Tree Induction

¨ Model Evaluation and Selection

¨ Practical Issues of Classification

¨ Bayes Classification Methods

¨ Techniques to Improve Classification Accuracy: Ensemble Methods

¨ Summary

46

Model Evaluation

¨ Metrics for Performance Evaluation
¤ How to evaluate the performance of a model?

¨ Methods for Performance Evaluation
¤ How to obtain reliable estimates?

¨ Methods for Model Comparison
¤ How to compare the relative performance among competing models?

47

Metrics for Performance Evaluation

¨ Focus on the predictive capability of a model
¤ Rather than how fast it takes to classify or build models, scalability, etc.

¨ Confusion Matrix:

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes a b

Class=No c d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

48

Classifier Evaluation Metrics: Confusion Matrix

Actual class\Predicted class buy_computer = yes buy_computer = no Total
buy_computer = yes 6954 46 7000
buy_computer = no 412 2588 3000

Total 7366 2634 10000

¨ Given m classes, an entry, CMi,j in a confusion matrix indicates # of tuples in
class i that were labeled by the classifier as class j
¤ May have extra rows/columns to provide totals

Confusion Matrix: Actual class\Predicted
class

C1 ¬ C1

C1 True Positives (TP) False Negatives (FN)

¬ C1 False Positives (FP) True Negatives (TN)

Example of Confusion Matrix:

49

Classifier Evaluation Metrics:
Accuracy, Error Rate

¨ Classifier Accuracy, or recognition rate:
percentage of test set tuples that are
correctly classified

Accuracy = (TP + TN)/All

¨ Error rate: 1 – accuracy, or
Error rate = (FP + FN)/All

A\P C ¬C

C TP FN P

¬C FP TN N

P’ N’ All

50

Limitation of Accuracy

¨ Consider a 2-class problem
¤ Number of Class 0 examples = 9990
¤ Number of Class 1 examples = 10

¨ If a model predicts everything to be class 0,
Accuracy is 9990/10000 = 99.9 %

¤ Accuracy is misleading because model does not detect any class 1 example

51

Cost Matrix

PREDICTED CLASS

ACTUAL
CLASS

C(i|j) Class=Yes Class=No

Class=Yes C(Yes|Yes) C(No|Yes)

Class=No C(Yes|No) C(No|No)

C(i|j): Cost of misclassifying one class j example as class i

52

Computing Cost of Classification

Cost
Matrix

PREDICTED CLASS

ACTUAL
CLASS

C(i|j) + -
+ -1 100
- 1 0

Model
M1

PREDICTED CLASS

ACTUAL
CLASS

+ -
+ 150 40
- 60 250

Model
M2

PREDICTED CLASS

ACTUAL
CLASS

+ -
+ 250 45
- 5 200

Accuracy = 80%
Cost = 3910

Accuracy = 90%
Cost = 4255

53

Cost-Sensitive Measures

cba
a

pr
rp

ba
a

ca
a

++
=

+
=

+
=

+
=

2
22(F) measure-F

(r) Recall

 (p)Precision

! Precision is biased towards C(Yes|Yes) & C(Yes|No)
! Recall is biased towards C(Yes|Yes) & C(No|Yes)
! F-measure is biased towards all except C(No|No)

dwcwbwaw
dwaw

4321

41Accuracy Weighted
+++

+
=

PREDICTED CLASS

ACTUAL CLASS

Class=Yes Class=No

Class=Yes a (TP) b (FN)

Class=No c (FP) d (TN)

54

Classifier Evaluation Metrics: Sensitivity and Specificity

¨ Classifier Accuracy, or recognition rate:
percentage of test set tuples that are
correctly classified

Accuracy = (TP + TN)/All

¨ Error rate: 1 – accuracy, or
Error rate = (FP + FN)/All

A\P C ¬C

C TP FN P

¬C FP TN N

P’ N’ All

q Class Imbalance Problem:
q One class may be rare, e.g. fraud, or HIV-

positive
q Significant majority of the negative class and

minority of the positive class

q Sensitivity: True Positive recognition rate
q Sensitivity = TP/P

q Specificity: True Negative recognition rate
q Specificity = TN/N

55

Methods for Performance Evaluation

¨ How to obtain a reliable estimate of performance?

¨ Performance of a model may depend on other factors besides the
learning algorithm:
¤ Class distribution

¤ Cost of misclassification

¤ Size of training and test sets

56

Learning Curve

! Learning curve shows how accuracy
changes with varying sample size

! Requires a sampling schedule for creating
learning curve:
! Arithmetic sampling

(Langley, et al)
! Geometric sampling

(Provost et al)

Effect of small sample size:
- Bias in the estimate
- Variance of estimate

57

Methods of Estimation

¨ Holdout
¤ E.g., reserve 2/3 for training and 1/3 for testing

¨ Random subsampling
¤ Repeated holdout

¨ Cross validation
¤ Partition data into k disjoint subsets
¤ k-fold: train on k-1 partitions, test on the remaining one
¤ Leave-one-out: k=n

¨ Stratified sampling
¤ oversampling vs undersampling

¨ Bootstrap
¤ Sampling with replacement

58

Evaluating Classifier Accuracy: Holdout & Cross-Validation Methods
¨ Holdout method

¤ Given data is randomly partitioned into two independent sets
n Training set (e.g., 2/3) for model construction
n Test set (e.g., 1/3) for accuracy estimation

¤ Random sampling: a variation of holdout
n Repeat holdout k times, accuracy = avg. of the accuracies obtained

¨ Cross-validation (k-fold, where k = 10 is most popular)

¤ Randomly partition the data into k mutually exclusive subsets, each approximately equal size

¤ At i-th iteration, use Di as test set and others as training set

¤ Leave-one-out: k folds where k = # of tuples, for small sized data

¤ *Stratified cross-validation*: folds are stratified so that class dist. in each fold is approx. the same
as that in the initial data

59

Evaluating Classifier Accuracy: Bootstrap
¨ Bootstrap

¤ Works well with small data sets

¤ Samples the given training tuples uniformly with replacement
n Each time a tuple is selected, it is equally likely to be selected again and re-added to the training set

¨ Several bootstrap methods, and a common one is .632 boostrap
¤ A data set with d tuples is sampled d times, with replacement, resulting in a training set of d samples.

