
Contents

7 Advanced Pattern Mining 3
7.1 Pattern Mining: A Road Map . 3
7.2 Pattern Mining in MultiLevel, Multidimensional Space 7

7.2.1 Mining Multilevel Associations 7
7.2.2 Mining Multidimensional Associations 11
7.2.3 Mining Quantitative Association Rules 13
7.2.4 Mining Rare Patterns and Negative Patterns 16

7.3 Constraint-Based Frequent Pattern Mining 18
7.3.1 Metarule-Guided Mining of Association Rules 19
7.3.2 Constraint-Based Pattern Generation: Pruning Pattern

Space and Pruning Data Space 20
7.4 Mining High-Dimensional Data and Colossal Patterns 26

7.4.1 Mining Colossal Patterns by Pattern Fusion 26
7.5 Mining Compressed or Approximate Patterns 31

7.5.1 Mining Compressed Patterns by Pattern Clustering . . . 32
7.5.2 Extracting Redundancy-Aware Top-k Patterns 34

7.6 Pattern Exploration and Application 37
7.6.1 Semantic Annotation of Frequent Patterns 37
7.6.2 Applications of Pattern Mining 41

7.7 Summary . 44
7.8 Exercises . 45
7.9 Bibliographic Notes . 48

1

2 CONTENTS

Chapter 7

Advanced Pattern Mining

Frequent pattern mining has reached far beyond the basic due to substantial research, nu-
merous extensions of the problem scope, and broad application studies. In this
chapter, you will learn methods for advanced pattern mining. We begin by
laying out a general road map for pattern mining. We introduce methods for
mining various kinds of patterns, and discuss extended applications of pat-
tern mining. We include in-depth coverage of methods for mining many kinds
of patterns: multilevel patterns, multidimensional patterns, patterns in con-
tinuous data, rare patterns, negative patterns, constrained frequent patterns,
frequent patterns in high-dimensional data, colossal patterns, and compressed
and approximate patterns. More advanced themes of pattern mining are left
for the second volume of this book. Such topics include mining sequential and
structured patterns, and mining patterns from spatiotemporal, multimedia, and
stream data. Notice that pattern mining is a more general term than frequent
pattern mining since the former covers rare and negative patterns as well. How-
ever, when there is no ambiguity, the two terms are used interchangeably.

7.1 Pattern Mining: A Road Map

Chapter 6 introduced the basic concepts, techniques, and applications of fre-
quent pattern mining using market basket analysis as an example. Many other
kinds of data, user requests, and applications have led to the development of
numerous, diverse kinds of methods for mining patterns, associations, and corre-
lation relationships. Given the rich literature on mining patterns, associations,
and correlation relationships, it is important to lay out a clear road map to
help us get an organized picture of the field and to select the best methods for
pattern mining applications.

Figure 7.1 outlines such a general road map on research into pattern mining.
Most studies mainly address three aspects of such mining: the kinds of patterns
mined, mining methodologies, and applications. Some studies, however, inte-
grate multiple aspects, e.g., different applications may need to mine different

3

4 CHAPTER 7. ADVANCED PATTERN MINING

R
e
s
e

a
r
c
h

o
n

 P
a
tt

e
r
n
 M

in
in

g

Basic Patterns

frequent pattern
association rule
closed/max pattern
generator

Basic Mining
Methods

candidate generation (Apriori , partitioning, sampling, ...)
Pattern growth (FPgrowth , HMine, FPMax, Closet+, ...)
vertical format (EClat, CHARM, ...)

