
CSE 5243 INTRO. TO DATA MINING

Mining Frequent Patterns and Associations: Basic Concepts
Yu Su, CSE@The Ohio State University 

Slides adapted from UIUC CS412 by Prof. Jiawei Han and OSU CSE5243 by Prof. Huan Sun 



2

Mining Frequent Patterns, Association and Correlations: 
Basic Concepts and Methods

¨ Basic Concepts

¨ Efficient Pattern Mining Methods

¨ Pattern Evaluation 

¨ Summary
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Pattern Discovery: Basic Concepts 

¨ What Is Pattern Discovery?   Why Is It Important?

¨ Basic Concepts: Frequent Patterns and Association Rules

¨ Compressed Representation: Closed Patterns and Max-Patterns
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What Is Pattern Discovery?
¨ Motivating examples:

¤ What products were often purchased together?

¤ What are the subsequent purchases after buying an iPad?

¤ What code segments likely contain copy-and-paste bugs?

¤ What word sequences likely form phrases in this corpus?
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What Is Pattern Discovery?
¨ Motivation examples:

¤ What products were often purchased together?

¤ What are the subsequent purchases after buying an iPad?

¤ What code segments likely contain copy-and-paste bugs?

¤ What word sequences likely form phrases in this corpus?

¨ What are patterns?
¤ Patterns: A set of items, subsequences, or substructures that occur frequently 

together (or strongly correlated) in a data set

¤ Patterns represent intrinsic and important properties of datasets
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What Is Pattern Discovery?
¨ Motivation examples:

¤ What products were often purchased together?

¤ What are the subsequent purchases after buying an iPad?

¤ What code segments likely contain copy-and-paste bugs?

¤ What word sequences likely form phrases in this corpus?

¨ What are patterns?
¤ Patterns: A set of items, subsequences, or substructures that occur frequently 

together (or strongly correlated) in a data set

¤ Patterns represent intrinsic and important properties of datasets

¨ Pattern discovery: Uncovering patterns from massive data sets
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Pattern Discovery: Why Is It Important?
¨ Finding inherent regularities in a data set 
¨ Foundation for many essential data mining tasks

¤ Association, correlation, and causality analysis
¤ Mining sequential, structural (e.g., sub-graph) patterns
¤ Pattern analysis in spatiotemporal, multimedia, time-series, and stream data 
¤ Classification: Discriminative pattern-based analysis
¤ Cluster analysis: Pattern-based subspace clustering
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Pattern Discovery: Why Is It Important?
¨ Finding inherent regularities in a data set 
¨ Foundation for many essential data mining tasks

¤ Association, correlation, and causality analysis
¤ Mining sequential, structural (e.g., sub-graph) patterns
¤ Pattern analysis in spatiotemporal, multimedia, time-series, and stream data 
¤ Classification: Discriminative pattern-based analysis
¤ Cluster analysis: Pattern-based subspace clustering

¨ Broad applications
¤ Market basket analysis, cross-marketing, catalog design, sale campaign 

analysis, Web log analysis, biological sequence analysis
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Basic Concepts: k-Itemsets and Their Supports
¨ Itemset: A set of one or more items
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Basic Concepts: k-Itemsets and Their Supports
¨ Itemset: A set of one or more items
¨ k-itemset:  X = {x1, …, xk}

¤ Ex. {Beer, Nuts, Diaper} is a 3-itemset

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk
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Basic Concepts: k-Itemsets and Their Supports
¨ Itemset: A set of one or more items
¨ k-itemset:  X = {x1, …, xk}

¤ Ex. {Beer, Nuts, Diaper} is a 3-itemset

¨ (absolute) support (count) of X, sup{X}: 
Frequency or the number of occurrences 
of an itemset X
¤ Ex.  sup{Beer} = 3
¤ Ex.  sup{Diaper} = 4
¤ Ex.  sup{Beer, Diaper} = 3
¤ Ex.  sup{Beer, Eggs} = 1

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk
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Basic Concepts: k-Itemsets and Their Supports
¨ Itemset: A set of one or more items
¨ k-itemset:  X = {x1, …, xk}

¤ Ex. {Beer, Nuts, Diaper} is a 3-itemset

¨ (absolute) support (count) of X, sup{X}: 
Frequency or the number of occurrences 
of an itemset X
¤ Ex.  sup{Beer} = 3
¤ Ex.  sup{Diaper} = 4
¤ Ex.  sup{Beer, Diaper} = 3
¤ Ex.  sup{Beer, Eggs} = 1

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk

q (relative) support, s{X}:  The fraction of 
transactions that contains X (i.e., the 
probability that a transaction contains X)

q Ex.  s{Beer} = 3/5 = 60%
q Ex.  s{Diaper} = 4/5 = 80%
q Ex.  s{Beer, Eggs} = 1/5 = 20%
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Basic Concepts: Frequent Itemsets (Patterns)
¨ An itemset (or a pattern) X is frequent if 

the support of X is no less than a minsup
threshold σ
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Basic Concepts: Frequent Itemsets (Patterns)
¨ An itemset (or a pattern) X is frequent if 

the support of X is no less than a minsup
threshold σ

¨ Let σ = 50%  (σ: minsup threshold)
For the given 5-transaction dataset
¤ All the frequent 1-itemsets:  

n Beer: 3/5 (60%); Nuts: 3/5 (60%)
n Diaper: 4/5 (80%); Eggs: 3/5 (60%)

¤ All the frequent 2-itemsets:  
n {Beer, Diaper}: 3/5 (60%)

¤ All the frequent 3-itemsets?
n None 

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk
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Basic Concepts: Frequent Itemsets (Patterns)
¨ An itemset (or a pattern) X is frequent if 

the support of X is no less than a minsup
threshold σ

¨ Let σ = 50%  (σ: minsup threshold)
For the given 5-transaction dataset
¤ All the frequent 1-itemsets:  

n Beer: 3/5 (60%); Nuts: 3/5 (60%)
n Diaper: 4/5 (80%); Eggs: 3/5 (60%)

¤ All the frequent 2-itemsets:  
n {Beer, Diaper}: 3/5 (60%)

¤ All the frequent 3-itemsets?
n None 

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk

q Do these itemsets (shown on the left) 
form the complete set of frequent k-
itemsets (patterns) for any k?

