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Mining Diverse Patterns

0 Mining Multiple-Level Associations
0 Mining Multi-Dimensional Associations
0 Mining Negative Correlations

0 Mining Compressed and Redundancy-Aware Patterns



Mining Multiple-Level Frequent Patterns

ltems often form hierarchies Uniform support

Ex.: Dairyland 2% milk; Level 1 o
Wonder wheat bread min_sup = 5%

Milk
[support = 10%]

. Level 2 - T R e A TV
- 2% Milk . Skim Milk
How to set min-support min._sup = 5% o |

thresholds? [support =6%] | | [support=2%]

__________________________

2  Uniform min-support across multiple levels (reasonable?)



Mining Multiple-Level Frequent Patterns

ltems often form hierarchies Uniform support

Ex.: Dairyland 2% milk; Level 1 o
Wonder wheat bread min_sup = 5%

Level 2

How to set min-support min_sup = 5%

thresholds?

2  Uniform min-support across multiple levels (reasonable?)

Reduced support
Milk Level 1
[support = 10%] min_sup = 5%
2% Milk || SkimMilk” 7 Level 2

[support = 6%]

[support = 2%]

_____

min_sup = 1%

d Level-reduced min-support: ltems at the lower level are expected to

have lower support



ML/MD Associations with Flexible Support Constraints
I
7 Why flexible support constraints?
Real life occurrence frequencies vary greatly
= Diamond, watch, pens in a shopping basket

Uniform support may not be an interesting model

1 A flexible model

The lower-level, the more dimension combination, and the longer pattern length, usually the

smaller support
General rules should be easy to specify and understand

Special items and special group of items may be specified individually and have higher

priority



Multi-level Association: Redundancy Filtering

Some rules may be redundant due to “ancestor” relationships between

items.

Example

milk = wheat bread [support = 8%, confidence = 70%)]
2% milk = wheat bread [support = 2%, confidence = 72%)]
Given the 2% milk sold is about /4 of milk sold

We say the first rule is an ancestor of the second rule.

A rule is redundant if its support and confidence are close to the

“expected” value, based on the rule’s ancestor.



Mining Multi-Dimensional Associations
_ ]

o1 Single-dimensional rules (e.g., items are all in “product” dimension)

buys(X, “milk”) = buys(X, “bread”)

o Multi-dimensional rules (i.e., items in = 2 dimensions or predicates)
Inter-dimension association rules (no repeated predicates)
mage(X, “18-25") A occupation(X, “student”) = buys(X, “coke”)
Hybrid-dimension association rules (repeated predicates)

mage(X, “18-25") A buys(X, “popcorn”) = buys(X, “coke”)



Mining Rare Patterns vs. Negative Patterns
——

1 Rare patterns
Very low support but interesting (e.g., buying Rolex watches)

How to mine them?¢ Setting individualized, group-based min-support

thresholds for different groups of items
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Mining Rare Patterns vs. Negative Patterns

Rare patterns
Very low support but interesting (e.g., buying Rolex watches)

How to mine them?¢ Setting individualized, group-based min-support

thresholds for different groups of items
Negative patterns
Negatively correlated: Unlikely to happen together

Ex.: Since it is unlikely that the same customer buys both a Ford
Expedition (an SUV car) and a Ford Fusion (a hybrid car), buying a
Ford Expedition and buying a Ford Fusion are likely negatively

correlated patterns

How to define negative patterns?



Defining Negatively Correlated Patterns
B

7 A (relative) support-based definition

o If itemsets A and B are both frequent but rarely occur together, i.e., sup(A U B) << sup
(A) X sup(B)

o1 Then A and B are negatively correlated

11



Defining Negative Correlated Patterns
B

7 A (relative) support-based definition

o If itemsets A and B are both frequent but rarely occur together, i.e., sup(A U B) << sup

(A) X sup(B)
o Then A and B are negatively correlated n of lift?

Does this remind you the definitio

o1 Is this a good definition for large transaction datasets?

12



Defining Negative Correlated Patterns
——

7 A (relative) support-based definition

If itemsets A and B are both frequent but rarely occur together, i.e., sup(A U B) << sup
(A) X sup(B)

Then A and B are negatively correlated

s s
Does this remind you the definition of lift:

o Is this a good definition for large transaction datasets?

1 Ex.: Suppose a store sold two needle packages A and B 100 times each, but only one
transaction contained both A and B

When there are in total 200 transactions, we have

m s(A UB)=0.005, s(A) X s(B) = 0.25, s(A U B) << s(A) X s(B)

But when there are 10° transactions, we have

ms(AUB)=1/10°s(A) X s(B) =1/10%X1/103, s(A U B) > s(A) X s(B)

13
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Defining Negative Correlated Patterns

A (relative) support-based definition

If itemsets A and B are both frequent but rarely occur together, i.e., sup(A U B) << sup
(A) X sup(B)

Then A and B are negatively correlated

s s
Does this remind you the definition of lift:

Is this a good definition for large transaction datasets?