Multilevel &
Multidimensional

Patterns

multilevel (uniform, varied, or itemset -based support)
multidimensional pattern (incl. high-dimensional pattern)
continuous data (discretization -based, or statistical)

Extended Patterns

approximate pattern
uncertain pattern
compressed pattern
rare pattern/negative pattern
high-dimensional and colossal patterns

Extended Data
Types

sequential ad time-series patterns
structural (e.g., tree, lattice, graph) patterns
spatial (e.g., co-location) pattern
temporal (evolutionary, periodic)
image, video and multimedia patterns
network patterns

Applications

pattern-based classification
pattern-based clustering
pattern-based semantic annotation
collaborative filtering
privacy-preserving

Kinds of
patterns
and rules

Mining Methods
Mining Interesting

Patterns

interestingness (subjective vs. objective)
constraint-based mining
correlation rules
exception rules

Distributed, parallel &
incremental

distributed/parallel mining
incremental mining
stream pattern

Extensions &
Application

Figure 7.1: A general road map on research into pattern mining.

patterns, which naturally leads to the development of new mining methodolo-
gies.

Based on pattern diversity, pattern mining can be classified using the fol-
lowing criteria:

• Basic patterns: As discussed in Chapter 6, a frequent pattern may have
several alternative forms, including a simple frequent pattern, a closed
pattern, or a maxpattern. To review, a frequent pattern is a pattern
(or set of items) that satisfies a minimum support threshold. A pattern p
is a closed pattern if there is no superpattern p′ with the same support
as p. Pattern p is a maxpattern if there exists no frequent superpattern
of p. Frequent patterns can also be mapped into association rules, or

7.1. PATTERN MINING: A ROAD MAP 5

other kinds of rules based on interestingness measures. Sometimes we
may also be interested in infrequent or rare patterns (i.e., patterns
that occur rarely but are of critical importance), or negative patterns
(i.e., patterns that reveal a negative correlation between items).

• Based on the levels of abstraction involved in a pattern: Pat-
terns or association rules may have items or concepts residing at high,
low, or multiple levels of abstraction. For example, suppose that a set of
association rules mined includes the following rules where X is a variable
representing a customer:

buys(X , “computer”) ⇒ buys(X , “printer”) (7.1)

buys(X , “laptop computer”) ⇒ buys(X , “color laser printer”) (7.2)

In Rules (7.1) and (7.2), the items bought are referenced at different lev-
els of abstraction (e.g., “computer” is a higher-level abstraction of “lap-
top computer”, and “color laser printer” is a lower-level abstraction of
“printer”). We refer to the rule set mined as consisting of multilevel as-
sociation rules. If, instead, the rules within a given set do not reference
items or attributes at different levels of abstraction, then the set contains
single-level association rules.

• Based on the number of dimensions involved in the rule or
pattern: If the items or attributes in an association rule or pattern
reference only one dimension, it is a single-dimensional association
rule/pattern. For example, Rules (7.1) and (7.2) are single-dimensional
association rules because they each refer to only one dimension, buys1.

If a rule/pattern references two or more dimensions, such as age, income,
and buys, then it is a multidimensional association rule/pattern.
The following is an example of a multidimensional rule:

age(X , “20 . . .29”)∧income(X , “52K . . . 58K”)⇒buys(X , “iPad”). (7.3)

• Based on the types of values handled in the rule or pattern: If
a rule involves associations between the presence or absence of items, it
is a Boolean association rule. For example, Rules (7.1), and (7.2) are
Boolean association rules obtained from market basket analysis.

If a rule describes associations between quantitative items or attributes,
then it is a quantitative association rule. In these rules, quantitative
values for items or attributes are partitioned into intervals. Rule (7.3) can
also be considered a quantitative association rule where the quantitative
attributes, age and income, have been discretized.

1Following the terminology used in multidimensional databases, we refer to each distinct
predicate in a rule as a dimension.

6 CHAPTER 7. ADVANCED PATTERN MINING

• Based on the constraints or criteria used to mine selective pat-

terns: The patterns or rules to be discovered can be constraint-based
(i.e., satisfying a set of user-defined constraints), approximate, com-
pressed, near-match (i.e., those that tally the support count of the near
or almost matching itemsets), top-k (i.e., the k most frequent itemsets
for a user-specified value, k), redundancy-aware top-k (i.e., the top-k
patterns with similar or redundant patterns excluded), and so on.

