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Graphs from the Real World

from the
Web

to the Web

to the Web

The Web: hyperlinked docs

TouchGraph

Social networks

https: / /chortle.ccsu.edu/Java5 /Notes /appendixA /htmlPart2_é.html
hitp: / /www.touchgraph.com /news
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Primitives and Notations

G=(V,E
E C V x V, and can also be represented as an adjacency matrix.

Undirected vs. directed graph

A directed edge (v;,v;) 1s also called an arc, and 1s said to be from v; to v;.
We also say that v; 1s the tail and v; the head of the arc.



Primitives and Notations

I
0 G =(V,E)

E can also be represented as an adjacency matrix

o Undirected vs. directed graph

1 Degree

The degree of a node v; € V 1s the number of edges incident with it




Primitives and Notations

I
0 G =(V,E)

E can also be represented as an adjacency matrix

o Undirected vs. directed graph

1 Degree

(b)

For directed graphs, the indegree of node v;, denoted as id(v;), 1s the number of
edges with v; as head, that is, the number of incoming edges at v;. The outdegree
of v;, denoted od(v;). 1s the number of edges with v; as the tail, that i1s, the number
of outgoing edges from v;.



Primitives and Notations

G = (V, E)
E can also be represented as an adjacency matrix
Undirected vs. directed graph

Degree

(Shortest) distance between two vertices

The eccentricity of a node v; is the maximum distance from v; to any other node in the
graph:

Eccentricity(v) = maxdist(u, v)
u#v
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Primitives and Notations

I
0 G =(V,E)

E can also be represented as an adjacency matrix
o Undirected vs. directed graph
1 Degree
1 (Shortest) distance between two vertices

The radius of a connected graph, denoted r(G), 1s the minimum eccentricity of any
node 1n the graph:

Radius(G) = min Eccentricity(v)
veV



Primitives and Notations

I
0 G =(V,E)

E can also be represented as an adjacency matrix
o Undirected vs. directed graph

1 Degree

1 (Shortest) distance between two vertices

The diameter, denoted d(G), 1s the maximum eccentricity of any vertex in the
graph:

Diameter(G) = ma\;< Eccentricity(v)
Ve
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Properties of Nodes
N

o Centrality: how “central” or important a node is in the graph

1 How close the node is to all other nodes?
1

Lusy dist(u, v)

A node v; with the smallest total distance, ) j d(vi,vj), 1s called the median node.

Closeness Centrality(v) =

11
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Properties of Nodes

Centrality: how “central” or important a node is in the graph

How close the node is to all other nodes?

How much is a node a “choke point”?

Betweenness centrality: How many shortest paths between all pairs of vertices include vi.

L Nk (V;)

Vik(vi) = e the fraction of shortest paths between vertices v; and vithrough v;
i

The betweenness centrality for a node v; 1s defined as

c(v;) = ZZ ;Vj;((Uf) _ ZZ ﬁjj.?(:z)

j#i ki j#i ki /

k> j k=>j
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Properties of Nodes

Clustering coefficient: how much does a node cluster with neighbors
Local clustering coefficient

The local clustering coefficient of a vertex (node) in a graph quantifies how
close its neighbors are to being a clique (complete graph).

The proportion of links between the vertices within its neighbourhood
divided by the number of links that could possibly exist between them.



Background
N

11 Besides the keywords, what other evidence can one use to rate the
importance of a webpage?
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Background

Besides the keywords, what other evidence can one use to rate the
importance of a webpage?

Solution: Use the hyperlink structure

E.g. a webpage linked by many webpages is probably important.

but this method is not global (comprehensive).

PageRank was developed by Larry Page and Sergey Brin in 1998.



ldea

1 A graph representing WWW
o1 Node: webpage
o Directed edge: hyperlink
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ldea

A graph representing WWW
Node: webpage
Directed edge: hyperlink

A user randomly clicks the hyperlink to surf WWW,

The probability a user stop in a particular webpage is the PageRank value.
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ldea

A graph representing WWW
Node: webpage

Directed edge: hyperlink

A user randomly clicks the hyperlink to surf WWW,

The probability a user stop in a particular webpage is the PageRank value.

A node that is linked by many nodes with high PageRank value
receives a high rank itself;

If there are no links to a node, then there is no support for that page.



Formal Formulation

Let G = (V, E) be a directed graph, with |V| = n. The adjacency matrix of G is an
n X n asymmetric matrix A given as

I if (u,v) ek

A \ —
ey {0 if (u,v) ¢ E

Let p(u) be a positive real number, called the prestige score for node u.
p) =Y Adu.v) pu)
= Alw.u) pu)

the prestige of a node depends on the prestige of other nodes pointing to it
21



Formal Formulation
B

Let p(u) be a positive real number, called the prestige score for node u.
p()=Y Au,v) pu)
=Y Alw,u)- pu)

the prestige of a node depends on the prestige of other nodes pointing to it.

Across all the nodes, we can recursively express the prestige scores as

p'=A'p
where p 1s an n-dimensional column vector corresponding to the prestige scores for

each vertex.
22



lterative Computation
N
Pr = ATpk—l
=ATATpn) = (AT)ZPk—z
= (qu (ATpr3) = (AT)Spk—F;

= (A7) po

where pg 1s the initial prestige vector. It 1s well known that the vector p, converges to
the dominant eigenvector of A’ with increasing k.
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Example 1
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1/2 0 1

0 1/2 0

PageRank Calculation: first iteration

1/2 1/2 0

(1/2 1/2 0]

M= |1/2 0 1]

| 0 1/2 0

| yahoo | (1/3 ]

Amazon | = |1/3

_Microsoft | _1 / 3_
1/3
1/3
1/3_

=the transpose of A
(adjacency matrix)




Example 1

]
1/2 1/2 0]
M= |1/2 0 1]
_O 1/2 O_
 yahoo | [1/3]
Amazon | = [1/3
o _Microsoft | _l / 3_

5/12]  [1/2 1/2 0][1/3
1/3 | =11/2 0 1/[1/2
1/4 0 1/2 0||1/6

PageRank Calculation: second iteration
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Example 1

]
1/2 1/2 0
M= [1/2 0 1]
0 1/2 0
 yahoo | [1/3]
Amazon | = [1/3
| Microsoft | 1/3 |

3/8 | [ 5/12 1 (2/5]
11/24 | [17/48| .. |2/5
| 1/6 | [11/48| |1/5]

Convergence after some iterations
26
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A simple version

Ru)=) 5 R]\(fv)

u: a webpage 14
B,: the set of u’s backlinks

N.: the number of forward links of page v

Initially, R(u) is 1/N for every webpage

lteratively update each webpage’s PR value until
convergence.
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A little more advanced version

Adding a damping factor d

Imagine that a surfer would stop clicking a hyperlink with probability
1-d

R =)y, T

R(u) is at least (1-d)/(N-1)

N is the total number of nodes.
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Other applications

Social network (Facebook, Twitter, etc)
Node: Person; Edge: Follower / Followee / Friend
Higher PR value: Celebrity
Citation network
Node: Paper; Edge: Citation
Higher PR values: Important Papers.
Protein-protein interaction network

Node: Protein; Edge: Two proteins bind together

Higher PR values: Essential proteins.