Ex.: Suppose a store sold two needle packages A and B 100 times each, but only one
transaction contained both A and B

When there are in total 200 transactions, we have
s(A U B) = 0.005, s(A) X s(B) = 0.25, s(A U B) << s(A) X s(B)
But when there are 10° transactions, we have
s(AUB)=1/10° s(A) X s(B) =1/10%X 1/103, s(A U B) > s(A) X s(B)

What is the problem2—Null transactions: The support-based definition is not null-
invariant!



Defining Negative Correlation:

Need Null-Invariance in Definition
TR

1 A good definition on negative correlation should take care of the null-invariance problem

I Whether two itemsets A and B are negatively correlated should not be influenced by the
number of null-transactions

Which measure should we use?

15
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Defining Negative Correlation:
Need Null-Invariance in Definition

A good definition on negative correlation should take care of the null-invariance problem

Whether two itemsets A and B are negatively correlated should not be influenced by the
number of null-transactions

Definition 7.3: Suppose that itemsets X and Y are both frequent, that is, sup(X) >
min_sup and sup(Y) > min_sup, where min_sup is the minimum support threshold. If

(P(X]Y) + P(Y|X))/2 < €, where € is a negative pattern threshold, then pattern XU Y
is a negatively correlated pattern. [
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Chapter 7 : Advanced Frequent Pattern Mining

Mining Diverse Patterns

Constraint-Based Frequent Pattern Mining

Sequential Pattern Mining

Graph Pattern Mining

Pattern Mining Application: Mining Software Copy-and-Paste Bugs

Summary



Constraint-based Data Mining
B

11 Finding o!! the patterns in a database autonomousiye — unrealisticl

o1 The patterns could be too many but not focused!

18
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Constraint-based Data Mining

Finding «!! the patterns in a database

The patterns could be too many but not focused!

Data mining should be an process

User directs what to be mined using a
graphical user interface)

¢ — unrealisticl

(or a
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Constraint-based Data Mining

Finding «!! the patterns in a database ¢ — unrealistic!

The patterns could be too many but not focused!

Data mining should be an process

User directs what to be mined using a (or a
graphical user interface)

Constraint-based mining
User flexibility: provides on what to be mined

System optimization: explores such constraints for efficient mining—



Categories of Constraints
=

CONSTRAINT 1  (ITEM CONSTRAINT). Anitem constraint
specifies what are the particular individual or groups of items
that should or should not be present in the pattern. O

For example, a dairy company may be interested in patterns
containing only dairy products, when it mines transactions
in a grocery store.

CONSTRAINT 2 (LENGTH CONSTRAINT). A length con-
straint specifies the requirement on the length of the patterns,
i.e., the number of items in the patterns. O

For example, when mining classification rules for documents,
a user may be interested in only frequent patterns with at
least 5 keywords, a typical length constraint.

21
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Categories of Constraints

CONSTRAINT 3  (MODEL-BASED CONSTRAINT). A model-
based constraint looks for patterns which are sub- or super-
patterns of some given patterns (models). O

For example, a travel agent may be interested in what other
cities that a visitor is likely to travel if s/he visits both Wash-
ington and New York city. That is, they want to find fre-
quent patterns which are super-patterns of {Washington,

New York city}. CONSTRAINT 4 (AGGREGATE CONSTRAINT). An aggre-

gate constraint is on an aggregate of items in a pattern,

where the aggregate function can be SUM, AVG, MAX, MIN,
etc. O

For example, a marketing analyst may like to find frequent
patterns where the average price of all items in each pattern
is over $100.



Constrained Frequent Pattern Mining: A Mining Query

Optimization Problem
_ ]

1 Given a frequent pattern mining query with a set of constraints C, the algorithm
should be

: it only finds frequent sets that satisfy the given constraints C

: all frequent sets satisfying the given constraints C are found

23
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Constrained Frequent Pattern Mining: A Mining Query
Optimization Problem

Given a frequent pattern mining query with a set of constraints C, the algorithm
should be

: it only finds frequent sets that satisfy the given constraints C

: all frequent sets satisfying the given constraints C are found

A nalve solution

First find all frequent sets, and test them for constraint satisfaction
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The Apriori Algorithm — Example

Database D itemset|sup.|  fitemset[sup.
100 [1 3 4 {20 | 3 |_,| 2 3
200235 |sScanDi 3y |3 3 | 3
3001235 {4} 1 {5} 3
400 |2 5 {5} 3 T
C, [itemset| sup C, [ltemset
L, |itemset|sup 12} | 1 | ScanD {12}
{13} | 2 {13} | 2 | - {13}
23| 2 |— | {15} | 1 {15}
25 | 3 {23} | 2 {g g}
35 | 2 {25 | 3 {2 5}
(35} | 2 {3 5}
C;litemsetl gqcanD L litemset|sup
{2 3 5} - [{235}] 2