Alternatively, pattern mining can be classified with respect to the kinds of
data and applications involved, using the following criteria:

• Based on kinds of data and features to be mined: Given relational
and data warehouse data, most people are interested in itemsets. Thus,
frequent pattern mining in this context is essentially frequent itemset
mining, that is, to mine frequent sets of items. However, in many other
applications, patterns may involve sequences and structures. For exam-
ple, by studying the order in which items are frequently purchased, we
may find that customers tend to first buy a PC, followed by a digital cam-
era, and then a memory card. This leads to sequential patterns, i.e.,
frequent subsequences (which are often separated by some other events)
in a sequence of ordered events. We may also mine structural patterns,
that is, frequent substructures, in a structured data set. Note that structure
is a general concept that covers many different kinds of structural forms,
such as directed graphs, undirected graphs, lattices, trees, sequences, sets,
single items, or combinations of such structures. Single items are the sim-
plest form of structure. Each element of a general pattern may contain a
subsequence, a subtree, a subgraph, and so on, and such containment rela-
tionships can be defined recursively. Therefore, structural pattern mining
can be considered as the most general form of frequent pattern mining.

• Based on application domain-specific semantics: Both data and
applications can be very diverse and therefore the patterns to be mined
can differ largely based on their domain-specific semantics. Various kinds
of application data include spatial data, temporal data, spatiotemporal
data, multimedia data (like image, audio and video data), text data, time-
series, DNA and biological sequences, software programs, chemical com-
pound structures, web structures, sensor networks, social and information
networks, biological networks, data streams, and so on. This diversity
can lead to dramatically different pattern mining methodologies.

• Based on data analysis usages: Frequent pattern mining often serves
as an intermediate step for improved data understanding and more power-
ful data analysis. For example, it can be used as a feature extraction step
for classification, which is often referred to as pattern-based classifi-
cation. Similarly, pattern-based clustering has shown its strength at
clustering high-dimensional data. For improved data understanding, pat-
terns can be used for semantic annotation or contextual analysis. Pattern

7.2. PATTERN MINING IN MULTILEVEL, MULTIDIMENSIONAL SPACE7

analysis can also be used in recommendation systems, which recom-
mend information items (e.g., books, movies, web pages) that are likely
to be of interest to the user based on the patterns of similar users. Dif-
ferent analysis tasks may require mining rather different kinds of patterns
as well.

The next several sections present advanced methods and extensions of pat-
tern mining, as well as their application. Section 7.2 discusses methods for min-
ing multilevel patterns, multidimension patterns, patterns and rules with contin-
uous attributes, and negative patterns. Constraint-based pattern mining is stud-
ied in Section 7.3. Section 7.4 explains how to mine high-dimensional and colossal
patterns. The mining of compressed and approximate patterns is detailed in Sec-
tion 7.5. Section 7.6 discusses the exploration and applications of pattern mining.
More advanced topics regarding mining sequential and structural patterns, and
pattern mining in complex and diverse kinds of data are reserved for volume 2.

7.2 Pattern Mining in MultiLevel, Multidimen-

sional Space

This section focuses on methods for mining in multilevel multidimensional space.
In particular, you will learn about mining multilevel associations (Section 7.2.1),
multidimensional associations (Section 7.2.2), quantitative association rules (Sec-
tion 7.2.3), and rare patterns and negative patterns (Section 7.2.4). Multilevel
associations involve concepts at different levels of abstraction. Multidimen-
sional associations involve more than one dimension or predicate (e.g., rules
relating what a customer buys as well as the customer’s age.) Quantitative as-
sociation rules involve numeric attributes that have an implicit ordering among
values (e.g., age). Rare patterns are patterns that suggest interesting although
rare item combinations. Negative patterns show negative correlations between
items.

7.2.1 Mining Multilevel Associations

For many applications, strong associations discovered at high levels of abstrac-
tion, though with high support, could be commonsense knowledge. We may
like to drill down to find novel patterns at more detailed levels. On the other
hand, there could be too many scattered patterns at low or primitive levels of
abstraction, some of which are just trivial specializations of patterns at higher
levels. Therefore, it is interesting to examine how to develop effective methods
for mining patterns at multiple levels of abstraction, with sufficient flexibility
for easy traversal among different abstraction spaces.

