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Chapter 7 : Advanced Frequent Pattern Mining

¨ Mining Diverse Patterns

¨ Constraint-Based Frequent Pattern Mining

¨ Sequential Pattern Mining

¨ Graph Pattern Mining

¨ Pattern Mining Application: Mining Software Copy-and-Paste Bugs

¨ Summary
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Mining Diverse Patterns

¨ Mining Multiple-Level Associations

¨ Mining Multi-Dimensional Associations

¨ Mining Negative Correlations

¨ Mining Compressed and Redundancy-Aware Patterns
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Mining Multiple-Level Frequent Patterns
¨ Items often form hierarchies

¤ Ex.:  Dairyland 2% milk; 
Wonder wheat bread

¨ How to set min-support 
thresholds?

Uniform support

Level 1
min_sup = 5%

Level 2
min_sup = 5%

Milk
[support = 10%]

2% Milk 
[support = 6%]

Skim Milk 
[support = 2%]

q Uniform min-support across multiple levels (reasonable?)
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Mining Multiple-Level Frequent Patterns
¨ Items often form hierarchies

¤ Ex.:  Dairyland 2% milk; 
Wonder wheat bread

¨ How to set min-support 
thresholds?

Uniform support

Level 1
min_sup = 5%

Level 2
min_sup = 5%

Level 1
min_sup = 5%

Level 2
min_sup = 1%

Reduced support
Milk

[support = 10%]

2% Milk 
[support = 6%]

Skim Milk 
[support = 2%]

q Uniform min-support across multiple levels (reasonable?)

q Level-reduced min-support:  Items at the lower level are expected to 
have lower support
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ML/MD Associations with Flexible Support Constraints

¨ Why flexible support constraints?
¤ Real life occurrence frequencies vary greatly

n Diamond, watch, pens in a shopping basket

¤ Uniform support may not be an interesting model

¨ A flexible model
¤ The lower-level, the more dimension combination, and the longer pattern length, usually the 

smaller support

¤ General rules should be easy to specify and understand

¤ Special items and special group of items may be specified individually and have higher 
priority
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Multi-level Association: Redundancy Filtering

¨ Some rules may be redundant due to “ancestor” relationships between 
items.

¨ Example
¤ milk Þ wheat bread [support = 8%, confidence = 70%]

¤ 2% milk Þ wheat bread [support = 2%, confidence = 72%]

¤ Given the 2% milk sold is about ¼ of milk sold

¨ We say the first rule is an ancestor of the second rule.

¨ A rule is redundant if its support and confidence are close to the 
“expected” value, based on the rule’s ancestor.
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Mining Multi-Dimensional Associations
¨ Single-dimensional rules (e.g., items are all in “product” dimension)

¤ buys(X, “milk”) Þ buys(X, “bread”)

¨ Multi-dimensional rules (i.e., items in ³ 2 dimensions or predicates)

¤ Inter-dimension association rules (no repeated predicates)

n age(X, “18-25”) Ù occupation(X, “student”) Þ buys(X, “coke”)

¤ Hybrid-dimension association rules (repeated predicates)

n age(X, “18-25”) Ù buys(X, “popcorn”) Þ buys(X, “coke”)
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Mining Rare Patterns vs. Negative Patterns
¨ Rare patterns

¤ Very low support but interesting (e.g., buying Rolex watches)

¤ How to mine them? Setting individualized, group-based min-support 
thresholds for different groups of items
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Mining Rare Patterns vs. Negative Patterns
¨ Rare patterns

¤ Very low support but interesting (e.g., buying Rolex watches)

¤ How to mine them? Setting individualized, group-based min-support 
thresholds for different groups of items

¨ Negative patterns

¤ Negatively correlated: Unlikely to happen together

¤ Ex.:  Since it is unlikely that the same customer buys both a Ford 
Expedition (an SUV car) and a Ford Fusion (a hybrid car), buying a 
Ford Expedition and buying a Ford Fusion are likely negatively 
correlated patterns

¤ How to define negative patterns?
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Defining Negatively Correlated Patterns
¨ A (relative) support-based definition 

¤ If itemsets A and B are both frequent but rarely occur together, i.e.,  sup(A U B) << sup 
(A) × sup(B)