Naive Algorithm: Apriori + Constraint (Naive Solution)

Database D itemset|sup.| ; [itemset[sup.
TID [ltems C,| {1} | 2 T 2
100(1 3 4 2 | 3 || 2 3
200235 |ScanD| g3 | 3 3} | 3
300(1235 {4y | 1 sy o=
4002 5 {5} | 3 p—

C, litemset sup C, IS @

L, |itemset|sup {12} | 1 Scan D 112}
31 | 2 (13} | 2 | 13}
{2=3——2 (15 | 1 {155
{25} 3 123} 2 oo
(35 | ol 2 G 9
S {35} | 2 {3 5}

C;litemsetl gqcanD L litemset|sup

|9

N | €
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Constrained Frequent Pattern Mining: A Mining Query
Optimization Problem

Given a frequent pattern mining query with a set of constraints C, the algorithm
should be

: it only finds frequent sets that satisfy the given constraints C

: all frequent sets satisfying the given constraints C are found

A naive solution
First find all frequent sets, and test them for constraint satisfaction

More efficient approaches:
Analyze the properties of constraints comprehensively

Push them as deeply as possible inside the frequent pattern computation.



Anti-Monotonicity in Constraint-Based Mining
S =

1 Anti-monotonicity

1 When an itemset S violates the constraint, so does any of

its superset
o1 sum(S.Price) < v is anfi-monotonic?

o1 sum(S.Price) = v is anti-monotonic?

28



Anti-Monotonicity in Constraint-Based Mining
S =

1 Anti-monotonicity

1 When an itemset S violates the constraint, so does any of

its superset
o1 sum(S.Price) < v is anti-monotonic

o1 sum(S.Price) = v is not anti-monotonic

29
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Anti-Monotonicity in Constraint-Based Mining

Anti-monotonicity

When an itemset S violates the constraint, so does any of

its superset
sum(S.Price) < v is

sum(S.Price) 2 v is

Example. C: range(S.profit) < 15 is
Define range(S.profit) = max(S.profit) — min(S.profit)
ltemset ab violates C

So does every superset of ab

TDB (min_sup=2)

TID | Transaction
10 a,b,cd,f
20 b,c,d,f g, h
30 a,cde,f
40 c,e f, g
Item | Profit

a 40

b 0

C -20

d 10

e -30

f 30

g 20

h -10
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Which Constraints Are Anti-Monotonic?

Constraint Anti-monotonic?
ve S no
SoV no
ScV yes
min(S) <v no
min(S) > v yes
max(S)<v yes
max(S) > v no
count(S) <v yes
count(S) >v no
sum(S)<v(a € S,a=>0) yes
sum(S)>v(a € S,a=>0) no
range(S) <v yes
range(S) > v no

avg(S)ov,0 e{=, £, >} convertible

support(S) > § yes
support(S) <& no

Practice offline



Monotonicity in Constraint-Based Mining
S =

-1 Monotonicity

I When an intemset S satisfies the constraint,

so does any of its superset
=1 sum(S.Price) =2 v is *©

= min(S.Price) <v is ?

32



Monotonicity in Constraint-Based Mining
S =

-1 Monotonicity

I When an intemset S satisfies the constraint,

so does any of its superset
o1 sum(S.Price) = v is monotonic

o min(S.Price) < v is monotonic

33



Monotonicity in Constraint-Based Mining
TDB (min_sup=2)

Monotonicit
Y TID Transaction

When an intemset S satisfies the constraint, 10 a,b,cd,f

20 | b,c,d,f g h

so does any of its superset
30 a,cde,f

sum(S.Price) = v is 40 cefg

Item | Profit
a 40
0
-20
10
-30
30
20
-10

min(S.Price) < v is

Example. C: range(S.profit) = 15

ltemset ab satisfies C

So does every superset of ab

S|Q|+~|0O Q|0 |T

34
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Which Constraints Are Monotonice

Constraint Monotonic
veS yes
SoV yes
ScV no
min(S) <v yes
min(S) > v no
max(S)<v no
max(S) > v yes
count(S) <v no
count(S) >v yes
sum(S)<v(a € S,a=>0) no
sum(S)>v(a € S,a=>0) yes
range(S) <v no
range(S) > v yes
avg(S)ov,0e{= <, >} convertible
support(S) > § no
support(S) <§ yes

Practice offline
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The Apriori Algorithm — Example