q Observation:  We may need an 
efficient method to mine a complete set 
of frequent patterns
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From Frequent Itemsets to Association Rules
¨ Comparing with itemsets, rules can be more telling

¤ Ex.  Diaper à Beer  
n Buying diapers may likely lead to buying beers  
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From Frequent Itemsets to Association Rules
¤ Ex.  Diaper à Beer: Buying diapers may likely lead 

to buying beers  
¨ How strong is this rule?  (support, confidence)

¤ Measuring association rules:  X à Y (s, c)
n Both X and Y are itemsets
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From Frequent Itemsets to Association Rules
¤ Ex.  Diaper à Beer: Buying diapers may likely lead 

to buying beers  
¨ How strong is this rule?  (support, confidence)

¤ Measuring association rules:  X à Y (s, c)
n Both X and Y are itemsets

¤ Support, s: The probability that a transaction 
contains X È Y
n Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%)

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk
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From Frequent Itemsets to Association Rules
¤ Ex.  Diaper à Beer : Buying diapers may likely lead 

to buying beers  
¨ How strong is this rule?  (support, confidence)

¤ Measuring association rules:  X à Y (s, c)
n Both X and Y are itemsets

¤ Support, s: The probability that a transaction 
contains X È Y
n Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%)

¤ Confidence, c: The conditional probability that a 
transaction containing X also contains Y
n Calculation: c = sup(X È Y) / sup(X)
n Ex. c = sup{Diaper, Beer}/sup{Diaper} = ¾ = 0.75

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk

Containing 
diaper

Containing both

Containing beer

Beer Diaper{Beer} È
{Diaper}

{Beer} È {Diaper} = {Beer, Diaper} 
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Mining Frequent Itemsets and Association Rules
¨ Association rule mining

¤ Given two thresholds: minsup, minconf
¤ Find all of the rules, X à Y (s, c)

n such that, s ≥ minsup and c ≥ minconf
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Mining Frequent Itemsets and Association Rules
¨ Association rule mining

¤ Given two thresholds: minsup, minconf
¤ Find all of the rules, X à Y (s, c)

n such that, s ≥ minsup and c ≥ minconf

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk

q Let minsup = 50% 
q Freq. 1-itemsets: Beer: 3, Nuts: 3, 

Diaper: 4, Eggs: 3
q Freq. 2-itemsets:  {Beer, Diaper}: 3
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Mining Frequent Itemsets and Association Rules
¨ Association rule mining

¤ Given two thresholds: minsup, minconf
¤ Find all of the rules, X à Y (s, c)

n such that, s ≥ minsup and c ≥ minconf

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk

q Let minsup = 50% 
q Freq. 1-itemsets: Beer: 3, Nuts: 3, 

Diaper: 4, Eggs: 3
q Freq. 2-itemsets:  {Beer, Diaper}: 3

q Let minconf = 50%
q Beer à Diaper  (60%, 100%)
q Diaper à Beer  (60%, 75%)
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Mining Frequent Itemsets and Association Rules
¨ Association rule mining

¤ Given two thresholds: minsup, minconf
¤ Find all of the rules, X à Y (s, c)

n such that, s ≥ minsup and c ≥ minconf

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk

q Let minsup = 50% 
q Freq. 1-itemsets: Beer: 3, Nuts: 3, 

Diaper: 4, Eggs: 3
q Freq. 2-itemsets:  {Beer, Diaper}: 3

q Let minconf = 50%
q Beer à Diaper  (60%, 100%)
q Diaper à Beer  (60%, 75%)

(Q: Are these all rules?)
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Mining Frequent Itemsets and Association Rules
¨ Association rule mining

¤ Given two thresholds: minsup, minconf
¤ Find all of the rules, X à Y (s, c)

n such that, s ≥ minsup and c ≥ minconf

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk

q Let minsup = 50% 
q Freq. 1-itemsets: Beer: 3, Nuts: 3, 

Diaper: 4, Eggs: 3
q Freq. 2-itemsets:  {Beer, Diaper}: 3

q Let minconf = 50%
q Beer à Diaper  (60%, 100%)
q Diaper à Beer  (60%, 75%)

q Observations: 
q Mining association rules and 

mining frequent patterns are very 
close problems

q Scalable methods are needed for 
mining large datasets
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Association Rule Mining: two-step process
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Generating Association Rules from Frequent Patterns

¨ Recall that:

¨ Once we mined frequent patterns, association rules can be generated as follows: 
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Generating Association Rules from Frequent Patterns

¨ Recall that:

¨ Once we mined frequent patterns, association rules can be generated as follows: 

Because 𝑙 is a frequent itemset, each rule automatically satisfies the minimum support requirement.  
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Example: Generating Association Rules
Example 
from 
Chapter 6

If minimum confidence threshold: 70%, what will be output?



29

Challenge: There Are Too Many Frequent Patterns!
¨ A long pattern contains a combinatorial number of sub-patterns
¨ How many frequent itemsets does the following TDB1 contain?

¤ TDB1: T1: {a1, …, a50};  T2: {a1, …, a100}
¤ Assuming (absolute) minsup = 1
¤ Let’s give it a try…
1-itemsets:  {a1}: 2, {a2}: 2, …, {a50}: 2, {a51}: 1, …, {a100}: 1, 
2-itemsets: {a1, a2}: 2, …, {a1, a50}: 2, {a1, a51}: 1 …, …, {a99, a100}: 1, 
…, …, …, …
99-itemsets: {a1, a2, …, a99}: 1, …, {a2, a3, …, a100}: 1
100-itemset: {a1, a2, …, a100}: 1
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Challenge: There Are Too Many Frequent Patterns!
¨ A long pattern contains a combinatorial number of sub-patterns
¨ How many frequent itemsets does the following TDB1 contain?

¤ TDB1: T1: {a1, …, a50};  T2: {a1, …, a100}
¤ Assuming (absolute) minsup = 1
¤ Let’s give it a try…
1-itemsets:  {a1}: 2, {a2}: 2, …, {a50}: 2, {a51}: 1, …, {a100}: 1, 
2-itemsets: {a1, a2}: 2, …, {a1, a50}: 2, {a1, a51}: 1 …, …, {a99, a100}: 1, 
…, …, …, …
99-itemsets: {a1, a2, …, a99}: 1, …, {a2, a3, …, a100}: 1
100-itemset: {a1, a2, …, a100}: 1

¨ The total number of frequent itemsets:

Too huge a set for any 
one to compute or store!