¤ Then A and B are negatively correlated
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Defining Negative Correlated Patterns
¨ A (relative) support-based definition 

¤ If itemsets A and B are both frequent but rarely occur together, i.e.,  sup(A U B) << sup 
(A) × sup(B)

¤ Then A and B are negatively correlated

¨ Is this a good definition for large transaction datasets? 
Does this remind you the definition of lift?
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Defining Negative Correlated Patterns
¨ A (relative) support-based definition 

¤ If itemsets A and B are both frequent but rarely occur together, i.e.,  sup(A U B) << sup 
(A) × sup(B)

¤ Then A and B are negatively correlated

¨ Is this a good definition for large transaction datasets? 

¨ Ex.:   Suppose a store sold two needle packages A and B 100 times each, but only one 
transaction contained both A and B

¤ When there are in total 200 transactions, we have 
n s(A U B) = 0.005, s(A) × s(B) = 0.25, s(A U B) << s(A) × s(B)

¤ But when there are 105 transactions, we have
n s(A U B) = 1/105, s(A) × s(B) = 1/103 × 1/103, s(A U B) > s(A) × s(B)

Does this remind you the definition of lift?
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Defining Negative Correlated Patterns
¨ A (relative) support-based definition 

¤ If itemsets A and B are both frequent but rarely occur together, i.e.,  sup(A U B) << sup 
(A) × sup(B)

¤ Then A and B are negatively correlated

¨ Is this a good definition for large transaction datasets? 

¨ Ex.:   Suppose a store sold two needle packages A and B 100 times each, but only one 
transaction contained both A and B

¤ When there are in total 200 transactions, we have 
n s(A U B) = 0.005, s(A) × s(B) = 0.25, s(A U B) << s(A) × s(B)

¤ But when there are 105 transactions, we have
n s(A U B) = 1/105, s(A) × s(B) = 1/103 × 1/103, s(A U B) > s(A) × s(B)

¤ What is the problem?—Null transactions: The support-based definition is not null-
invariant!

Does this remind you the definition of lift?
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Defining Negative Correlation:  
Need Null-Invariance in Definition
¨ A good definition on negative correlation should take care of the null-invariance problem

¤ Whether two itemsets A and B are negatively correlated should not be influenced by the 
number of null-transactions 

Which measure should we use? 
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Defining Negative Correlation:  
Need Null-Invariance in Definition
¨ A good definition on negative correlation should take care of the null-invariance problem

¤ Whether two itemsets A and B are negatively correlated should not be influenced by the 
number of null-transactions 
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Chapter 7 : Advanced Frequent Pattern Mining

¨ Mining Diverse Patterns

¨ Constraint-Based Frequent Pattern Mining

¨ Sequential Pattern Mining

¨ Graph Pattern Mining

¨ Pattern Mining Application: Mining Software Copy-and-Paste Bugs

¨ Summary
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Constraint-based Data Mining

¨ Finding all the patterns in a database autonomously? — unrealistic!
¤ The patterns could be too many but not focused!
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Constraint-based Data Mining

¨ Finding all the patterns in a database autonomously? — unrealistic!
¤ The patterns could be too many but not focused!

¨ Data mining should be an interactive process 
¤ User directs what to be mined using a data mining query language (or a 

graphical user interface)
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Constraint-based Data Mining

¨ Finding all the patterns in a database autonomously? — unrealistic!
¤ The patterns could be too many but not focused!

¨ Data mining should be an interactive process 
¤ User directs what to be mined using a data mining query language (or a 

graphical user interface)

¨ Constraint-based mining
¤ User flexibility: provides constraints on what to be mined
¤ System optimization: explores such constraints for efficient mining—constraint-

based mining
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Categories of Constraints
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Categories of Constraints
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Constrained Frequent Pattern Mining: A Mining Query 
Optimization Problem
¨ Given a frequent pattern mining query with a set of constraints C, the algorithm 

should be
¤ sound: it only finds frequent sets that satisfy the given constraints C
¤ complete: all frequent sets satisfying the given constraints C are found
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Constrained Frequent Pattern Mining: A Mining Query 
Optimization Problem
¨ Given a frequent pattern mining query with a set of constraints C, the algorithm 

should be
¤ sound: it only finds frequent sets that satisfy the given constraints C
¤ complete: all frequent sets satisfying the given constraints C are found