Database D itemset|sup.|  fitemset[sup.
100[1 3 4 2 | 3| .| @2 | 3
200235 |sScanDi 3y |3 3 | 3
30011235 {4} 1 {5} 3
400 |2 5 {5} 3 T
C, [itemset| sup C, [ltemset
L, |itemset|sup 12} | 1 | ScanD {12}
{13} | 2 {13} | 2 | - {13}
23} | 2 |— | {15} | 1 g gi
{25} | 3 {23} 1 2
35 | 2 {25} | 3 {2 5}
(35} | 2 {3 5}
C;litemsetl gqcanD L litemset|sup
{2 3 5} - {235}] 2
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Naive Algorithm: Apriori + Constraint

Database D itemset|sup.|  fitemset[sup.
1001 3 4 {20 | 3 |_,| 2 3
200235 |sScanDi 3y |3 3 | 3
300(1235 {4y | 1 I R
4002 5 {5 | 3 S—
C, [itemset| sup C, [ltemset
L, |itemset|sup 12} | 1 | ScanD {12}
{13} | 2 {13} | 2 | - {13}
2312 || {15} | 1 {15}
25 1 3 {23} | 2 12 3}
e {25} | 3 {2 5}
@ {35} | 2 {3 5}
C;litemsetl gqcanD L litemset|sup
{2 3 5} " |{2358)}-2
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Pushing the constraint deep into the process

Database D itemset|sup.|  fitemset[sup.
100 |1 3 4 2 | 3 | 2 3
200235 |ScanD| g3 | 3 §3§ 3
3001235 {4} 1 ren o
4002 5 (513 S
C, [itemset| sup C, [ltemset
L, |itemset|sup 12} | 1 | ScanD {12}
{13} | 2 (13| 2 | * Ej 23
rn N N PR r1 R\ 1 L' vy
\< VIS L E oY) !
ro =1 ) 2-34—+—2 {2 3}
S o5 | 2 (2 5)
@ 1.0 O] | < 1rr's L‘\I ~ r2 K
W VS| < ™~y
C;litemsetl  QcanD ;L3 itemset| sup
{235 {2390} 2

Why?



Converting “Tough” Constraints
N

-1 Convert tough constraints into anti-monotonic or monotonic ones by

properly ordering items

39
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Converting “Tough” Constraints

Convert tough constraints into anti-monotonic or monotonic ones by

properly ordering items

Examine C: avg(S.profit) = 25

Order items in value-descending order
<a,f g,d,b h, c e>
If an itemset afb violates C

So does afbh, afb*

It becomes
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Converting “Tough” Constraints

Convert tough constraints intfo anti-monotonic

or monotonic by properly ordering items

Examine C: avg(S.profit) = 25

Order items in value-descending order
<ag,f,g,d b h, ce>
If an itemset afb violates C

So does afbh, afb*

It becomes

TDB (min_sup=2)

TID

Transaction

10

a,b,cdf

20

b,c,d,f,gh

30

a,c,d e f

40

c,e f, g

Item

Profit

40

S]/]Q| -~ | T
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Convertible Constraints

Let R be an order of items

Convertible anti-monotonic

If an itemset S violates a constraint C, so does every itemset having S as a

prefix w.r.t. R

Ex. avg(S) 2 v w.r.t. item value descending order
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Convertible Constraints

Let R be an order of items

Convertible anti-monotonic

If an itemset S violates a constraint C, so does every itemset having S as a prefix
w.r.t. R

Ex. avg(S) 2 v w.r.t. item value descending order

Convertible monotonic

If an itemset S satisfies constraint C, so does every itemset having S as a prefix w.r.t.
R

Ex. avg(S) < v w.r.t. item value descending order
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Strongly Convertible Constraints

avg(X) = 25 is convertible anti-monotonic w.r.t. item
value descending order R: <q, f, g, d, b, h, ¢, e>

If an itemset af violates a constraint C, so does every
itemset with af as prefix, such as afd

avg(X) = 25 is convertible monotonic w.r.t. item value
ascending order R'': <e, ¢, h, b, d, g, f, a>

If an itemset d satisfies a constraint C, so does itemsets df
and dfa, which having d as a prefix

Thus, avg(X) = 25 is

Item

Profit

40

So)Q (-0 | QO | T
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What Constraints Are Convertible?

Why?