31

Expressing Patterns in Compressed Form: Closed Patterns

¨ How to handle such a challenge?

¨ Solution 1: Closed patterns:  A pattern (itemset) X is closed if X is 
frequent, and there exists no super-pattern Y כ X, with the same support
as X 
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Expressing Patterns in Compressed Form: Closed Patterns

¨ How to handle such a challenge?

¨ Solution 1: Closed patterns:  A pattern (itemset) X is closed if X is 
frequent, and there exists no super-pattern Y כ X, with the same support
as X 

¤ Let Transaction DB TDB1: T1: {a1, …, a50};  T2: {a1, …, a100} 

¤ Suppose minsup = 1. How many closed patterns does TDB1 contain? 

n Two:  P1: “{a1, …, a50}: 2”;  P2: “{a1, …, a100}: 1” 

Why?
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Expressing Patterns in Compressed Form: Closed Patterns

¨ How to handle such a challenge?

¨ Solution 1: Closed patterns:  A pattern (itemset) X is closed if X is frequent, and 
there exists no super-pattern Y כ X, with the same support as X 

¤ Let Transaction DB TDB1: T1: {a1, …, a50};  T2: {a1, …, a100} 

¤ Suppose minsup = 1. How many closed patterns does TDB1 contain? 

n Two:  P1: “{a1, …, a50}: 2”;  P2: “{a1, …, a100}: 1” 

¨ Closed pattern is a lossless compression of frequent patterns

¤ Reduces the # of patterns but does not lose the support information!

¤ You will still be able to say: “{a2, …, a40}: 2”, “{a5, a51}: 1”
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Expressing Patterns in Compressed Form: Max-Patterns

¨ Solution 2: Max-patterns: A pattern X is a max-pattern if X is frequent and there 
exists no frequent super-pattern Y כ X
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Expressing Patterns in Compressed Form: Max-Patterns

¨ Solution 2: Max-patterns:  A pattern X is a max-pattern if X is frequent and there 
exists no frequent super-pattern Y כ X 

¨ Difference with closed-patterns?

¤ Do not care about the real support of the sub-patterns of a max-pattern

¤ Let Transaction DB TDB1: T1: {a1, …, a50};  T2: {a1, …, a100} 

¤ Suppose minsup = 1. How many max-patterns does TDB1 contain? 

n One:  P: “{a1, …, a100}: 1” 

Why?
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Expressing Patterns in Compressed Form: Max-Patterns

¨ Solution 2: Max-patterns:  A pattern X is a max-pattern if X is frequent and there 
exists no frequent super-pattern Y כ X 

¨ Difference with closed-patterns?

¤ Do not care about the real support of the sub-patterns of a max-pattern

¤ Let Transaction DB TDB1: T1: {a1, …, a50};  T2: {a1, …, a100} 

¤ Suppose minsup = 1. How many max-patterns does TDB1 contain? 

n One:  P: “{a1, …, a100}: 1” 

¨ Max-pattern is a lossy compression! 
¤ We only know {a1, …, a40} is frequent
¤ But we do not know the real support of {a1, …, a40}, …, any more!
¤ Thus in many applications, closed-patterns are more desirable than max-patterns
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Example

{all frequent patterns} ⊇ {closed frequent patterns} ⊇ {max frequent patterns}
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Example

The set of closed-patterns contains complete information regarding the frequent itemsets. 
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Quiz

¨ Given closed frequent itemsets: 

C = { {a1, a2, …, a100}: 1;    {a1, a2, …, a50}: 2 }

Is {a2, a45} frequent? Can we know its support? 
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Quiz (Cont’d)

¨ Given maximal frequent itemset:

M = {{a1, a2, …, a100}: 1}

What is the support of {a8, a55}?
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Mining Frequent Patterns, Association and Correlations: 
Basic Concepts and Methods

¨ Basic Concepts

¨ Efficient Pattern Mining Methods

¤ The Apriori Algorithm

¤ Application in Classification

¨ Pattern Evaluation 

¨ Summary
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Efficient Pattern Mining Methods
¨ The Downward Closure Property of Frequent Patterns

¨ The Apriori Algorithm

¨ Extensions or Improvements of Apriori

¨ Mining Frequent Patterns by Exploring Vertical Data Format

¨ FPGrowth:  A Frequent Pattern-Growth Approach

¨ Mining Closed Patterns 
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The Downward Closure Property of Frequent Patterns

¤ Observation:  From TDB1: T1: {a1, …, a50};  T2: {a1, …, a100}
n We get a frequent itemset:  {a1, …, a50}
n Also, its subsets are all frequent: {a1}, {a2}, …, {a50}, {a1, a2}, …, {a1, …, 

a49}, …
n There must be some hidden relationships among frequent patterns! 
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The Downward Closure Property of Frequent Patterns

¤ Observation:  From TDB1: T1: {a1, …, a50};  T2: {a1, …, a100}
n We get a frequent itemset:  {a1, …, a50}
n Also, its subsets are all frequent: {a1}, {a2}, …, {a50}, {a1, a2}, …, {a1, …, 

a49}, …
n There must be some hidden relationships among frequent patterns! 

¨ The downward closure (also called “Apriori”) property of frequent patterns
n If {beer, diaper, nuts} is frequent, so is {beer, diaper}
n Every transaction containing {beer, diaper, nuts} also contains {beer, diaper} 
n Apriori:  Any subset of a frequent itemset must be frequent

A sharp knife for pruning!
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The Downward Closure Property of Frequent Patterns

¤ Observation:  From TDB1: T1: {a1, …, a50};  T2: {a1, …, a100}
n We get a frequent itemset:  {a1, …, a50}
n Also, its subsets are all frequent: {a1}, {a2}, …, {a50}, {a1, a2}, …, {a1, …, 

a49}, …
n There must be some hidden relationships among frequent patterns! 

¨ The downward closure (also called “Apriori”) property of frequent patterns
n If {beer, diaper, nuts} is frequent, so is {beer, diaper}
n Every transaction containing {beer, diaper, nuts} also contains {beer, diaper} 
n Apriori:  Any subset of a frequent itemset must be frequent

¨ Efficient mining methodology
n If any subset of an itemset S is infrequent, then there is no chance for S to be 

frequent—why do we even have to consider S ?! 