¨ A naïve solution
¤ First find all frequent sets, and then test them for constraint satisfaction
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The Apriori Algorithm — Example

TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

Database D itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

Scan D

C1
L1

itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2
C2 C2

Scan D

C3 L3itemset
{2 3 5}

Scan D itemset sup
{2 3 5} 2



26

Naïve Algorithm: Apriori + Constraint (Naïve Solution) 

TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

Database D itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

Scan D

C1
L1

itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2
C2 C2

Scan D

C3 L3itemset
{2 3 5}

Scan D itemset sup
{2 3 5} 2

Constraint: 
Sum(S.price) < 5
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Constrained Frequent Pattern Mining: A Mining Query 
Optimization Problem
¨ Given a frequent pattern mining query with a set of constraints C, the algorithm 

should be
¤ sound: it only finds frequent sets that satisfy the given constraints C
¤ complete: all frequent sets satisfying the given constraints C are found

¨ A naïve solution
¤ First find all frequent sets, and then test them for constraint satisfaction

¨ More efficient approaches:
¤ Analyze the properties of constraints comprehensively
¤ Push them as deeply as possible inside the frequent pattern computation.
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Anti-Monotonicity in Constraint-Based Mining

¨ Anti-monotonicity
¤ When an itemset S violates the constraint, so does any of 

its superset 

¤ sum(S.Price) £ v is anti-monotonic?

¤ sum(S.Price) ³ v is anti-monotonic?
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Anti-Monotonicity in Constraint-Based Mining

¨ Anti-monotonicity
¤ When an itemset S violates the constraint, so does any of 

its superset 

¤ sum(S.Price) £ v is anti-monotonic

¤ sum(S.Price) ³ v is not anti-monotonic
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Anti-Monotonicity in Constraint-Based Mining

¨ Anti-monotonicity
¤ When an itemset S violates the constraint, so does any of 

its superset 

¤ sum(S.Price) £ v is anti-monotonic

¤ sum(S.Price) ³ v is not anti-monotonic

¨ Example. C: range(S.profit) £ 15 is anti-monotonic
¤ Define range(S.profit) = max(S.profit) – min(S.profit)

¤ Itemset ab violates C

¤ So does every superset of ab

TID Transaction
10 a, b, c, d, f
20 b, c, d, f, g, h
30 a, c, d, e, f
40 c, e, f, g

TDB (min_sup=2)

Item Profit
a 40
b 0
c -20
d 10
e -30
f 30
g 20
h -10
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Which Constraints Are Anti-Monotonic?

Constraint Anti-monotonic?

v Î S no
S Ê V no

S Í V yes
min(S) £ v no

min(S) ³ v yes
max(S) £ v yes

max(S) ³ v no
count(S) £ v yes 

count(S) ³ v no

sum(S) £ v ( a  Î S, a ³ 0 ) yes
sum(S) ³ v ( a  Î S, a ³ 0 ) no

range(S) £ v yes
range(S) ³ v no

avg(S) q v, q Î { =,  £,  ³ } convertible
support(S) ³ x yes

support(S) £ x no
Practice offline
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Monotonicity in Constraint-Based Mining

¨ Monotonicity

¤ When an intemset S satisfies the constraint, 
so does any of its superset 

¤ sum(S.Price) ³ v is ?

¤ min(S.Price) £ v  is ?
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Monotonicity in Constraint-Based Mining

¨ Monotonicity

¤ When an intemset S satisfies the constraint, 
so does any of its superset 

¤ sum(S.Price) ³ v is monotonic

¤ min(S.Price) £ v  is monotonic
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Monotonicity in Constraint-Based Mining

¨ Monotonicity

¤ When an intemset S satisfies the constraint, 
so does any of its superset 

¤ sum(S.Price) ³ v is monotonic

¤ min(S.Price) £ v  is monotonic

¨ Example. C: range(S.profit) ³ 15

¤ Itemset ab satisfies C

¤ So does every superset of ab

TID Transaction
10 a, b, c, d, f
20 b, c, d, f, g, h
30 a, c, d, e, f
40 c, e, f, g

TDB (min_sup=2)

Item Profit
a 40

b 0

c -20

d 10

e -30

f 30

g 20

h -10
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Which Constraints Are Monotonic?