The data tuples that did not make it into the training set end up forming the test set. About 63.2% of
the original data end up in the bootstrap, and the remaining 36.8% form the test set (since (1 – 1/d)d

≈ e-1 = 0.368)

¤ Repeat the sampling procedure k times, overall accuracy of the model:

60

Model Evaluation

¨ Metrics for Performance Evaluation
¤ How to evaluate the performance of a model?

¨ Methods for Performance Evaluation
¤ How to obtain reliable estimates?

¨ Methods for Model Comparison
¤ How to compare the relative performance among competing models?

61

Classification: Basic Concepts
¨ Classification: Basic Concepts

¨ Decision Tree Induction

¨ Model Evaluation and Selection

¨ Practical Issues of Classification

¨ Bayes Classification Methods

¨ Techniques to Improve Classification Accuracy: Ensemble Methods

¨ Summary

This class

62

Decision Tree Induction: An Example

age?

overcast

student? credit rating?

<=30 >40

no yes yes

yes

31..40

no

fairexcellentyesno

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

q Training data set: Buys_computer
q The data set follows an example of Quinlan’s

ID3 (Playing Tennis)
q Resulting tree:

63

Algorithm for Decision Tree Induction
¨ Basic algorithm (a greedy algorithm)

¤ Tree is constructed in a top-down recursive divide-and-conquer manner

¤ At start, all the training examples are at the root
¤ Attributes are categorical (if continuous-valued, they are discretized in advance)
¤ Examples are partitioned recursively based on selected attributes
¤ Test attributes are selected on the basis of a heuristic or statistical measure (e.g.,

information gain)

¨ Conditions for stopping partitioning
¤ All samples for a given node belong to the same class
¤ There are no remaining attributes for further partitioning—majority voting is

employed for classifying the leaf
¤ There are no samples left

64

Algorithm Outline

¨ Split (node, {data tuples})
¤ A <= the best attribute for splitting the {data tuples}
¤ Decision attribute for this node <= A
¤ For each value of A, create new child node
¤ For each child node / subset:

n If one of the stopping conditions is satisfied: STOP
n Else: Split (child_node, {subset})

https://www.youtube.com/watch?v=_XhOdSLlE5c
ID3 algorithm: how it works

https://www.youtube.com/watch%3Fv=_XhOdSLlE5c

65

Attribute Selection Measure: Information Gain (ID3/C4.5)

q Select the attribute with the highest information gain
q Let pi be the probability that an arbitrary tuple in D belongs to class Ci,

estimated by |Ci, D|/|D|
q Expected information (entropy) needed to classify a tuple in D:

q Information needed (after using A to split D into v partitions) to classify D:

q Information gained by branching on attribute A

)(log)(2
1

i

m

i
i ppDInfo å

=

-=

)(
||
||

)(
1

j

v

j

j
A DInfo

D
D

DInfo ´=å
=

(D)InfoInfo(D)Gain(A) A-=

66

Attribute Selection: Information Gain
¨ Class P: buys_computer = “yes”
¨ Class N: buys_computer = “no”

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

940.0)
14
5(log

14
5)

14
9(log

14
9)5,9()(22 =--== IDInfo

694.0)2,3(
14
5

)0,4(
14
4)3,2(

14
5)(

=+

+=

I

IIDInfoage

246.0)()()(=-= DInfoDInfoageGain age

Similarly,

048.0)_(
151.0)(
029.0)(

=
=
=

ratingcreditGain
studentGain
incomeGain

67

Gain Ratio for Attribute Selection (C4.5)

¨ Information gain measure is biased towards attributes with a large
number of values

¨ C4.5 (a successor of ID3) uses gain ratio to overcome the problem
(normalization to information gain)

¤ The entropy of the partitioning, or the potential information generated by
splitting D into v partitions.

¤ GainRatio(A) = Gain(A)/SplitInfo(A) (normalizing Information Gain)

)
||
||

(log
||
||

)(2
1 D

D
D
D

DSplitInfo j
v

j

j
A ´-= å

=

68

Splitting Based on Nominal Attributes

¨ Multi-way split: Use as many partitions as distinct values.

¨ Binary split: Divides values into two subsets. Need to find optimal
partitioning.

CarType
Family

Sports

Luxury

CarType
{Family,
Luxury} {Sports}

CarType
{Sports,
Luxury} {Family}

OR

69

Measures of Node Impurity

¨ Entropy:

¤ Higher entropy => higher uncertainty, higher node impurity
¤ Why entropy is used in information gain

¨ Gini Index

¨ Misclassification error

70

Gini Index (CART, IBM IntelligentMiner)
¨ If a data set D contains examples from n classes, gini index, gini(D) is defined as

, where pj is the relative frequency of class j in D

¨ If a data set D is split on A into two subsets D1 and D2, the gini index after the split is
defined as

¨ Reduction in impurity:

¨ The attribute provides the smallest (or, the largest reduction in impurity) is
chosen to split the node.