Let’s examine the following example.

Example 7.1 Mining multilevel association rules. Suppose we are given the task-
relevant set of transactional data in Table 7.1 for sales in an AllElectronics

8 CHAPTER 7. ADVANCED PATTERN MINING

Table 7.1: Task-relevant data, D.
TID Items Purchased

T100 Apple-17”-MacBook-Pro Notebook, HP-Photosmart-Pro-b9180
T200 Microsoft-Office-Professional-2010, Microsoft-Wireless-Optical-Mouse-5000
T300 Logitech-VX-Nano Cordless Laser Mouse, Fellowes-GEL-Wrist-Rest
T400 Dell-Studio-XPS-16-Notebook, Canon-PowerShot-SD1400
T500 Lenovo-ThinkPad-X200 Tablet PC, Symantec-Norton-Antivirus-2010
.

all

Figure 7.2: A concept hierarchy for AllElectronics computer items.

store, showing the items purchased for each transaction. The concept hierarchy
for the items is shown in Figure 7.2. A concept hierarchy defines a sequence of
mappings from a set of low-level concepts to higher-level, more general concepts.
Data can be generalized by replacing low-level concepts within the data by their
corresponding higher-level concepts, or ancestors, from a concept hierarchy. The
concept hierarchy of Figure 7.2 has five levels, respectively referred to as levels 0
to 4, starting with level 0 at the root node for all (the most general abstraction
level). Here, level 1 includes computer, software, printer&camera, and computer
accessory, level 2 includes laptop computer, desktop computer, office software,
antivirus software, . . . , and level 3 includes Dell desktop computer, . . . , Mi-
crosoft office software, and so on. Level 4 is the most specific abstraction level
of this hierarchy. It consists of the raw data values. Concept hierarchies for
nominal attributes are often implicit within the database schema, in which case
they may be automatically generated using methods such as those described
in Chapter 3. For our example, the concept hierarchy of Figure 7.2 was gen-
erated from data on product specifications. Concept hierarchies for numeric
attributes can be generated using discretization techniques, many of which were
introduced in Chapter 3. Alternatively, concept hierarchies may be specified by
users familiar with the data, such as store managers in the case of our example.

The items in Table 7.1 are at the lowest level of the concept hierarchy of

7.2. PATTERN MINING IN MULTILEVEL, MULTIDIMENSIONAL SPACE9

Figure 7.2. It is difficult to find interesting purchase patterns at such raw or
primitive-level data. For instance, if “Dell-Studio-XPS-16-Notebook” or “Logitech-
VX-Nano Cordless Laser Mouse” each occurs in a very small fraction of the
transactions, then it can be difficult to find strong associations involving these
specific items. Few people may buy these items together, making it unlikely
that the itemset will satisfy minimum support. However, we would expect that
it is easier to find strong associations between generalized abstractions of these
items, such as between “Dell-Notebook” and “Cordless-Mouse.”

Association rules generated from mining data at multiple levels of abstrac-
tion are called multiple-level or multilevel association rules. Multilevel
association rules can be mined efficiently using concept hierarchies under a
support-confidence framework. In general, a top-down strategy is employed,
where counts are accumulated for the calculation of frequent itemsets at each
concept level, starting at the concept level 1 and working downward in the hi-
erarchy toward the more specific concept levels, until no more frequent itemsets
can be found. For each level, any algorithm for discovering frequent itemsets
may be used, such as Apriori or its variations. A number of variations to this
approach are described below, where each variation involves “playing” with the
support threshold in a slightly different way. The variations are illustrated in
Figures 7.3 and 7.4, where nodes indicate an item or itemset that has been
examined, and nodes with thick borders indicate that an examined item or
itemset is frequent.

• Using uniform minimum support for all levels (referred to as uni-
form support): The same minimum support threshold is used when
mining at each level of abstraction. For example, in Figure 7.3, a mini-
mum support threshold of 5% is used throughout (e.g., for mining from
“computer” down to “laptop computer”). Both “computer” and “laptop
computer” are found to be frequent, whereas “desktop computer” is not.