Constraint Monotonic
v Î S yes
S Ê V yes

S Í V no
min(S) £ v yes

min(S) ³ v no
max(S) £ v no

max(S) ³ v yes
count(S) £ v no

count(S) ³ v yes

sum(S) £ v ( a  Î S, a ³ 0 ) no
sum(S) ³ v ( a  Î S, a ³ 0 ) yes

range(S) £ v no
range(S) ³ v yes

avg(S) q v, q Î { =,  £,  ³ } convertible
support(S) ³ x no

support(S) £ x yes

Practice offline
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The Apriori Algorithm — Example

TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

Database D itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

Scan D

C1
L1

itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2
C2 C2

Scan D

C3 L3itemset
{2 3 5}

Scan D itemset sup
{2 3 5} 2
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Naïve Algorithm: Apriori + Constraint 

TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

Database D itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

Scan D

C1
L1

itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2
C2 C2

Scan D

C3 L3itemset
{2 3 5}

Scan D itemset sup
{2 3 5} 2

Constraint: 
Sum(S.price) < 5



38

Pushing the constraint deep into the process

TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

Database D itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

Scan D

C1
L1

itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2
C2 C2

Scan D

C3 L3itemset
{2 3 5}

Scan D itemset sup
{2 3 5} 2

Constraint: 
Sum(S.price) < 5

Why?
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Converting “Tough” Constraints

¨ Convert tough constraints into anti-monotonic or monotonic ones by 
properly ordering items
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Converting “Tough” Constraints

¨ Convert tough constraints into anti-monotonic or monotonic ones by 
properly ordering items

¨ Examine C: avg(S.profit) ³ 25
¤ Order items in value-descending order

n <a, f, g, d, b, h, c, e>

¤ If an itemset afb violates C
n So does afbh, afb*

n It becomes anti-monotonic!
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Converting “Tough” Constraints

¨ Convert tough constraints into anti-monotonic 
or monotonic by properly ordering items

¨ Examine C: avg(S.profit) ³ 25
¤ Order items in value-descending order

n <a, f, g, d, b, h, c, e>

¤ If an itemset afb violates C
n So does afbh, afb*

n It becomes anti-monotonic!

TID Transaction
10 a, b, c, d, f
20 b, c, d, f, g, h
30 a, c, d, e, f
40 c, e, f, g

TDB (min_sup=2)

Item Profit
a 40
b 0
c -20
d 10
e -30
f 30
g 20
h -10
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Convertible Constraints
¨ Let R be an order of items

¨ Convertible anti-monotonic
¤ If an itemset S violates a constraint C, so does every itemset having S as a 

prefix w.r.t. R

¤ Ex. avg(S) ³ v w.r.t. item value descending order
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Convertible Constraints
¨ Let R be an order of items

¨ Convertible anti-monotonic
¤ If an itemset S violates a constraint C, so does every itemset having S as a prefix 

w.r.t. R
¤ Ex. avg(S) ³ v w.r.t. item value descending order

¨ Convertible monotonic
¤ If an itemset S satisfies constraint C, so does every itemset having S as a prefix w.r.t. 

R
¤ Ex. avg(S) £ v w.r.t. item value descending order
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Strongly Convertible Constraints

¨ avg(X) ³ 25 is convertible anti-monotonic w.r.t. item 
value descending order R: <a, f, g, d, b, h, c, e>
¤ If an itemset af violates a constraint C, so does every 

itemset with af as prefix, such as afd

¨ avg(X) ³ 25 is convertible monotonic w.r.t. item value 
ascending order R-1: <e, c, h, b, d, g, f, a>
¤ If an itemset d satisfies a constraint C, so does itemsets df

and dfa, which having d as a prefix

¨ Thus, avg(X) ³ 25 is strongly convertible

Item Profit
a 40
b 0
c -20
d 10
e -30
f 30
g 20
h -10
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What Constraints Are Convertible?