å
=

-=
n

j
p jDgini
1
21)(

)(
||
||)(

||
||)(2

2
1

1 Dgini
D
D

Dgini
D
DDginiA +=

)()()(DginiDginiAgini A-=D
)(DginiA

71

Binary Attributes: Computing Gini Index

! Splits into two partitions
! Effect of weighing partitions:

– Prefer Larger and Purer Partitions.

B?

Yes No

Node N1 Node N2

 Parent
C1 6
C2 6

Gini = 0.500

 N1 N2
C1 5 1
C2 2 4
Gini=0.371

Gini(N1)
= 1 – (5/7)2 – (2/7)2

= 0.408

Gini(N2)
= 1 – (1/5)2 – (4/5)2

= 0.320

Gini(Children)
= 7/12 * 0.408 +

5/12 * 0.320
= 0.371

å
=

-=
n

j
p jDgini
1
21)(

weighting

72

Categorical Attributes: Computing Gini Index

¨ For each distinct value, gather counts for each class in the dataset
¨ Use the count matrix to make decisions

CarType
{Sports,
Luxury} {Family}

C1 3 1
C2 2 4
Gini 0.400

CarType

{Sports} {Family,Luxury}
C1 2 2
C2 1 5
Gini 0.419

CarType
Family Sports Luxury

C1 1 2 1
C2 4 1 1
Gini 0.393

Multi-way split
Two-way split

(find best partition of values)

73

Continuous Attributes: Computing Gini Index or Information Gain

¨ To discretize the attribute values
¤ Use Binary Decisions based on one splitting value

¨ Several Choices for the splitting value
¤ Number of possible splitting values = Number of distinct values -1

¤ Typically, the midpoint between each pair of adjacent values is considered as a
possible split point

n (ai+ai+1)/2 is the midpoint between the values of ai and ai+1

¨ Each splitting value has a count matrix associated with it
¤ Class counts in each of the partitions, A < v and A ³ v

¨ Simple method to choose best v
¤ For each v, scan the database to gather count matrix and compute its Gini index
¤ Computationally Inefficient! Repetition of work.

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Taxable
Income
> 80K?

Yes No

74

Continuous Attributes:
Computing Gini Index or expected information requirement

¨ For efficient computation: for each attribute,
Step 1: Sort the attribute on values
Step 2: Linearly scan these values, each time updating the count matrix
Step 3: Computing Gini index and choose the split position that has the least Gini index

Cheat No No No Yes Yes Yes No No No No
 Taxable Income

60 70 75 85 90 95 100 120 125 220
 55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Possible Splitting Values
Sorted Values

First decide the splitting value to discretize the attribute:

Step 1:

Step 2:

Step 3:

At each level of the decision tree, for attribute selection, (1) First, discretize a continuous attribute by deciding the splitting value;
(2) Then, compare the discretized attribute with other attributes in terms of Gini Index reduction or Information Gain.

75

Classification: Basic Concepts
¨ Classification: Basic Concepts

¨ Decision Tree Induction

¨ Model Evaluation and Selection

¨ Practical Issues of Classification

¨ Bayes Classification Methods

¨ Techniques to Improve Classification Accuracy: Ensemble Methods

¨ Summary

76

Classifier Evaluation Metrics: Confusion Matrix

Actual class\Predicted class buy_computer = yes buy_computer = no Total
buy_computer = yes 6954 46 7000
buy_computer = no 412 2588 3000

Total 7366 2634 10000

¨ Given m classes, an entry, CMi,j in a confusion matrix indicates # of tuples in
class i that were labeled by the classifier as class j
¤ May have extra rows/columns to provide totals

Confusion Matrix: Actual class\Predicted
class

C1 ¬ C1

C1 True Positives (TP) False Negatives (FN)

¬ C1 False Positives (FP) True Negatives (TN)

Example of Confusion Matrix:

77

Classifier Evaluation Metrics:
Accuracy, Error Rate

¨ Classifier Accuracy, or recognition rate:
percentage of test set tuples that are
correctly classified

Accuracy = (TP + TN)/All

¨ Error rate: 1 – accuracy, or
Error rate = (FP + FN)/All

A\P C ¬C

C TP FN P

¬C FP TN N

P’ N’ All

78

Limitation of Accuracy

¨ Consider a 2-class problem
¤ Number of Class 0 examples = 9990
¤ Number of Class 1 examples = 10

¨ If a model predicts everything to be class 0,
Accuracy is 9990/10000 = 99.9 %

¤ Accuracy is misleading because model does not detect any class 1 example

79

Cost-Sensitive Measures

cba
a

pr
rp

ba
a

ca
a

++
=

+
=

+
=

+
=

2
22(F) measure-F

(r) Recall

 (p)Precision

! Precision is biased towards C(Yes|Yes) & C(Yes|No)
! Recall is biased towards C(Yes|Yes) & C(No|Yes)
! F-measure is biased towards all except C(No|No)

dwcwbwaw
dwaw

4321

41Accuracy Weighted
+++

+
=

PREDICTED CLASS

ACTUAL CLASS

Class=Yes Class=No

Class=Yes a (TP) b (FN)

Class=No c (FP) d (TN)

80

Evaluating Classifier Accuracy: Holdout & Cross-Validation Methods
¨ Holdout method