Constraint C.onvertible. Convertib_le Strongly
anti-monotonic | monotonic | convertible
avg(S)<,2>v Yes Yes Yes
median(S) <, >v Yes Yes Yes
<y
sum(S) < v (items could be of any Ves NG NG
value, v > 0)
<y
sum(S) < v (items could be of any NG Ves NG
value, v < 0)
>y (;
sum(S) = v (items could be of any NG Ves NG
value, v > 0)
m(S) > v (item I fan
sum(S) (items could be of any Ves NG NG

value, v < 0)
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Combining Them Together—A General Picture

Constraint Antimonotonic Monotonic
ve S no yes
SoV no yes
ScV yes no
min(S) <v no yes
min(S) > v yes no
max(S) <v yes no
max(S) > v no yes
count(S) <v yes no
count(S) >v no yes
sum(S)<v(a € S,a=0) yes no
sum(S)>v(a € S,a=0) no yes
range(S) <v yes no
range(S) > v no yes
support(S) > & yes no
support(S) <& no yes
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Classification of Constraints

Anti-monotonic

Strongly
Converti-
ble

Convertible
Anti-monotonic

Inconvertible

Convertible
Monotonic
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Mining With Convertible Constraints

C: avg(S.profit) = 25

Scan transaction DB once
remove infrequent 1-itemsets

ltem h in transaction 40 is dropped

ltemsets a and f are good

TDB (min_sup=2)

TID

Transaction

10

a, fd b,c

20

f,g,d,b,c

30

a fdce

40

f,g,h,c,e

Item | Profit

a

40

30

20

10

0

-10

-20

® (O ([T|(TC|[QQ |—

-30
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Can Apriori Handle Convertible Constraint?

A convertible, not monotonic nor anti-monotonic constraint cannot
be pushed deep into the an Apriori mining algorithm

Within the level wise framework, no direct pruning based on the constraint
can be made

ltemset {d} violates constraint C: avg(X)>=25

Can we just prune {d} and not consider it
afterwards?

Item

Value

o)KQ (-0 |0 | T




50

Can Apriori Handle Convertible Constraint?
A convertible, not monotonic nor anti-monotonic constraint cannot

be pushed deep into the an Apriori mining algorithm

Within the level wise framework, no direct pruning based on the constraint
can be made

ltemset {d} violates constraint C: avg(X)>=25

Since {ad} satisfies C, Apriori needs {d} to assemble {ad};
{d} cannot be pruned

But it can be pushed into frequent-pattern growth framework!

Item

Value

o)KQ (-0 |0 | T
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Mining With Convertible Constraints in FP-Growth Framework

C: avg(X)>=25, min_sup=2
List items in every transaction in value descending order
R: <q, f,g,d, b, h,c e>
C is convertible anti-monotonic w.r.t. R
Scan TDB once

remove infrequent items

ltem h is dropped
ltemsets a and f are good, ...
Projection-based mining

Imposing an appropriate order on pattern growth

Many tough constraints can be converted into (anti)-monotonic

TDB (min_sup=2)

Item

Value

a

O[O |TT|T|Q|Q |—

TID | Transaction
10 a,f,dbc
20 f,g,d, b, c
30 a, f,dce
40 f,g,h,ce




Mining With Convertible Constraints in FP-Growth Framework

Iran. DB Item | Value
afdbc
fg‘dbc a 40
atdce
fghce f 30
freq. items: a. f, g. d. b.c. e
C(a)=true g 20
C(H=true R:a-f-g-d-b-c-e d 10
C(g)=true
_f_f-f"'"f hﬁ““aamm Growing patterns in b 0
a-proj. DB f-proj. DB R order h -10
fdbc dbc
fdce gdbe c -20
freq. items: f. d. ¢ dee e -30
C(af)=true %CE i
C(ad)=true t}'gg.)1te1115: g.d b.c.e
C(ac)=false C(tz)=true . . .
( J) C(fd)=false Constrained Frequent Pattern Mining: A
_ — Pattern-Growth View
af-proj. DB o
i proJ ad-proj. DB fe-proj. DB
€ dbe . . e .
de c o Jian Pei, Jiawei Han, SIGKDD 2002
freq. items: d. ¢ freq. items: ¢ freq. items: ¢
C(afd)=true C(adc)=false C(fgc)=false
C(afc)=false =

Figure 1: Mining frequent itemsets satisfying constraint avg(S) > 25



Handling Multiple Constraints
——

01 Different constraints may require different or even conflicting item-

ordering

0 If there exists an order R s.t. both C; and C, are convertible w.r.t. R,

then there is no conflict between the two convertible constraints

0 If there exists conflict on order of items
Try to satisfy one constraint first

Then using the order for the other constraint to mine frequent itemsets in the

corresponding projected database

53



54

Chapter 7 : Advanced Frequent Pattern Mining

Mining Diverse Patterns

Constraint-Based Frequent Pattern Mining

Sequential Pattern Mining ‘\

Graph Pattern Mining

Pattern Mining Application: Mining Software Copy-and-Paste Bugs

Summary



55

Sequence Databases & Sequential Patterns

Sequential pattern mining has broad applications
Customer shopping sequences

Purchase a laptop first, then a digital camera, and then a smartphone, within
6 months

Medical treatments, natural disasters (e.g., earthquakes), science &
engineering processes, stocks and markets, ...