Constraint Convertible 
anti-monotonic

Convertible 
monotonic

Strongly 
convertible

avg(S) £ , ³ v Yes Yes Yes

median(S) £ , ³ v Yes Yes Yes

sum(S) £ v (items could be of any 
value, v > 0) Yes No No

sum(S) £ v (items could be of any 
value, v < 0) No Yes No

sum(S) ³ v (items could be of any 
value, v > 0) No Yes No

sum(S) ³ v (items could be of any 
value, v < 0) Yes No No

……

Why?
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Combining Them Together—A General Picture

Constraint Antimonotonic Monotonic Succinct
v Î S no yes yes
S Ê V no yes yes

S Í V yes no yes
min(S) £ v no yes yes

min(S) ³ v yes no yes
max(S) £ v yes no yes

max(S) ³ v no yes yes
count(S) £ v yes no weakly

count(S) ³ v no yes weakly

sum(S) £ v ( a  Î S, a ³ 0 ) yes no no
sum(S) ³ v ( a  Î S, a ³ 0 ) no yes no

range(S) £ v yes no no
range(S) ³ v no yes no

avg(S) q v, q Î { =,  £,  ³ } convertible convertible no
support(S) ³ x yes no no

support(S) £ x no yes no
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Classification of Constraints

Convertible
Anti-monotonic

Convertible
Monotonic

Strongly
Converti-
ble

Inconvertible

Anti-monotonic Monotonic
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Mining With Convertible Constraints

¨ C: avg(S.profit) ³ 25

¨ Scan transaction DB once
¤ remove infrequent 1-itemsets

n Item h in transaction 40 is dropped

¤ Itemsets a and f are good

TID Transaction
10 a, f, d, b, c
20 f, g, d, b, c
30 a, f, d, c, e
40 f, g, h, c, e

TDB (min_sup=2)

Item Profit
a 40
f 30
g 20
d 10
b 0
h -10
c -20
e -30
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Can Apriori Handle Convertible Constraint?

¨ A convertible, not monotonic nor anti-monotonic constraint cannot 
be pushed deep into the an Apriori mining algorithm
¤ Within the level wise framework, no direct pruning based on the constraint 

can be made

¤ Itemset {d} violates constraint C: avg(X)>=25

¤Can we just prune {d} and not consider it 
afterwards? 

Item Value
a 40
b 0
c -20
d 10
e -30
f 30
g 20
h -10
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Can Apriori Handle Convertible Constraint?

¨ A convertible, not monotonic nor anti-monotonic constraint cannot 
be pushed deep into the an Apriori mining algorithm
¤ Within the level wise framework, no direct pruning based on the constraint 

can be made

¤ Itemset {d} violates constraint C: avg(X)>=25

¤ Since {ad} satisfies C, Apriori needs {d} to assemble {ad};  
{d} cannot be pruned

¨ But it can be pushed into frequent-pattern growth framework!

Item Value
a 40
b 0
c -20
d 10
e -30
f 30
g 20
h -10
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Mining With Convertible Constraints in FP-Growth Framework

¨ C: avg(X)>=25, min_sup=2

¨ List items in every transaction in value descending order 
R: <a, f, g, d, b, h, c, e>
¤ C is convertible anti-monotonic w.r.t. R

¨ Scan TDB once
¤ remove infrequent items

n Item h is dropped

¤ Itemsets a and f are good, …

¨ Projection-based mining
¤ Imposing an appropriate order on pattern growth

¤ Many tough constraints can be converted into (anti)-monotonic

TID Transaction
10 a, f, d, b, c
20 f, g, d, b, c
30 a, f, d, c, e
40 f, g, h, c, e

TDB (min_sup=2)

Item Value
a 40
f 30
g 20
d 10
b 0
h -10
c -20
e -30
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Mining With Convertible Constraints in FP-Growth Framework

Constrained Frequent Pattern Mining: A 
Pattern-Growth View

Jian Pei, Jiawei Han, SIGKDD 2002

Item Value
a 40
f 30
g 20
d 10
b 0
h -10
c -20
e -30

Growing patterns in 
R order
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Handling Multiple Constraints
¨ Different constraints may require different or even conflicting item-

ordering

¨ If there exists an order R s.t. both C1 and C2 are convertible w.r.t. R, 
then there is no conflict between the two convertible constraints