¤ Given data is randomly partitioned into two independent sets
n Training set (e.g., 2/3) for model construction
n Test set (e.g., 1/3) for accuracy estimation

¤ Random sampling: a variation of holdout
n Repeat holdout k times, accuracy = avg. of the accuracies obtained

¨ Cross-validation (k-fold, where k = 10 is most popular)

¤ Randomly partition the data into k mutually exclusive subsets, each approximately equal size

¤ At i-th iteration, use Di as test set and others as training set

¤ Leave-one-out: k folds where k = # of tuples, for small sized data

¤ *Stratified cross-validation*: folds are stratified so that class dist. in each fold is approx. the same
as that in the initial data

81

ROC (Receiver Operating Characteristic) Curve

(False Positive Rate, True Positive Rate):

𝐹𝑃𝑅 =
𝐹𝑃
𝑁

𝑇𝑃𝑅 =
𝑇𝑃
𝑃

¨ (0,0): declare everything
to be negative class

¨ (1,1): declare everything
to be positive class

¨ (0,1): ideal

¨ Diagonal line:
¤ Random guessing
¤ Below diagonal line:

n prediction is opposite of the true class

82

Using ROC for Classification Model Comparison

¨ ROC (Receiver Operating Characteristics)
curves: for visual comparison of classification
models

¨ Originated from signal detection theory
¨ Shows the trade-off between the true

positive rate and the false positive rate
¨ The area under the ROC curve is a measure

of the accuracy of the model
¨ The closer to the diagonal line (i.e., the

closer the area is to 0.5), the less accurate is
the model

83

ROC Calculation
83

Input Prebability of Prediction Actual Class

𝑥! 0.95 Yes

𝑥" 0.85 Yes

𝑥# 0.75 No

𝑥$ 0.65 Yes

𝑥% 0.4 No

𝑥& 0.3 No

¨ Rank the test examples by prediction probability in descending order
¨ Gradually decreases the classification threshold from 1.0 to 0.0 and

calculate the true positive and false positive rate along the way

𝑝 ≥ 1.0 → Yes
𝑇𝑃𝑅 = 0.0
𝐹𝑃𝑅 = 0.0

84

ROC Calculation
84

Input Prebability of Prediction Actual Class

𝑥! 0.95 Yes

𝑥" 0.85 Yes

𝑥# 0.75 No

𝑥$ 0.65 Yes

𝑥% 0.4 No

𝑥& 0.3 No

¨ Rank the test examples by prediction probability in descending order
¨ Gradually decreases the classification threshold from 1.0 to 0.0 and

calculate the true positive and false positive rate along the way

𝑝 ≥ 0.9 → Yes
𝑇𝑃𝑅 = 0.334
𝐹𝑃𝑅 = 0.0

85

ROC Calculation
85

Input Prebability of Prediction Actual Class

𝑥! 0.95 Yes

𝑥" 0.85 Yes

𝑥# 0.75 No

𝑥$ 0.65 Yes

𝑥% 0.4 No

𝑥& 0.3 No

¨ Rank the test examples by prediction probability in descending order
¨ Gradually decreases the classification threshold from 1.0 to 0.0 and

calculate the true positive and false positive rate along the way

𝑝 ≥ 0.8 → Yes
𝑇𝑃𝑅 = 0.666
𝐹𝑃𝑅 = 0.0

86

ROC Calculation
86

Input Prebability of Prediction Actual Class

𝑥! 0.95 Yes

𝑥" 0.85 Yes

𝑥# 0.75 No

𝑥$ 0.65 Yes

𝑥% 0.4 No

𝑥& 0.3 No

¨ Rank the test examples by prediction probability in descending order
¨ Gradually decreases the classification threshold from 1.0 to 0.0 and

calculate the true positive and false positive rate along the way

𝑝 ≥ 0.7 → Yes
𝑇𝑃𝑅 = 0.666
𝐹𝑃𝑅 = 0.334

87

ROC Calculation
87

Input Prebability of Prediction Actual Class

𝑥! 0.95 Yes

𝑥" 0.85 Yes

𝑥# 0.75 No

𝑥$ 0.65 Yes

𝑥% 0.4 No

𝑥& 0.3 No

¨ Rank the test examples by prediction probability in descending order
¨ Gradually decreases the classification threshold from 1.0 to 0.0 and

calculate the true positive and false positive rate along the way

𝑝 ≥ 0.5 → Yes
𝑇𝑃𝑅 = 1.0
𝐹𝑃𝑅 = 0.334

88

ROC Calculation
88

Input Prebability of Prediction Actual Class

𝑥! 0.95 Yes

𝑥" 0.85 Yes

𝑥# 0.75 No

𝑥$ 0.65 Yes

𝑥% 0.4 No

𝑥& 0.3 No

¨ Rank the test examples by prediction probability in descending order
¨ Gradually decreases the classification threshold from 1.0 to 0.0 and

calculate the true positive and false positive rate along the way

𝑝 ≥ 0.4 → Yes
𝑇𝑃𝑅 = 1.0
𝐹𝑃𝑅 = 0.666

89

ROC Calculation
89

Input Prebability of Prediction Actual Class

𝑥! 0.95 Yes

𝑥" 0.85 Yes

𝑥# 0.75 No

𝑥$ 0.65 Yes

𝑥% 0.4 No

𝑥& 0.3 No

¨ Rank the test examples by prediction probability in descending order
¨ Gradually decreases the classification threshold from 1.0 to 0.0 and

calculate the true positive and false positive rate along the way

𝑝 ≥ 0.3 → Yes
𝑇𝑃𝑅 = 1.0
𝐹𝑃𝑅 = 1.0

90

Using ROC for Classification Model Comparison

! No model consistently outperform the
other
! M1 is better for small FPR

! M2 is better for large FPR

! Area Under the ROC curve
! Ideal:

§ Area = 1

! Random guess (diagonal line):

§ Area = 0.5

91

Classification: Basic Concepts
¨ Classification: Basic Concepts

¨ Decision Tree Induction

¨ Model Evaluation and Selection

¨ Practical Issues of Classification

¨ Bayes Classification Methods

¨ Techniques to Improve Classification Accuracy: Ensemble Methods

¨ Summary

92

Underfitting and Overfitting
Overfitting

Underfitting: when model is too simple, both training and test errors are large

Underfitting

(= Model capacity)

93

Overfitting due to Noise

Decision boundary is distorted by noise point

94

Overfitting due to Insufficient Examples

Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels of
that region

- Insufficient number of training records in the region causes the decision tree to predict the test examples
using other training records that are irrelevant to the classification task

95

Notes on Overfitting
¨ Overfitting results in decision trees that are more complex than necessary

¨ Training error no longer provides a good estimate of how well the tree
will perform on previously unseen records

¨ Need new ways for estimating errors

96

Estimating Generalization Errors

¨ Re-substitution errors: error on training (S e(t))
¨ Generalization errors: error on testing (S e’(t))

97

Estimating Generalization Errors

¨ Re-substitution errors: error on training (S e(t))
¨ Generalization errors: error on testing (S e’(t))

¨ Methods for estimating generalization errors:
¤ Optimistic approach: e’(t) = e(t)

98

Estimating Generalization Errors

¨ Re-substitution errors: error on training (S e(t))
¨ Generalization errors: error on testing (S e’(t))

¨ Methods for estimating generalization errors:
¤ Optimistic approach: e’(t) = e(t)

¤ Pessimistic approach:
n For each leaf node: e’(t) = (e(t)+0.5)
n Total errors: e’(T) = e(T) + N ´ 0.5 (N: number of leaf nodes)
n For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):

Training error = 10/1000 = 1%
Generalization error = (10 + 30´0.5)/1000 = 2.5%

99

Estimating Generalization Errors

¨ Re-substitution errors: error on training (S e(t))
¨ Generalization errors: error on testing (S e’(t))

¨ Methods for estimating generalization errors:
¤ Optimistic approach: e’(t) = e(t)

¤ Pessimistic approach:
n For each leaf node: e’(t) = (e(t)+0.5)
n Total errors: e’(T) = e(T) + N ´ 0.5 (N: number of leaf nodes)
n For a tree with 30 leaf nodes and 10 errors on training

(out of 1000 instances):
Training error = 10/1000 = 1%

Generalization error = (10 + 30´0.5)/1000 = 2.5%

¤ Reduced error pruning (REP):
n uses validation data set to estimate generalization error

100

How to Address Overfitting

¨ Pre-Pruning (Early Stopping Rule)
¤ Stop the algorithm before it becomes a fully-grown tree
¤ Typical stopping conditions for a node:

n Stop if all instances belong to the same class
n Stop if all the attribute values are the same

¤ More restrictive conditions:
n Stop if number of instances is less than some user-specified threshold
n Stop if class distribution of instances are independent of the available

features (e.g., using c 2 test)
n Stop if expanding the current node does not improve impurity

measures (e.g., Gini or information gain).

101

How to Address Overfitting…

¨ Post-pruning
¤ Grow decision tree to its entirety
¤ Trim the nodes of the decision tree in a bottom-up fashion
¤ If generalization error improves after trimming, replace sub-tree by a leaf

node.
¤ Class label of leaf node is determined from majority class of instances in the

sub-tree

102

Post-Pruning
102

Unpruned Pruned

103

Example of Post-Pruning

A?

A1

A2 A3

A4

Class = Yes 20

Class = No 10
Error = 10/30

Training Error (Before splitting) = 10/30

Pessimistic error = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting)

= (9 + 4 ´ 0.5)/30 = 11/30

PRUNE!

Class = Yes 8
Class = No 4

Class = Yes 3
Class = No 4

Class = Yes 4
Class = No 1

Class = Yes 5
Class = No 1

104

Examples of Post-pruning

¤ Optimistic error?

¤ Pessimistic error?

¤ Reduced error pruning?

C0: 11
C1: 3

C0: 2
C1: 4

C0: 14
C1: 3

C0: 2
C1: 2

Don’t prune for both cases

Don’t prune case 1, prune case 2

Case 1:

Case 2:

Depends on validation set

105

Occam’s Razor

¨ Given two models of similar generalization errors, one should prefer
the simpler model over the more complex model

¨ For complex models, there is a greater chance that it was fitted
accidentally by errors in data

¨ Therefore, one should include model complexity when evaluating a
model

106

Classification: Basic Concepts
¨ Classification: Basic Concepts

¨ Decision Tree Induction

¨ Model Evaluation and Selection

¨ Practical Issues of Classification

¨ Bayes Classification Methods

¨ Techniques to Improve Classification Accuracy: Ensemble Methods

107

Bayes’ Theorem: Basics
¨ Bayes’ Theorem:

¤ Let X be a data sample (“evidence”): class label is unknown

¤ Let H be a hypothesis that X belongs to class C

¤ Classification is to determine P(H|X), (i.e., posterior probability): the probability that the hypothesis
holds given the observed data sample X