A sharp knife for pruning!
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Apriori Pruning and Scalable Mining Methods

¨ Apriori pruning principle: If there is any itemset which is infrequent, its 
superset should not even be generated! 
¤ (Agrawal & Srikant @VLDB’94, Mannila, et al. @ KDD’ 94)

¨ Scalable mining Methods:  Three major approaches
¤ Level-wise, join-based approach:  

n Apriori (Agrawal & Srikant@VLDB’94)

¤ Vertical data format approach: 
n Eclat (Zaki, Parthasarathy, Ogihara, Li @KDD’97)

¤ Frequent pattern projection and growth: 
n FPgrowth (Han, Pei, Yin @SIGMOD’00)
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Apriori: A Candidate Generation & Test Approach

¨ Outline of Apriori (level-wise, candidate generation and test) 

¤ Initially, scan DB once to get frequent 1-itemset

¤ Repeat

n Generate length-(k+1) candidate itemsets from length-k frequent itemsets

n Test the candidates against DB to find frequent (k+1)-itemsets

n Set k := k +1

¤ Until no frequent or candidate set can be generated

¤ Return all the frequent itemsets derived
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The Apriori Algorithm (Pseudo-Code)

Ck: Candidate itemset of size k

Fk : Frequent itemset of size k

k := 1;
Fk := {frequent items};   // frequent 1-itemset
While (Fk != Æ) do { // when Fk is non-empty

Ck+1 := candidates generated from Fk;  // candidate generation
Derive Fk+1 by counting candidates in Ck+1 with respect to TDB at minsup;
k := k + 1
}

return Èk Fk // return Fk generated at each level
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The Apriori Algorithm—An Example 

Database TDB

1st scan

C1 F1

F2
C2 C2

2nd scan

C3 F33rd scan

Tid Items
10 A, C, D
20 B, C, E
30 A, B, C, E
40 B, E

Itemset sup
{A} 2
{B} 3
{C} 3
{D} 1
{E} 3

Itemset sup
{A} 2
{B} 3
{C} 3
{E} 3

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

Itemset sup
{A, B} 1
{A, C} 2
{A, E} 1
{B, C} 2
{B, E} 3
{C, E} 2

Itemset sup
{A, C} 2
{B, C} 2
{B, E} 3
{C, E} 2

Itemset
{B, C, E}

Itemset sup
{B, C, E} 2

minsup = 2
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The Apriori Algorithm—An Example 

Database TDB

1st scan

C1 F1

F2
C2 C2

2nd scan

C3 F33rd scan

Tid Items
10 A, C, D
20 B, C, E
30 A, B, C, E
40 B, E

Itemset sup
{A} 2
{B} 3
{C} 3
{D} 1
{E} 3

Itemset sup
{A} 2
{B} 3
{C} 3
{E} 3

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

Itemset sup
{A, B} 1
{A, C} 2
{A, E} 1
{B, C} 2
{B, E} 3
{C, E} 2

Itemset sup
{A, C} 2
{B, C} 2
{B, E} 3
{C, E} 2

Itemset
{B, C, E}

Itemset sup
{B, C, E} 2

minsup = 2

Why?



51

¨ How to generate candidates?

¤ Step 1: self-joining Fk

¤ Step 2: pruning

Apriori: Implementation Tricks
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abc abd acd ace bcd

abcd acde

self-join self-join

Apriori: Implementation Tricks
¨ How to generate candidates?

¤ Step 1: self-joining Fk

¤ Step 2: pruning

¨ Example of candidate-generation

¤ F3 = {abc, abd, acd, ace, bcd}

¤ Self-joining: F3*F3

n abcd from abc and abd

n acde from acd and ace
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abc abd acd ace bcd

abcd acde

self-join self-join

Apriori: Implementation Tricks
¨ How to generate candidates?

¤ Step 1: self-joining Fk

¤ Step 2: pruning

¨ Example of candidate-generation
¤ F3 = {abc, abd, acd, ace, bcd}
¤ Self-joining: F3*F3

n abcd from abc and abd
n acde from acd and ace

¤ Pruning:
n acde is removed because ade is not in F3

¤ C4 = {abcd}

pruned
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¨ Suppose the items in Fk-1 are listed 
in an order

¨ Step 1: self-joining Fk-1

insert into Ck

select p.item1, p.item2, …, p.itemk-1, q.itemk-1

from Fk-1 as p, Fk-1 as q
where p.item1= q.item1, …, p.itemk-2 = q.itemk-2, p.itemk-1 < q.itemk-1

¨ Step 2: pruning
for all itemsets c in Ck do

for all (k-1)-subsets s of  c do
if (s is not in Fk-1) then delete c from Ck

Candidate Generation: An SQL Implementation

abc abd acd ace bcd

abcd acde

self-join self-join

pruned
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Apriori Adv/Disadv

¨ Advantages:
¤ Uses large itemset property
¤ Easily parallelized
¤ Easy to implement

¨ Disadvantages:
¤ Assumes transaction database is memory resident
¤ Requires up to m database scans
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Classification based on Association Rules (CBA)

¨ Why?
¤ Can effectively uncover the correlation structure in data
¤ AR are typically quite scalable in practice
¤ Rules are often very intuitive

n Hence classifier built on intuitive rules is easier to interpret

¨ When to use?
¤ On large dynamic datasets where class labels are available and the correlation 

structure is unknown.
¤ Multi-class categorization problems
¤ E.g. Web/Text Categorization, Network Intrusion Detection
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Classification based on Association Rules (CBA)

¨ Input
¤ <feature vector> <class label(s)>
¤ <feature vector> = w1,…,wN
¤ <class label(s)> = c1,…,cM

¨ Run AR with minsup and minconf
¤ Prune rules of form

n w1 à w2, [w1,c2] à c3 etc.

¤ Keep only rules satisfying the constraints:
n W à C (Left: only composed of w1,…wN and Right: only composed of c1,…cM)

e.g., text categorization
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CBA: Text Categorization (cont.)

¨ Order remaining rules
¤ By confidence

n 100%
n R1: W1 à C1 (support 40%)
n R2: W4 à C2 (support 60%)

n 95%
n R3: W3 à C2 (support 30%)
n R4: W5 à C4 (support 70%)

¤ And within each confidence level by support
n Ordering R2, R1, R4, R3

Classification based 
Association
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CBA: Text Categorization (cont.)