¨ If there exists conflict on order of items
¤ Try to satisfy one constraint first

¤ Then using the order for the other constraint to mine frequent itemsets in the 
corresponding projected database
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Chapter 7 : Advanced Frequent Pattern Mining

¨ Mining Diverse Patterns

¨ Constraint-Based Frequent Pattern Mining

¨ Sequential Pattern Mining

¨ Graph Pattern Mining

¨ Pattern Mining Application: Mining Software Copy-and-Paste Bugs

¨ Summary
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Sequence Databases & Sequential Patterns
¨ Sequential pattern mining has broad applications

¤ Customer shopping sequences
n Purchase a laptop first, then a digital camera, and then a smartphone, within 

6 months
¤ Medical treatments, natural disasters (e.g., earthquakes), science & 

engineering processes, stocks and markets, ...
¤ Weblog click streams, calling patterns, …
¤ Software engineering: Program execution sequences, …
¤ Biological sequences: DNA, protein, …

¨ Transaction DB, sequence DB vs. time-series DB
¨ Gapped vs. non-gapped sequential patterns

¤ Shopping sequences, clicking streams vs. biological sequences
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Sequence Mining: Description

¨ Input
¤ A database D of sequences called data-sequences, in which:

n I={i1, i2,…,in} is the set of items
n each sequence is a list of transactions ordered by transaction-time  
n each transaction consists of fields: sequence-id, transaction-id, transaction-time and 

a set of items.
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Sequence Mining: Description

¨ Input
¤ A database D of sequences called data-sequences, in which:

n I={i1, i2,…,in} is the set of items
n each sequence is a list of transactions ordered by transaction-time  
n each transaction consists of fields: sequence-id, transaction-id, transaction-time and 

a set of items.

¨ Problem
¤ To discover all the sequential patterns with a user-specified minimum support
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Input Database: example

45% of customers who bought Foundation will buy Foundation and Empire within the next month.

Problem
To discover all the sequential patterns with a user-specified minimum support
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Sequential Pattern and Sequential Pattern Mining 
¨ Sequential pattern mining: Given a set of sequences, find the complete set of frequent 

subsequences (i.e., satisfying the min_sup threshold)
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Sequential Pattern and Sequential Pattern Mining 
¨ Sequential pattern mining: Given a set of sequences, find the complete set of frequent 

subsequences (i.e., satisfying the min_sup threshold)

A sequence database

SID Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>
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Sequential Pattern and Sequential Pattern Mining 
¨ Sequential pattern mining: Given a set of sequences, find the complete set of frequent 

subsequences (i.e., satisfying the min_sup threshold)

A sequence database A sequence: < (ef) (ab)  (df) c b >

q An element may contain a set of items (also called 
events)

q Items within an element are unordered and we list 
them alphabetically

SID Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>
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Sequential Pattern and Sequential Pattern Mining 
¨ Sequential pattern mining: Given a set of sequences, find the complete set of frequent 

subsequences (i.e., satisfying the min_sup threshold)

A sequence database A sequence: < (ef) (ab)  (df) c b >

q An element may contain a set of items (also called 
events)

q Items within an element are unordered and we list 
them alphabetically

SID Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

1. An item can occur once at most in an event, but multiple times in 
different events of a sequence. 

2. The length of a sequence: the number of instances of items in a 
sequence. Length (SID: 40) ? 
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Sequential Pattern and Sequential Pattern Mining 
¨ Sequential pattern mining: Given a set of sequences, find the complete set of frequent 

subsequences (i.e., satisfying the min_sup threshold)

A sequence database A sequence: < (ef) (ab)  (df) c b >

q An element may contain a set of items (also called 
events)

q Items within an element are unordered and we list 
them alphabetically

<a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>

SID Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>



64

Sequential Pattern and Sequential Pattern Mining 
¨ Sequential pattern mining: Given a set of sequences, find the complete set of frequent 

subsequences (i.e., satisfying the min_sup threshold)

A sequence database

<a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>

SID Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

Formal definition:
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Sequential Pattern and Sequential Pattern Mining 
¨ Sequential pattern mining: Given a set of sequences, find the complete set of frequent 

subsequences (i.e., satisfying the min_sup threshold)