Weblog click streams, calling patterns, ...
Software engineering: Program execution sequences, ...
Biological sequences: DNA, protein, ...

Transaction DB, sequence DB vs. time-series DB

Gapped vs. non-gapped sequential patterns

Shopping sequences, clicking streams vs. biological sequences



Sequence Mining: Description

Input

A database D of sequences called data-sequences, in which:
I={i;, i,,...,i } is the set of items
each sequence is a list of transactions ordered by transaction-time

each transaction consists of fields: sequence-id, transaction-id, transaction-time and
a set of items.

Database D
Sequence-Id | Transaction | Items
Time
C1 1 Ringworld
C1 2 Foundation
C1 15 Ringworld Engineers, Second Foundation
C2 1 Foundation, Ringworld
C2 20 Foundation and Empire
C2 50 Ringworld Engineers
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Sequence Mining: Description

Input
A database D of sequences called data-sequences, in which:
I={i;, i,,...,i } is the set of items
each sequence is a list of transactions ordered by transaction-time

each transaction consists of fields: sequence-id, transaction-id, transaction-time and
a set of items.

Problem
To discover all the sequential patterns with a user-specified minimum support



Input Database: example
—

Problem
To discover all the sequential patterns with a user-specified minimum support

Database D
Sequence-Id | Transaction | Items
Time
C1 1 Ringworld
C1 2 Foundation
C1 15 Ringworld Engineers, Second Foundation
C2 1 Foundation, Ringworld
C2 20 Foundation and Empire
C2 50 Ringworld Engineers

45% of customers who bought Foundation will buy Foundation and Empire within the next month.

58



Sequential Pattern and Sequential Pattern Minin
—H&

1 Sequential pattern mining: Given a set of sequences, find the complete set of frequent
subsequences (i.e., satisfying the min_sup threshold)

59



Sequential Pattern and Sequential Pattern Minin
—Jdi

1 Sequential pattern mining: Given a set of sequences, find the complete set of frequent
subsequences (i.e., satisfying the min_sup threshold)

A sequence database

10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40  <eg(af)cbc>

60



Sequential Pattern and Sequential Pattern Mining
——

1 Sequential pattern mining: Given a set of sequences, find the complete set of frequent
subsequences (i.e., satisfying the min_sup threshold)

A sequence database

A sequence: < (ef)|(ab) |(df) c|b >

10 <a(abc)(ac)d(cf)> A An element may contain a set of items (also called

20  <(ad)c(bc)(ae)> events) o |
30 <(ef)(ab)(df)cb> Q Items within an element are unordered and we list

them alphabetically
40 <eg(af)cbc>

61



Sequential Pattern and Sequential Pattern Mining

1 Sequential pattern mining: Given a set of sequences, find the complete set of frequent

subsequences (i.e., satisfying the min_sup threshold)

A sequence database

10
20
30
40
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A sequence: < (ef)|(ab) |(df) c|b >

<a(abc)(ac)d(cf)> A An element may contain a set of items (also called

<(ad)c(bc)(ae)> events) o .

<(ef)(ab)(df)cb> d Items within ar.1 element are unordered and we list
them alphabetically

<eg(af)cbc>

1. An item can occur once at most in an event, but multiple times in
different events of a sequence.

2. The length of a sequence: the number of instances of items in a
sequence. Length (SID: 40) ¢



Sequential Pattern and Sequential Pattern Mining
——

1 Sequential pattern mining: Given a set of sequences, find the complete set of frequent
subsequences (i.e., satisfying the min_sup threshold)

A sequence database

A sequence: < (ef)|(ab) |(df) c|b >

10 <a(abc)(ac)d(cf)> Q An element may contain a set of items (also called
20  <(ad)c(bc)(ae)> events) i | tered and we |

a Items within an element are unordered and we list
30 SEElg)einEs> them alphabetically
40 <eg(af)cbc>

<a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>
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Sequential Pattern and Sequential Pattern Mining

1 Sequential pattern mining: Given a set of sequences, find the complete set of frequent

subsequences (i.e., satisfying the min_sup threshold)

A sequence database

10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30  <(ef)(ab)(df)cb>
40  <eg(af)cbc>

Formal definition:

64

<a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>

. A sequence o = (aa;---ay,) is called a subsequence of another sequence
B=(b1by---b,),and B is a supersequence of o, denoted as o0 C B, if there exist integers
1< ji<jp<-<jp<msuchthata; € bj,a, Cbj,...,a, Cbj, Forexample, if
o = ((ab),d) and B = ((abc), (de)), where a, b, ¢, d, and e are items, then o is a subse-

quence of B and [ is a supersequence of o.