¨ Take training data and evaluate the predictive ability of each rule, 
prune rules that are subsumed by superior rules
¤ T1: W1 W5 C1,C4
¤ T2: W2  W4 C2 Note: only a subset
¤ T3: W3 W4 C2 of transactions
¤ T4: W5 W8 C4 in training data

n Rule R3 would be pruned in this example if it is always subsumed by Rule R2
R3: W3 à C2
R2: W4 à C2

Why?
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CBA: Text Categorization (cont.)

¨ Take training data and evaluate the predictive ability of each rule, 
prune rules that are subsumed by superior rules
¤ T1: W1 W5 C1,C4
¤ T2: W2  W4 C2 Note: only a subset
¤ T3: W3 W4 C2 of transactions
¤ T4: W5 W8 C4 in training data

n Rule R3 would be pruned in this example if it is always subsumed by Rule R2
{T3} is predictable by R3: W3 à C2 
{T2, T3} is predictable by R2:  W4 à C2 
R3 is subsumed by R2, and will therefore be pruned. 
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Formal Concepts of Model

¨ Given two rules ri and rj, define: ri ! rj if
The confidence of ri is greater than that of rj, or
Their confidences are the same, but the support of ri is greater than that of rj, or
Both the confidences and supports are the same, but ri is generated earlier than  

rj.

¨ Our classifier model is of the following format:
<r1, r2, …, rn, default_class>, 
where  riÎ R, ra ! rb if  b>a

¨ Other models possible
¤ Sort by length of antecedent
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Using the CBA model to classify

¨ For a new transaction
¤ W1, W3, W5

¤ Pick the k-most confident rules that apply (using the precedence ordering 
established in the baseline model)

¤ The resulting classes are the predictions for this transaction 
n If k = 1 you would pick ?
n If k = 2 you would pick ? •Conf: 100%

•R1: W1 à C1 (support 40%)
•R2: W4 à C2 (support 60%)

•Conf: 95%
•R3: W3 à C2 (support 30%)
•R4: W5 à C4 (support 70%)
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Using the CBA model to classify

¨ For a new transaction
¤ W1, W3, W5

¤ Pick the k-most confident rules that apply (using the precedence ordering 
established in the baseline model)

¤ The resulting classes are the predictions for this transaction 
n If k = 1 you would pick C1
n If k = 2 you would pick C1, C4 (multi-class)

¤ If W9, W10 (not covered by any rule), you would pick C2 (assuming it’s the 
default, most dominant class)

¤ Accuracy measurements as before (Classification Error)
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CBA: Procedural Steps
¨ Preprocessing, Training and Testing data split

¨ Compute AR on Training data
¤ Keep only rules of form Xà C

n C is class label itemset and X is feature itemset

¨ Order AR
¤ According to confidence
¤ According to support (at each confidence level)

¨ Prune away rules that lack sufficient predictive ability on training data (starting top-down)
¤ Rule subsumption

¨ For data that is not predictable, pick most dominant class as default class

¨ Test on testing data and report accuracy
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Apriori: Improvements and Alternatives
¨ Reduce passes of transaction database scans

¤ Partitioning (e.g., Savasere, et al., 1995)
¤ Dynamic itemset counting (Brin, et al., 1997)

¨ Shrink the number of candidates
¤ Hashing (e.g., DHP: Park, et al., 1995)
¤ Pruning by support lower bounding (e.g., Bayardo 1998)
¤ Sampling (e.g., Toivonen, 1996)

¨ Exploring special data structures
¤ Tree projection (Agarwal, et al., 2001)
¤ H-miner (Pei, et al., 2001)
¤ Hypecube decomposition (e.g., LCM: Uno, et al., 2004)

To be discussed in 
subsequent slides

To be discussed in 
subsequent slides
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<1> Partitioning: Scan Database Only Twice
¨ Theorem: Any itemset that is potentially frequent in TDB must be frequent in at least one of 

the partitions of TDB   

Why?
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<1> Partitioning: Scan Database Only Twice
¨ Theorem: Any itemset that is potentially frequent in TDB must be frequent in at least one of 

the partitions of TDB   

TDB1 TDB2 TDBk+ =       TDB++
sup1(X) < σ|TDB1| sup2(X) < σ|TDB2| supk(X) < σ|TDBk| sup(X) < σ|TDB|

Here is the proof!

. . .
. . .

Proof by contradiction



68

<1> Partitioning: Scan Database Only Twice
¨ Theorem: Any itemset that is potentially frequent in TDB must be frequent in at least one of 

the partitions of TDB   

TDB1 TDB2 TDBk+ =       TDB++
sup1(X) < σ|TDB1| sup2(X) < σ|TDB2| supk(X) < σ|TDBk| sup(X) < σ|TDB|

Here is the proof!

. . .
. . .

q Method: Scan DB twice (A. Savasere, E. Omiecinski and S. Navathe, VLDB’95)
q Scan 1: Partition database so that each partition can fit in main memory 
q Mine local frequent patterns in this partition

q Scan 2: Consolidate global frequent patterns
q Find global frequent itemset candidates (those frequent in at least one partition)
q Find the true frequency of those candidates, by scanning TDBi one more time
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<2> Direct Hashing and Pruning (DHP): 

¨ Reduce candidate number: (J. Park, M. Chen, and P. Yu, SIGMOD’95)
¨ Hashing: Different itemsets may have the same hash value: v = hash(itemset)
¨ 1st scan: When counting the 1-itemset, hash 2-itemset to calculate the bucket count
¨ Observation: A k-itemset cannot be frequent if its corresponding hashing bucket 

count is below the minsup threshold
¨ Example: At the 1st scan of TDB, count 1-itemset, and

¤ Hash 2-itemsets in each transaction to its bucket
n {ab, ad, ce}
n {bd, be, de}
n …

¤ At the end of the first scan,
n if minsup = 80, remove ab, ad, ce, since count{ab, ad, ce} < 80

Hash Table

Itemsets Count

{ab, ad, ce} 35

{bd, be, de} 298

…… …
{yz, qs, wt} 58



70

<2> Direct Hashing and Pruning (DHP)

¨ DHP (Direct Hashing and Pruning): (J. Park, M. Chen, and P. Yu, SIGMOD’95)
¨ Hashing: Different itemsets may have the same hash value: v = hash(itemset)
¨ 1st scan: When counting the 1-itemset, hash 2-itemset to calculate the bucket count