A sequence database A sequence: < (ef) (ab)  (df) c b >

q An element may contain a set of items (also called 
events)

q Items within an element are unordered and we list 
them alphabetically

<a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>

SID Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

q Given support threshold min_sup = 2, <(ab)c> is a sequential pattern
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A Basic Property of Sequential Patterns: Apriori

¨ A basic property: Apriori (Agrawal & Sirkant’94) 
¤ If a sequence S is not frequent 
¤ Then none of the super-sequences of S is frequent
¤ E.g, <hb> is infrequent à so do <hab> and <(ah)b>
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GSP (Generalized Sequential Patterns):
Apriori-Based Sequential Pattern Mining
¨ Initial candidates: All 8-singleton sequences

¤ <a>, <b>, <c>, <d>, <e>, <f>, <g>, <h>
¨ Scan DB once, count support for each candidate

SID   Sequence
10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>
min_sup = 2

Cand. sup

<a> 3

<b> 5

<c> 4

<d> 3

<e> 3

<f> 2

<g> 1

<h> 1

GSP (Generalized Sequential Patterns): 
Srikant & Agrawal @ EDBT’96)
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GSP (Generalized Sequential Patterns):
Apriori-Based Sequential Pattern Mining
¨ Initial candidates: All 8-singleton sequences

¤ <a>, <b>, <c>, <d>, <e>, <f>, <g>, <h>
¨ Scan DB once, count support for each candidate
¨ Generate length-2 candidate sequences

SID   Sequence
10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>

GSP (Generalized Sequential Patterns): 
Srikant & Agrawal @ EDBT’96)
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GSP (Generalized Sequential Patterns):
Apriori-Based Sequential Pattern Mining
¨ Initial candidates: All 8-singleton sequences

¤ <a>, <b>, <c>, <d>, <e>, <f>, <g>, <h>
¨ Scan DB once, count support for each candidate
¨ Generate length-2 candidate sequences

SID   Sequence
10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>
<a> <b> <c> <d> <e> <f>

<a> <aa> <ab> <ac> <ad> <ae> <af>
<b> <ba> <bb> <bc> <bd> <be> <bf>
<c> <ca> <cb> <cc> <cd> <ce> <cf>
<d> <da> <db> <dc> <dd> <de> <df>
<e> <ea> <eb> <ec> <ed> <ee> <ef>
<f> <fa> <fb> <fc> <fd> <fe> <ff>

<a> <b> <c> <d> <e> <f>
<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>
<b> <(bc)> <(bd)> <(be)> <(bf)>
<c> <(cd)> <(ce)> <(cf)>
<d> <(de)> <(df)>
<e> <(ef)>
<f>

GSP (Generalized Sequential Patterns): 
Srikant & Agrawal @ EDBT’96)

Why?
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GSP (Generalized Sequential Patterns):
Apriori-Based Sequential Pattern Mining
¨ Initial candidates: All 8-singleton sequences

¤ <a>, <b>, <c>, <d>, <e>, <f>, <g>, <h>
¨ Scan DB once, count support for each candidate
¨ Generate length-2 candidate sequences

SID   Sequence
10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>
<a> <b> <c> <d> <e> <f>

<a> <aa> <ab> <ac> <ad> <ae> <af>
<b> <ba> <bb> <bc> <bd> <be> <bf>
<c> <ca> <cb> <cc> <cd> <ce> <cf>
<d> <da> <db> <dc> <dd> <de> <df>
<e> <ea> <eb> <ec> <ed> <ee> <ef>
<f> <fa> <fb> <fc> <fd> <fe> <ff>

<a> <b> <c> <d> <e> <f>
<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>
<b> <(bc)> <(bd)> <(be)> <(bf)>
<c> <(cd)> <(ce)> <(cf)>
<d> <(de)> <(df)>
<e> <(ef)>
<f>

q Without Apriori pruning:
(8 singletons) 8*8+8*7/2 = 92 
length-2 candidates

q With pruning, length-2 
candidates: 36 + 15= 51

GSP (Generalized Sequential Patterns): 
Srikant & Agrawal @ EDBT’96)
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GSP Mining and Pruning

<a> <b> <c> <d> <e> <f> <g> <h>

<aa> <ab> … <af> <ba> <bb> … <ff> <(ab)> … <(ef)>

<abb> <aab> <aba> <baa> <bab> …

<abba> <(bd)bc> …

<(bd)cba>

1st scan: 8 cand. 6 length-1 seq. pat.