)(/)()|()(
)()|()|(XXX

XX PHPHPP
HPHPHP ´==

108

Bayes’ Theorem: Basics
¨ Bayes’ Theorem:

¤ Let X be a data sample (“evidence”): class label is unknown

¤ Let H be a hypothesis that X belongs to class C

¤ Classification is to determine P(H|X), (i.e., posterior probability): the probability that the hypothesis
holds given the observed data sample X

¤ P(H) (prior probability): the initial probability
n E.g., X will buy computer, regardless of age, income, …

)(/)()|()(
)()|()|(XXX

XX PHPHPP
HPHPHP ´==

109

Bayes’ Theorem: Basics
¨ Bayes’ Theorem:

¤ Let X be a data sample (“evidence”): class label is unknown

¤ Let H be a hypothesis that X belongs to class C

¤ Classification is to determine P(H|X), (i.e., posterior probability): the probability that the hypothesis
holds given the observed data sample X

¤ P(H) (prior probability): the initial probability
n E.g., X will buy computer, regardless of age, income, …

¤ P(X): probability that sample data is observed

)(/)()|()(
)()|()|(XXX

XX PHPHPP
HPHPHP ´==

110

Bayes’ Theorem: Basics
¨ Bayes’ Theorem:

¤ Let X be a data sample (“evidence”): class label is unknown

¤ Let H be a hypothesis that X belongs to class C

¤ Classification is to determine P(H|X), (i.e., posterior probability): the probability that the hypothesis
holds given the observed data sample X

¤ P(H) (prior probability): the initial probability
n E.g., X will buy computer, regardless of age, income, …

¤ P(X): probability that sample data is observed

¤ P(X|H) (likelihood): the probability of observing the sample X, given that the hypothesis holds
n E.g., Given that X will buy computer, the prob. that X is 31..40, medium income

)(/)()|()(
)()|()|(XXX

XX PHPHPP
HPHPHP ´==

111

Prediction Based on Bayes’ Theorem
¨ Given training data X, posterior probability of a hypothesis H, P(H|X), follows the

Bayes’ theorem

¨ Informally, this can be viewed as

posterior = likelihood x prior/evidence

¨ Predicts X belongs to Ci iff the probability P(Ci|X) is the highest among all the
P(Ck|X) for all the k classes

¨ Practical difficulty: It requires initial knowledge of many probabilities, involving
significant computational cost

)(/)()|()(
)()|()|(XXX

XX PHPHPP
HPHPHP ´==

112

Classification Is to Derive the Maximum A Posteriori
¨ Let D be a training set of tuples and their associated class labels, and

each tuple is represented by an n-dimensional attribute vector X = (x1,
x2, …, xn)

¨ Suppose there are m classes C1, C2, …, Cm.

¨ Classification is to derive the maximum a posteriori, i.e., the maximal
P(Ci|X)

113

Classification Is to Derive the Maximum Posteriori
¨ Let D be a training set of tuples and their associated class labels, and each

tuple is represented by an n-dimensional attribute vector X = (x1, x2, …, xn)

¨ Suppose there are m classes C1, C2, …, Cm.

¨ Classification is to derive the maximum posteriori, i.e., the maximal P(Ci|X)

¨ This can be derived from Bayes’ theorem

¨ Since P(X) is constant for all classes, only

needs to be maximized

)(
)()|(

)|(X
X

X P
iCPiCP

iCP =

)()|()|(iCPiCPiCP XX =

114

Naïve Bayes Classifier (why Naïve? :-)

¨ A simplifying assumption: attributes are conditionally independent (i.e.,
no dependence relation between attributes):

¨ This greatly reduces the computation cost: Only counts the per-class
distributions

)|(...)|()|(
1

)|()|(
21

CixPCixPCixP
n

k
CixPCiP

nk
´´´=Õ

=
=X

114

115

Naïve Bayes Classifier

¨ A simplifying assumption: attributes are conditionally independent (i.e.,
no dependence relation between attributes):

¨ This greatly reduces the computation cost: Only counts the per-class
distributions

¨ If Ak is categorical, P(xk|Ci) is the # of tuples in Ci having value xk for
Ak divided by |Ci, D| (# of tuples in Ci)

)|(...)|()|(
1

)|()|(
21

CixPCixPCixP
n

k
CixPCiP

nk
´´´=Õ

=
=X

115

116

Naïve Bayes Classifier

¨ A simplifying assumption: attributes are conditionally independent (i.e.,
no dependence relation between attributes):

¨ If Ak is continous-valued, P(xk|Ci) is usually computed based on Gaussian
distribution with sample mean μ and standard deviation σ

and P(xk|Ci) is

)|(...)|()|(
1

)|()|(
21

CixPCixPCixP
n

k
CixPCiP

nk
´´´=Õ

=
=X

2

2

2
)(

2
1),,(s

µ

sp
sµ

-
-

=
x

exg

116

),,()|(
ii CCkk xgCixP sµ=

117

Naïve Bayes Classifier

¨ A simplifying assumption: attributes are conditionally independent (i.e.,
no dependence relation between attributes):

¨ If Ak is continuous-valued, P(xk|Ci) is usually computed based on
Gaussian distribution with a mean μ and standard deviation σ

and P(xk|Ci) is

)|(...)|()|(
1

)|()|(
21

CixPCixPCixP
n

k
CixPCiP

nk
´´´=Õ

=
=X

2

2

2
)(

2
1),,(s

µ

sp
sµ

-
-

=
x

exg

117

),,()|(
ii CCkk xgCixP sµ=

Here, mean μ and standard deviation σ are estimated based on the values of
attribute Ak for training tuples of class Ci.