¨ Observation: A k-itemset cannot be frequent if its corresponding hashing bucket 
count is below the minsup threshold

¨ Example: 
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<3> Exploring Vertical Data Format: ECLAT

¨ ECLAT (Equivalence Class Transformation): A depth-first search algorithm using set 
intersection [Zaki et al. @KDD’97] 

¨ Tid-List: List of transaction-ids containing an itemset

¨ Vertical format: t(e) = {T10, T20, T30}; t(a) = {T10, T20}; t(ae) = {T10, T20}

¨ Properties of Tid-Lists

¤ t(X) = t(Y): X and Y always happen together (e.g., t(ac} = t(d}) 

¤ t(X) Ì t(Y): transaction having X always has Y (e.g., t(ac) Ì t(ce))

¨ Deriving frequent patterns based on vertical intersections

¨ Using diffset to accelerate mining

¤ Only keep track of differences of tids

¤ t(e) = {T10, T20, T30}, t(ce) = {T10, T30} → Diffset (ce, e) = {T20}

A transaction DB in 
Horizontal Data Format

Item TidList

a 10, 20

b 20, 30

c 10, 30

d 10

e 10, 20, 30

The transaction DB in 
Vertical Data Format

Tid Itemset

10 a, c, d, e

20 a, b, e

30 b, c, e
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<4> Mining Frequent Patterns by Pattern Growth

¨ Apriori:  A breadth-first search mining algorithm

n First find the complete set of frequent k-itemsets

n Then derive frequent (k+1)-itemset candidates

n Scan DB again to find true frequent (k+1)-itemsets

Two nontrivial costs:
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<4> Mining Frequent Patterns by Pattern Growth

¨ Apriori:  A breadth-first search mining algorithm

n First find the complete set of frequent k-itemsets

n Then derive frequent (k+1)-itemset candidates

n Scan DB again to find true frequent (k+1)-itemsets

¨ Motivation for a different mining methodology

¤ Can we mine the complete set of frequent patterns without such a costly generation process?

¤ For a frequent itemset ρ, can subsequent search be confined to only those 
transactions that contain ρ?

n A depth-first search mining algorithm?

¨ Such thinking leads to a frequent pattern (FP) growth approach: 

¤ FPGrowth (J. Han, J. Pei, Y. Yin, “Mining Frequent Patterns without Candidate Generation,” SIGMOD 2000)
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<4> High-level Idea of FP-growth Method
¨ Essence of frequent pattern growth (FPGrowth) methodology

¤ Find frequent single items and partition the database based on each such 
single item pattern 

¤ Recursively grow frequent patterns by doing the above for each partitioned 
database (also called the pattern’s conditional database) 

¤ To facilitate efficient processing, an efficient data structure, FP-tree, can be 
constructed

¨ Mining becomes 

¤ Recursively construct and mine (conditional) FP-trees 

¤ Until the resulting FP-tree is empty, or until it contains only one path—single 
path will generate all the combinations of its sub-paths, each of which is a 
frequent pattern
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Example: Construct FP-tree from a Transaction DB

1. Scan DB once, find single item frequent pattern: 

2. Sort frequent items in frequency descending 
order, f-list

F-list = f-c-a-b-m-p

TID Items in the Transaction Ordered, frequent itemlist
100 {f, a, c, d, g, i, m, p} f, c, a, m, p
200 {a, b, c, f, l, m, o} f, c, a, b, m
300 {b, f, h, j, o, w} f, b
400 {b, c, k, s, p} c, b, p
500 {a, f, c, e, l, p, m, n} f, c, a, m, p

f:4, a:3, c:4, b:3, m:3, p:3

Let min_support = 3
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Example: Construct FP-tree from a Transaction DB

1. Scan DB once, find single item frequent pattern: 

2. Sort frequent items in frequency descending 
order, f-list F-list = f-c-a-b-m-p

TID Items in the Transaction Ordered, frequent itemlist
100 {f, a, c, d, g, i, m, p} f, c, a, m, p
200 {a, b, c, f, l, m, o} f, c, a, b, m
300 {b, f, h, j, o, w} f, b
400 {b, c, k, s, p} c, b, p
500 {a, f, c, e, l, p, m, n} f, c, a, m, p

f:4, a:3, c:4, b:3, m:3, p:3
Let min_support = 3
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Item Frequency header

f 4

c 4

a 3

b 3

m 3

p 3

Example: Construct FP-tree from a Transaction DB

{}

f:1

c:1

a:1

m:1

p:1

1. Scan DB once, find single item frequent pattern: 

2. Sort frequent items in frequency descending 
order, f-list

3. Scan DB again, construct FP-tree
qThe frequent itemlist of each transaction is 

inserted as a branch, with shared sub-
branches merged, counts accumulated

F-list = f-c-a-b-m-p

TID Items in the Transaction Ordered, frequent itemlist
100 {f, a, c, d, g, i, m, p} f, c, a, m, p
200 {a, b, c, f, l, m, o} f, c, a, b, m
300 {b, f, h, j, o, w} f, b
400 {b, c, k, s, p} c, b, p
500 {a, f, c, e, l, p, m, n} f, c, a, m, p

f:4, a:3, c:4, b:3, m:3, p:3

Header Table
Let min_support = 3

After inserting the 1st frequent 
Itemlist: “f, c, a, m, p”
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Item Frequency header

f 4

c 4

a 3

b 3

m 3

p 3

Example: Construct FP-tree from a Transaction DB

1. Scan DB once, find single item frequent pattern: 

2. Sort frequent items in frequency descending 
order, f-list

3. Scan DB again, construct FP-tree
qThe frequent itemlist of each transaction is 

inserted as a branch, with shared sub-
branches merged, counts accumulated

F-list = f-c-a-b-m-p

TID Items in the Transaction Ordered, frequent itemlist
100 {f, a, c, d, g, i, m, p} f, c, a, m, p
200 {a, b, c, f, l, m, o} f, c, a, b, m
300 {b, f, h, j, o, w} f, b
400 {b, c, k, s, p} c, b, p
500 {a, f, c, e, l, p, m, n} f, c, a, m, p

f:4, a:3, c:4, b:3, m:3, p:3

Header Table
Let min_support = 3

After inserting the 2nd frequent 
itemlist “f, c, a, b, m”