2nd scan: 51 cand. 19 length-2 seq. pat. 
10 cand. not in DB at all

3rd scan: 46 cand. 20 length-3 seq. pat. 20 
cand. not in DB at all

4th scan: 8 cand. 7 length-4 seq. pat. 

5th scan: 1 cand. 1 length-5 seq. pat. Candidates cannot pass min_sup
threshold

Candidates not in DB

SID   Sequence

10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>

min_sup = 2
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GSP Mining and Pruning

<a> <b> <c> <d> <e> <f> <g> <h>

<aa> <ab> … <af> <ba> <bb> … <ff> <(ab)> … <(ef)>

<abb> <aab> <aba> <baa> <bab> …

<abba> <(bd)bc> …

<(bd)cba>

1st scan: 8 cand. 6 length-1 seq. pat.

2nd scan: 51 cand. 19 length-2 seq. pat. 
10 cand. not in DB at all

3rd scan: 46 cand. 20 length-3 seq. pat. 20 
cand. not in DB at all

4th scan: 8 cand. 7 length-4 seq. pat. 

5th scan: 1 cand. 1 length-5 seq. pat. Candidates cannot pass min_sup
threshold

Candidates not in DB

SID   Sequence

10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>

min_sup = 2
q Repeat (for each level (i.e., length-k))
q Scan DB to find length-k frequent sequences
q Generate length-(k+1) candidate sequences from length-k frequent 

sequences using Apriori
q set k = k+1

q Until no frequent sequence or no candidate can be found
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GSP: Algorithm
¨ Phase 1:

¤ Scan over the database to identify all the frequent items, i.e., 1-element sequences

¨ Phase 2: 
¤ Iteratively scan over the database to discover all frequent sequences. Each iteration 

discovers all the sequences with the same length.
¤ In the iteration to generate all k-sequences
¤ Generate the set of all candidate k-sequences, Ck, by joining two (k-1)-sequences

n Prune the candidate sequence if any of its k-1 subsequences is not frequent
n Scan over the database to determine the support of the remaining candidate sequences

¤ Terminate when no more frequent sequences can be found

http://simpledatamining.blogspot.com/2015/03/generalized-sequential-pattern-
gsp.html

Mining Sequential Patterns: Generalizations and Performance 
Improvements, Srikant and Agrawal et al. 
https://pdfs.semanticscholar.org/d420/ea39dc136b9e390
d05e964488a65fcf6ad33.pdf

A detailed example illustration:

http://simpledatamining.blogspot.com/2015/03/generalized-sequential-pattern-gsp.html
https://pdfs.semanticscholar.org/d420/ea39dc136b9e390d05e964488a65fcf6ad33.pdf
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Bottlenecks of GSP

¨ A huge set of candidates could be generated
¤ 1,000 frequent length-1 sequences generate

length-2 candidates!

¨ Multiple scans of database in mining

¨ Real challenge: mining long sequential patterns
¤ An exponential number of short candidates
¤ A length-100 sequential pattern needs 1030

candidate sequences!
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GSP: Optimization Techniques

¨ Applied to phase 2: computation-intensive
¨ Technique 1: the hash-tree data structure

¤ Used for counting candidates to reduce the number of candidates 
that need to be checked
n Leaf: a list of sequences
n Interior node: a hash table

¨ Technique 2: data-representation transformation
¤ From horizontal format to vertical format
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SPADE

¨ Problems in the GSP Algorithm
¤ Multiple database scans
¤ Complex hash structures with poor locality
¤ Scale up linearly as the size of dataset increases

¨ SPADE: Sequential PAttern Discovery using Equivalence classes
¤ Use a vertical id-list database
¤ Prefix-based equivalence classes
¤ Frequent sequences enumerated through simple temporal joins
¤ Lattice-theoretic approach to decompose search space

¨ Advantages of SPADE
¤ 3 scans over the database
¤ Potential for in-memory computation and parallelization