118

Naïve Bayes Classifier: Training Dataset

Class:
C1:buys_computer = ‘yes’
C2:buys_computer = ‘no’

Data to be classified:
X = (age <=30, Income = medium,
Student = yes, Credit_rating = Fair)

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

119

Naïve Bayes Classifier: An Example
¨ Prior probability P(Ci):

P(buys_computer = “yes”) = 9/14 = 0.643
P(buys_computer = “no”) = 5/14= 0.357

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

120

Naïve Bayes Classifier: An Example
¨ P(Ci): P(buys_computer = “yes”) = 9/14 = 0.643

P(buys_computer = “no”) = 5/14= 0.357

¨ Compute P(X|Ci) for each class, where,
X = (age <=30, Income = medium, Student = yes, Credit_rating = Fair)

According to “the naïve assumption”, first get:
P(age = “<=30”|buys_computer = “yes”) = 2/9 = 0.222

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

121

Naïve Bayes Classifier: An Example
¨ P(Ci): P(buys_computer = “yes”) = 9/14 = 0.643

P(buys_computer = “no”) = 5/14= 0.357

¨ Compute P(X|Ci) for each class, where,
X = (age <=30, Income = medium, Student = yes, Credit_rating = Fair)

According to “the naïve assumption”, first get:
P(age = “<=30”|buys_computer = “yes”) = 2/9 = 0.222
P(age = “<= 30”|buys_computer = “no”) = 3/5 = 0.6
P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444
P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4
P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667
P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2
P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667
P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

122

Naïve Bayes Classifier: An Example
¨ P(Ci): P(buys_computer = “yes”) = 9/14 = 0.643

P(buys_computer = “no”) = 5/14= 0.357
¨ Compute P(Xi|Ci) for each class

P(age = “<=30”|buys_computer = “yes”) = 2/9 = 0.222
P(age = “<= 30”|buys_computer = “no”) = 3/5 = 0.6
P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444
P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4
P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667
P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2
P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667
P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

¨ X = (age <= 30 , income = medium, student = yes, credit_rating = fair)
P(X|Ci) : P(X|buys_computer = “yes”) = P(age = “<=30”|buys_computer = “yes”) x P(income =

“medium” | buys_computer = “yes”) x P(student = “yes” | buys_computer = “yes) x P(credit_rating
= “fair” | buys_computer = “yes”) = 0.044

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

123

Naïve Bayes Classifier: An Example
¨ P(Ci): P(buys_computer = “yes”) = 9/14 = 0.643

P(buys_computer = “no”) = 5/14= 0.357
¨ Compute P(Xi|Ci) for each class

P(age = “<=30”|buys_computer = “yes”) = 2/9 = 0.222
P(age = “<= 30”|buys_computer = “no”) = 3/5 = 0.6
P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444
P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4
P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667
P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2
P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667
P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

¨ X = (age <= 30 , income = medium, student = yes, credit_rating = fair)
P(X|Ci) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044

P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019

P(X|Ci)*P(Ci) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028
P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

Take into account the prior
probabilities

124

Naïve Bayes Classifier: An Example
¨ P(Ci): P(buys_computer = “yes”) = 9/14 = 0.643

P(buys_computer = “no”) = 5/14= 0.357
¨ Compute P(Xi|Ci) for each class

P(age = “<=30”|buys_computer = “yes”) = 2/9 = 0.222
P(age = “<= 30”|buys_computer = “no”) = 3/5 = 0.6
P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444
P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4
P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667
P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2
P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667
P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

¨ X = (age <= 30 , income = medium, student = yes, credit_rating = fair)
P(X|Ci) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044

P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019
P(X|Ci)*P(Ci) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028

P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007
Since Red > Blue here, X belongs to class (“buys_computer = yes”)

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

125

Avoiding the Zero-Probability Problem
¨ Naïve Bayesian prediction requires each conditional prob. be non-zero. Otherwise,

the predicted prob. will be zero

¨ Ex. Suppose a dataset with 1000 tuples, income=low (0), income= medium (990),
and income = high (10)

¨ Use Laplacian correction (or Laplacian estimator)
¤ Adding 1 to each case

Prob(income = low) = 1/1003
Prob(income = medium) = 991/1003
Prob(income = high) = 11/1003

¤ Assumption: dataset is large enough such that adding 1 would only make a negligible difference in
the estimated probability values

¤ The “corrected” prob. estimates are close to their “uncorrected” counterparts

Õ
=

=
n

k
CixkPCiXP

1
)|()|(

126

Naïve Bayes Classifier

¨ If Ak is continuous-valued, P(xk|Ci) is usually computed based on
Gaussian distribution with a mean μ and standard deviation σ

and P(xk|Ci) is

2

2

2
)(

2
1),,(s

µ

sp
sµ

-
-

=
x

exg

126

),,()|(
ii CCkk xgCixP sµ=

Here, mean μ and standard deviation σ are estimated based on the values of
attribute Ak for training tuples of class Ci.

Ex. Let X = (35, $40K), where A1 and A2 are the attribute age and income, class label
is buys_computer.
To calculate P(age = 35 | buys_computer = yes)
1. Estimate the mean and standard deviation of the age attribute for customers in D who
buy a computer. Let us say μ = 38 and σ =12.
2. calculate the probability with equation (1).