Sequential Pattern and Sequential Pattern Mining
——

1 Sequential pattern mining: Given a set of sequences, find the complete set of frequent
subsequences (i.e., satisfying the min_sup threshold)

A sequence database

A sequence: < (ef)|(ab) |(df) c|b >

10 <a(abc)(ac)d(cf)> A An element may contain a set of items (also called

20  <(ad)c(bc)(ae)> events) o .

30 <(ef)(ab)(df)cb> a Items within ar.1 element are unordered and we list
them alphabetically

40 <eg(af)cbc>

<a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>

ad Given support threshold min_sup = 2, <(ab)c> is a sequential pattern
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A Basic Property of Sequential Patterns: Apriori
I

01 A basic property: Apriori (Agrawal & Sirkant’94)
o If a sequence S is not frequent

0 Then none of the super-sequences of S is frequent
0 E.g, <hb> is infrequent = so do <hab> and <(ah)b>
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GSP (Generalized Sequential Patterns):

GSP (Generalized Sequential Patterns):

Apriori-Based Sequential Pattern Mining srikant & Agrawal @ EDBT'96)

o Initial candidates: All 8-singleton sequences -_

10 <(bd)cb(ac)>

0 <a>, <b>, <c>, <d>, <e>, <f>, <g>, <h>

, 20 <(bf)(ce)b(fg)>
1 Scan DB once, count support for each candidate
30 <(ah)(bf)abf>
. =5 40 <(be)(ce)d>
min_stp = 50 <a(bd)bcb(ade)>

<a>
<b>
<c>
<d>

<e>

N W W s Ul W

<f>

=36
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GSP (Generalized Sequential Patterns):
. . . v . GSP (Generalized Sequential Patterns):
Apriori-Based Sequential Pattern Mining srikant & Agrawal @ EpBT'96)

_ ] —ﬁ-
o Initial candidates: All 8-singleton sequences -
10 <(bd)cb(ac)>
0 <a>, <b>, <c>, <d>, <e>, <f>, <g>, <h>
, 20 <(bf)(ce)b(fg)>
1 Scan DB once, count support for each candidate
. 30 <(ah)(bf)abf>
1 Generate length-2 candidate sequences
40 <(be)(ce)d>
50 <a(bd)bcb(ade)>
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GSP (Generalized Sequential Patterns):
Apriori-Based Sequential Pattern Mining

GSP (Generalized Sequential Patterns):
Srikant & Agrawal @ EDBT’96)
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Initial candidates: All 8-singleton sequences =l SEGUENEE
10 <(bd)cb(ac)>
<a>, <b>, <c>, <d>, <e>, <f>, <g>, <h>
, 20 <(bf)(ce)b(fg)>
Scan DB once, count support for each candidate
] 30 <(ah)(bf)abf>
Generate length-2 candidate sequences
<a> <b> <c> <d> <e> <f> 40 <(be)(ce)d>
<a> <aa> <ab> <ac> <ad> <ae> <af> 50 <a(bd)bcb(ade)>
<b> <ba> <bb> <bc> <bd> <be> <bf>
<c> <ca> <ch> <cc> <cd> <ce> <cf>
<d> <da> <db> <dc> <dd> <de> <df>
<e> <ea> <eb> <ec> <ed> <ee> <ef>
<f> <fa> <fb> <fc> <fd> <fe> <ff>
Why?
<a> <b> <c> <d> <e> <f>
<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>
<b> <(bc)> <(bd)> <(be)> <(bf)>
<c> <(cd)> <(ce)> <(cf)>
<d> <(de)> <(df)>
<e> <(ef)>
<f>




70

GSP (Generalized Sequential Patterns):
Apriori-Based Sequential Pattern Mining

Initial candidates: All 8-singleton sequences

<a>, <b>, <c>, <d>, <e>, <f>, <g>, <h>

Scan DB once, count support for each candidate

Generate length-2 candidate sequences

<a> <b> <c> <d> <e> <f>
<a> <aa> <ab> <ac> <ad> <ae> <af>
<b> <ba> <bb> <bc> <bd> <be> <bf>
<c> <ca> <cb> <cc> <cd> <ce> <cf>
<d> <da> <db> <dc> <dd> <de> <df>
<e> <ea> <eb> <ec> <ed> <ee> <ef>
<f> <fa> <fb> <fc> <fd> <fe> <ff>

<a> <b> <c> <d> <e> <f>

<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>
<b> <(bc)> <(bd)> <(be)> <(bf)>
<c> <(cd)> <(ce)> <(cf)>
<d> <(de)> <(df)>
<e> <(ef)>
<f>

GSP (Generalized Sequential Patterns):
Srikant & Agrawal @ EDBT’96)

SID Sequence

10 <(bd)cb(ac)>
20 <(bf)(ce)b(fg)>
30 <(ah)(bf)abf>
40 <(be)(ce)d>
50 <a(bd)bcb(ade)>

aQ Without Apriori pruning:
(8 singletons) 8*8+8*7/2 =92
length-2 candidates
aQ  With pruning, length-2
candidates: 36 + 15=51



GSP Mining and Pruning
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5t scan: 1 cand. 1 length-5 seq. pat. <(bd)cba> Candidates cannot pass min_sup
threshold

4t scan: 8 cand. 7 length-4 seq. pat. <abba> <(bd)bc> .. Candidates not in DB

34 scan: 46 cand. 20 length-3 seq. pat. 20

cand. not in DB at all <abb> <aab> <aba> <baa> <bab> ...