{} 

f:2

c:2

a:2

b:1m:1

p:1 m:1
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Item Frequency header

f 4

c 4

a 3

b 3

m 3

p 3

Example: Construct FP-tree from a Transaction DB

1. Scan DB once, find single item frequent pattern: 

2. Sort frequent items in frequency descending 
order, f-list

3. Scan DB again, construct FP-tree
qThe frequent itemlist of each transaction is 

inserted as a branch, with shared sub-
branches merged, counts accumulated

F-list = f-c-a-b-m-p

TID Items in the Transaction Ordered, frequent itemlist
100 {f, a, c, d, g, i, m, p} f, c, a, m, p
200 {a, b, c, f, l, m, o} f, c, a, b, m
300 {b, f, h, j, o, w} f, b
400 {b, c, k, s, p} c, b, p
500 {a, f, c, e, l, p, m, n} f, c, a, m, p

f:4, a:3, c:4, b:3, m:3, p:3

Header Table
Let min_support = 3

After inserting all the 
frequent itemlists

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1
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Mining FP-Tree: Divide and Conquer Based on Patterns and Data
¨ Pattern mining can be partitioned according to current patterns

¤ Patterns containing p: p’s conditional database: fcam:2, cb:1
n p’s conditional database (i.e., the database under the condition that p exists): 

n transformed prefix paths of item p
¤ Patterns having m but no p: m’s conditional database: fca:2, fcab:1
¤ …… ……

Item Frequency Header

f 4

c 4

a 3

b 3

m 3

p 3

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Item Conditional database

c f:3
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

Conditional database of each patternmin_support = 3
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f:3

Mine Each Conditional Database Recursively
¨ For each conditional database

¤ Mine single-item patterns
¤ Construct its FP-tree & mine it

{}

f:3

c:3

a:3

item cond. data base

c f:3
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

Conditional Data Bases

p’s conditional DB: fcam:2, cb:1 → c: 3
m’s conditional DB: fca:2, fcab:1 → fca: 3

b’s conditional DB: fca:1, f:1, c:1 → ɸ
{}

f:3

c:3

am’s FP-tree

m’s FP-tree

{}

f:3

cm’s FP-tree

{}

cam’s FP-tree

m: 3
fm: 3, cm: 3, am: 3 
fcm: 3, fam:3, cam: 3 
fcam: 3

Actually, for single branch FP-tree, all the 
frequent patterns can be generated in one shot

min_support = 3

Then, mining m’s FP-tree: fca:3
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A Special Case: Single Prefix Path in FP-tree
¨ Suppose a (conditional) FP-tree T has a shared single prefix-path P

¨ Mining can be decomposed into two parts

¤ Reduction of the single prefix path into one node

¤ Concatenation of the mining results of the two parts

Ú

a2:n2

a3:n3

a1:n1

{}

b1:m1 c1:k1

c2:k2 c3:k3

b1:m1 c1:k1

c2:k2 c3:k3

r1

+
a2:n2

a3:n3

a1:n1

{}

r1 =
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FPGrowth: Mining Frequent Patterns by Pattern Growth

¨ Essence of frequent pattern growth (FPGrowth) methodology

¤ Find frequent single items and partition the database based on each such 
single item pattern 

¤ Recursively grow frequent patterns by doing the above for each partitioned 
database (also called the pattern’s conditional database) 

¤ To facilitate efficient processing, an efficient data structure, FP-tree, can be 
constructed

¨ Mining becomes 

¤ Recursively construct and mine (conditional) FP-trees 

¤ Until the resulting FP-tree is empty, or until it contains only one path—single 
path will generate all the combinations of its sub-paths, each of which is a 
frequent pattern
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Assume only f’s are 
frequent & the 
frequent item 
ordering is: f1-f2-f3-f4

Scaling FP-growth by Item-Based Data Projection
¨ What if FP-tree cannot fit in memory?—Do not construct FP-tree

¤ “Project” the database based on frequent single items
¤ Construct & mine FP-tree for each projected DB

¨ Parallel projection vs. partition projection 
¤ Parallel projection: Project the DB on each frequent item

n Space costly, all partitions can be processed in parallel
¤ Partition projection: Partition the DB in order

n Passing the unprocessed parts to subsequent partitions

f2 f3 f4 g h
f3 f4 i j 
f2 f4 k 
f1 f3 h
…

Trans. DB Parallel projection

f2 f3
f3
f2
…

f4-proj. DB f3-proj. DB f4-proj. DB

f2
f1
…

Partition projection

f2 f3
f3
f2
…

f1
…

f3-proj. DB

f2 will be projected to f3-proj. 
DB only when processing f4-
proj. DB 
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Chapter 6: Mining Frequent Patterns, Association and 
Correlations: Basic Concepts and Methods

¨ Basic Concepts

¨ Efficient Pattern Mining Methods

¨ Pattern Evaluation 

¨ Summary
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Pattern Evaluation

¨ Limitation of the Support-Confidence Framework

¨ Interestingness Measures: Lift and χ2

¨ Null-Invariant Measures

¨ Comparison of Interestingness Measures
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¨ Pattern mining will generate a large set of patterns/rules

¤ Not all the generated patterns/rules are interesting

How to Judge if a Rule/Pattern Is Interesting?
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How to Judge if a Rule/Pattern Is Interesting?
¨ Pattern mining will generate a large set of patterns/rules

¤ Not all the generated patterns/rules are interesting

¨ Interestingness measures: Objective vs. Subjective
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How to Judge if a Rule/Pattern Is Interesting?
¨ Pattern mining will generate a large set of patterns/rules

¤ Not all the generated patterns/rules are interesting

¨ Interestingness measures: Objective vs. Subjective
¤ Objective interestingness measures

n Support, confidence, correlation, …

¤ Subjective interestingness measures: 
n Different users may judge interestingness differently
n Let a user specify

n Query-based:  Relevant to a user’s particular request

n Judge against one’s knowledge base
n unexpected, freshness, timeliness
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Limitation of the Support-Confidence Framework

¨ Are s and c interesting in association rules: “A Þ B” [s, c]? 
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Limitation of the Support-Confidence Framework

¨ Are s and c interesting in association rules: “A Þ B” [s, c]? 
¨ Example:  Suppose one school may have the following statistics on # of students who 

may play basketball and/or eat cereal:
play-basketball not play-basketball sum (row)

eat-cereal 400 350 750
not eat-cereal 200 50 250

sum(col.) 600 400 1000

2-way contingency table
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Limitation of the Support-Confidence Framework