(1)

127

Naïve Bayes Classifier: Comments
¨ Advantages

¤ Easy to implement
¤ Good results obtained in most of the cases

¨ Disadvantages
¤ Assumption: class conditional independence, therefore loss of accuracy
¤ Practically, dependencies exist among variables

n E.g., hospitals: patients: Profile: age, family history, etc.
Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.

n Dependencies among these cannot be modeled by Naïve Bayes Classifier

¨ How to deal with these dependencies? Bayesian Belief Networks (Chapter 9 in Han
et al.)

128

Classification: Basic Concepts
¨ Classification: Basic Concepts

¨ Decision Tree Induction

¨ Model Evaluation and Selection

¨ Practical Issues of Classification

¨ Bayes Classification Methods

¨ Techniques to Improve Classification Accuracy: Ensemble Methods

129

Ensemble Methods: Increasing the Accuracy

¨ Ensemble methods
¤ Use a combination of models to increase accuracy
¤ Combine a series of k learned models, M1, M2, …, Mk, with the

aim of creating an improved model M*

130

Ensemble Methods: Increasing the Accuracy

¨ Ensemble methods
¤ Use a combination of models to increase accuracy
¤ Combine a series of k learned models, M1, M2, …, Mk, with the aim of creating

an improved model M*

¨ Popular ensemble methods
¤ Bagging: averaging the prediction over a collection of classifiers
¤ Boosting: weighted vote with a collection of classifiers
¤ Random forests: Imagine that each of the classifiers in the ensemble is a decision

tree classifier so that the collection of classifiers is a “forest”

131

Bagging: Boostrap Aggregation
¨ Analogy: Diagnosis based on multiple doctors’ majority vote
¨ Training

¤ Given a set D of d tuples, at each iteration i, a training set Di of d tuples is sampled
with replacement from D (i.e., bootstrap)

¤ A classifier model Mi is learned for each training set Di

¨ Classification: classify an unknown sample X
¤ Each classifier Mi returns its class prediction
¤ The bagged classifier M* counts the votes and assigns the class with the most votes

to X
¨ Regression: can be applied to the prediction of continuous values by taking the

average value of each prediction for a given test tuple
¨ Accuracy: Proved improved accuracy in prediction

¤ Often significantly better than a single classifier derived from D
¤ For noise data: not considerably worse, more robust

132

Boosting
¨ Analogy: Consult several doctors, based on a combination of weighted diagnoses—

weight assigned based on the previous diagnosis accuracy

¨ How boosting works?
¤ Weights are assigned to each training tuple
¤ A series of k classifiers is iteratively learned
¤ After a classifier Mi is learned, the weights are updated to allow the subsequent

classifier, Mi+1, to pay more attention to the training tuples that were
misclassified by Mi

¤ The final M* combines the votes of each individual classifier, where the weight
of each classifier's vote is a function of its accuracy

¨ Boosting algorithm can be extended for numeric prediction
¨ Comparing with bagging: Boosting tends to have greater accuracy, but it also risks

overfitting the model to misclassified data

133

Adaboost (Freund and Schapire, 1997)
¨ Given a set of d class-labeled tuples, (X1, y1), …, (Xd, yd)
¨ Initially, all the weights of tuples are set the same (1/d)
¨ Generate k classifiers in k rounds. At round i,

¤ Tuples from D are sampled (with replacement) to form a training set Di of the
same size

¤ Each tuple’s chance of being selected is based on its weight
¤ A classification model Mi is derived from Di

¤ Its error rate is calculated using Di as a test set
¤ If a tuple is misclassified, its weight is increased, o.w. it is decreased

¨ Error rate: err(Xj) is the misclassification error of tuple Xj. Classifier Mi error
rate is the sum of the weights of the misclassified tuples:

¨ The weight of classifier Mi’s vote is
)(
)(1log

i

i

Merror
Merror-

å ´=
d

j
ji errwMerror)()(jX

134

Random Forest (Breiman 2001)

¨ Random Forest:
¤ Each classifier in the ensemble is a decision tree classifier and is generated using a

random selection of attributes at each node to determine the split
¤ During classification, each tree votes and the most popular class is returned

¨ Two Methods to construct Random Forest:
¤ Forest-RI (random input selection): Randomly select, at each node, F attributes as

candidates for the split at the node. The CART methodology is used to grow the
trees to maximum size

¤ Forest-RC (random linear combinations): Creates new attributes (or features) that
are a linear combination of the existing attributes (reduces the correlation between
individual classifiers)

¨ Comparable in accuracy to Adaboost, but more robust to errors and outliers
¨ Insensitive to the number of attributes selected for consideration at each split, and

faster than bagging or boosting

135

Classification of Class-Imbalanced Data Sets
¨ Class-imbalance problem: Rare positive example but numerous negative

ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc.

¨ Traditional methods assume a balanced distribution of classes and equal
error costs: not suitable for class-imbalanced data

x

xx

x
xx

x

x
x

x
o

o
oo

x
x x

x
x

x
x

xx
x

x

xx

x x

x

x

q Typical methods in two-class classification:

q Oversampling: re-sampling of data from positive class

q Under-sampling: randomly eliminate tuples from negative class

q Threshold-moving: move the decision threshold, t, so that the rare
class tuples are easier to classify, and hence, less chance of costly
false negative errors

q Ensemble techniques: Ensemble multiple classifiers

q Still difficult for class imbalance problem on multiclass tasks