2" scan: 51 cand. 19 length-2 seq. pat. .05 p>"" <afs <ba> <bb> ... <f> <(ab)> ... <(ef)>

10 cand. not in DB at all W —
t . , <a> <b> <c> <d> <e> <f> <g> <h>
15t scan: 8 cand. 6 length-1 seq. pat. a C e g min_sup = 2
10 <(bd)cb(ac)>
20 <(bf)(ce)b(fg)>
30 <(ah)(bf)abf>
40 <(be)(ce)d>

50 <a(bd)bcb(ade)>
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GSP Mining and Pruning

5t scan: 1 cand. 1 length-5 seq. pat. <(bd)cba> Candidates cannot pass min_sup

threshold

4t scan: 8 cand. 7 length-4 seq. pat. <abba> <(bd)bc> ...

34 scan: 46 cand. 20 length-3 seq. pat. 20

cand. not in DB at all <abb> <aab> <aba> <baa> <bab> ...

2"d scan: 51 cand. 19 length-2 seq. pat.

Candidates not in DB

<a@a> <ab> ... <af> <ba> <bb> ... <ff> <(ab)> ... <(ef)>

10 cand. not in DB at all W

15t scan: 8 cand. 6 length-1 seq. pat.  <a@> <b> <c> <d> <e> <f> <g> <h>

O Repeat (for each level (i.e., length-k))
0 Scan DB to find length-k frequent sequences
d  Generate length-(k+1) candidate sequences from length-k frequent
sequences using Apriori
O setk=k+1
QO Until no frequent sequence or no candidate can be found

min_sup = 2
SID Sequence
10 <(bd)cb(ac)>
20 <(bf)(ce)b(fg)>
30 <(ah)(bf)abf>
40 <(be)(ce)d>

50 <a(bd)bcb(ade)>
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Mining Sequential Patterns: Generalizations and Performance
Improvements, Srikant and Agrawal et al.

GSP: Algorithm

Phase 1:

Scan over the database to identify all the frequent items, i.e., 1-element sequences

Phase 2:

lteratively scan over the database to discover all frequent sequences. Each iteration
discovers all the sequences with the same length.

In the iteration to generate all k-sequences

Generate the set of all candidate k-sequences, C;, by joining two (k-1)-sequences
Prune the candidate sequence if any of its k-1 subsequences is not frequent

Scan over the database to determine the support of the remaining candidate sequences

Terminate when no more frequent sequences can be found


http://simpledatamining.blogspot.com/2015/03/generalized-sequential-pattern-gsp.html
https://pdfs.semanticscholar.org/d420/ea39dc136b9e390d05e964488a65fcf6ad33.pdf
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Bottlenecks of GSP

A huge set of candidates could be generated

1,000 frequent length-1 sequences generate

length-2 candidates!

1000x1000 + 1000; 2 1,499,500

Multiple scans of database in mining

Real challenge: mining long sequential patterns
An exponential number of short candidates

A length-100 sequential pattern needs 1039
candidate sequences!

i=z1 \ 1

%[100) — 2100 _1 ~ 1030
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GSP: Optimization Techniques

Applied to phase 2: computation-intensive

Technique 1: the hash-tree data structure

Used for counting candidates to reduce the number of candidates

that need to be checked

Leaf: a list of sequences

Interior node: a hash table

Technique 2: data-representation transformation

From horizontal format to vertical format

Ttem

Times

Transaction-Time | Items
10 1,2
25 4,6
45 3
50 1,2
65 3
90 2,4
95 6

-~ S Ok W N

— 10 — 50 — NULL

— 10 — 50 — 90 — NULL
— 45 — 65 — NULL

— 25 — 90 — NULL

— NULL

— 25 — 95 — NULL

— NULL




SPADE

Problems in the GSP Algorithm
Multiple database scans
Complex hash structures with poor locality
Scale up linearly as the size of dataset increases

SPADE: Sequential PAttern Discovery using Equivalence classes
Use a vertical id-list database
Prefix-based equivalence classes
Frequent sequences enumerated through simple temporal joins
Lattice-theoretic approach to decompose search space

Advantages of SPADE

3 scans over the database
Potential for in-memory computation and parallelization

78