¨ Are s and c interesting in association rules: “A Þ B” [s, c]? 
¨ Example:  Suppose one school may have the following statistics on # of students 

who may play basketball and/or eat cereal:

¨ Association rule mining may generate the following:

¤ play-basketball Þ eat-cereal [40%, 66.7%]  (higher s & c)

¨ But this strong association rule is misleading: The overall % of students eating 
cereal is 75% > 66.7%, a more telling rule:
n ¬ play-basketball Þ eat-cereal [35%, 87.5%] (high s & c)

play-basketball not play-basketball sum (row)
eat-cereal 400 350 750
not eat-cereal 200 50 250

sum(col.) 600 400 1000

2-way contingency table
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Interestingness Measure: Lift
¨ Measure of dependent/correlated events: lift

B ¬B ∑row
C 400 350 750

¬C 200 50 250
∑col. 600 400 1000

Lift is more telling than s & c

𝑙𝑖𝑓𝑡 𝐵, 𝐶 = !(#→%)
'(%) = ((%|#)

((%) = ((#∪%)
((#)((%)
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Interestingness Measure: Lift
¨ Measure of dependent/correlated events: lift

B ¬B ∑row
C 400 350 750

¬C 200 50 250
∑col. 600 400 1000

Lift is more telling than s & c

q Lift(B, C) may tell how B and C are correlated

q Lift(B, C) = 1: B and C are independent

q > 1:  positively correlated

q < 1: negatively correlated

𝑙𝑖𝑓𝑡 𝐵, 𝐶 = !(#→%)
'(%) = ((%|#)

((%) = ((#∪%)
((#)((%)
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Interestingness Measure: Lift
¨ Measure of dependent/correlated events: lift

33.1
1000/2501000/600

1000/200),( =
´

=¬CBlift

89.0
1000/7501000/600

1000/400),( =
´

=CBlift

B ¬B ∑row
C 400 350 750

¬C 200 50 250
∑col. 600 400 1000

Lift is more telling than s & c

q Lift(B, C) may tell how B and C are correlated

q Lift(B, C) = 1: B and C are independent

q > 1:  positively correlated

q < 1: negatively correlated

q In our example,

q Thus, B and C are negatively correlated since lift(B, C) < 1; 

q B and ¬C are positively correlated since lift(B, ¬C) > 1

𝑙𝑖𝑓𝑡 𝐵, 𝐶 = !(#→%)
'(%) = ((%|#)

((%) = ((#∪%)
((#)((%)
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Interestingness Measure: χ2

¨ Another measure to test correlated events: χ2
B ¬B ∑row

C 400 (450) 350 (300) 750
¬C 200 (150) 50 (100) 250
∑col 600 400 1000å -

=
Expected

ExpectedObserved 2
2 )(c

Expected value

Observed value
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Interestingness Measure: χ2

¨ Another measure to test correlated events: χ2
B ¬B ∑row

C 400 (450) 350 (300) 750
¬C 200 (150) 50 (100) 250
∑col 600 400 1000å -

=
Expected

ExpectedObserved 2
2 )(c

q For the table on the right,

q By consulting a table of critical values of the χ2 distribution, one can conclude 
that the chance for B and C  to be independent is very low (< 0.01)

q χ2-test shows B and C are negatively correlated since the expected value is 
450 but the observed is only 400

q Thus, χ2 is also more telling than the support-confidence framework

Expected value

Observed valueχ 2 =
(400− 450)2

450
+
(350−300)2

300
+
(200−150)2

150
+
(50−100)2

100
= 55.56
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Lift and χ2 : Are They Always Good Measures?

¨ Null transactions:  Transactions that contain 
neither B nor C

¨ Let’s examine the new dataset D

¤ BC (100) is much rarer than B¬C (1000) and ¬BC (1000), 
but there are many ¬B¬C (100000)

¤ Unlikely B & C will happen together!

¨ But, Lift(B, C) = 8.44 >> 1 (Lift shows B and C are strongly 
positively correlated!)

¨ χ2 = 670: Observed(BC) >> expected value (11.85)

¨ Too many null transactions may “spoil the soup”!

B ¬B ∑row
C 100 1000 1100

¬C 1000 100000 101000
∑col. 1100 101000 102100

B ¬B ∑row
C 100 (11.85) 1000 1100

¬C 1000 (988.15) 100000 101000
∑col. 1100 101000 102100

null transactions

Contingency table with expected values added
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Interestingness Measures & Null-Invariance
¨ Null invariance: Value does not change with the # of null-transactions
¨ A few interestingness measures:  Some are null invariant

Χ2 and lift are not 
null-invariant

Jaccard, consine, 
AllConf, MaxConf, 
and Kulczynski are 
null-invariant 
measures
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Null Invariance: An Important Property
¨ Why is null invariance crucial for the analysis of massive transaction data? 

¤ Many transactions may contain neither milk nor coffee!

q Lift and c2 are not null-invariant: not good to evaluate 
data that contain too many or too few null transactions!

q Many measures are not null-invariant! 

Null-transactions 
w.r.t. m and c

milk vs. coffee contingency table
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Comparison of Null-Invariant Measures
¨ Not all null-invariant measures are created equal
¨ Which one is better?

¤ D4—D6 differentiate the null-invariant measures
¤ Kulc (Kulczynski 1927) holds firm and is in balance of both 

directional implications

All 5 are null-invariant

Subtle: They disagree on those cases

2-variable contingency table
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Imbalance Ratio with Kulczynski Measure

¨ IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in rule implications:

¨ Kulczynski and Imbalance Ratio (IR) together present a clear picture for all the three 
datasets D4 through D6

¤ D4  is neutral & balanced;  D5  is neutral but imbalanced 

¤ D6  is neutral but very imbalanced 
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What Measures to Choose for Effective Pattern Evaluation?

¨ Null value cases are predominant in many large datasets 
¤ Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the 

papers; ……

¨ Null-invariance is an important property

¨ Lift, χ2 and cosine are good measures if null transactions are not predominant
¤ Otherwise, Kulczynski + Imbalance Ratio should be used to judge the interestingness of a pattern 



104

Chapter 6: Mining Frequent Patterns, Association and Correlations: 
Basic Concepts and Methods

¨ Basic Concepts

¨ Efficient Pattern Mining Methods

¨ Pattern Evaluation 

¨ Summary