When a uniform minimum support threshold is used, the search proce-
dure is simplified. The method is also simple in that users are required to
specify only one minimum support threshold. An Apriori-like optimiza-
tion technique can be adopted, based on the knowledge that an ancestor

computer [support 5 10%]

laptop computer [support 5 6%]

Level 1
min_sup 5 5%

Level 2
min_sup 55%

desktop computer [support 5 4%]

Figure 7.3: Multilevel mining with uniform support.

10 CHAPTER 7. ADVANCED PATTERN MINING

computer [support 5 10%]

laptop computer [support 5 6%]

Level 1
min_sup 5 5%

Level 2
min_sup 5 3%

desktop computer [support 5 4%]

Figure 7.4: Multilevel mining with reduced support.

is a superset of its descendants: The search avoids examining itemsets
containing any item whose ancestors do not have minimum support.

The uniform support approach, however, has some drawbacks. It is
unlikely that items at lower levels of abstraction will occur as frequently
as those at higher levels of abstraction. If the minimum support threshold
is set too high, it could miss some meaningful associations occurring at
low abstraction levels. If the threshold is set too low, it may generate
many uninteresting associations occurring at high abstraction levels. This
provides the motivation for the following approach.

• Using reduced minimum support at lower levels (referred to as
reduced support): Each level of abstraction has its own minimum sup-
port threshold. The deeper the level of abstraction, the smaller the corre-
sponding threshold is. For example, in Figure 7.4, the minimum support
thresholds for levels 1 and 2 are 5% and 3%, respectively. In this way,
“computer,” “laptop computer,” and “desktop computer” are all consid-
ered frequent.

• Using item or group-based minimum support (referred to as
group-based support): Because users or experts often have insight as
to which groups are more important than others, it is sometimes more
desirable to set up user-specific, item, or group-based minimal support
thresholds when mining multilevel rules. For example, a user could set up
the minimum support thresholds based on product price, or on items of
interest, such as by setting particularly low support thresholds for camera
with price over $1000 or Tablet PC, in order to pay particular attention to
the association patterns containing items in these categories. For mining
patterns with mixed items from groups with different support thresholds,
usually the lowest support threshold among all the participating groups
is taken as the support threshold in mining. This will avoid filtering
out valuable patterns containing items from the group with the lowest
support threshold. In the mean time, the minimal support threshold
for each individual group should be kept to avoid generating uninteresting
itemsets from each group. Other interestingness measures can be used
after the itemset mining in order to extract truly interesting rules.

7.2. PATTERN MINING IN MULTILEVEL, MULTIDIMENSIONAL SPACE11

Notice that the Apriori property may not always hold uniformly across all
of the items when mining under reduced support and group-based support.
However, efficient methods can be developed based on the extension of the
property. The details are left as an exercise for interested readers.

A serious side effect of mining multilevel association rules is its generation of
many redundant rules across multiple levels of abstraction due to the “ancestor”
relationships among items. For example, consider the following rules where
“laptop computer” is an ancestor of “Dell laptop computer” based on the concept
hierarchy of Figure 7.2, and where X is a variable representing customers who
purchased items in AllElectronics transactions.

buys(X , “laptop computer”) ⇒ buys(X , “HP printer”)

[support = 8%, confidence = 70%] (7.4)

buys(X , “Dell laptop computer”) ⇒ buys(X , “HP printer”)

[support = 2%, confidence = 72%] (7.5)

“If Rules (7.4) and (7.5) are both mined, then how useful is the latter rule?”
you may wonder. “Does it really provide any novel information?” If the latter,
less general rule does not provide new information, then it should be removed.
Let’s look at how this may be determined. A rule R1 is an ancestor of a rule
R2, if R1 can be obtained by replacing the items in R2 by their ancestors in a
concept hierarchy. For example, Rule (7.4) is an ancestor of Rule (7.5) because
“laptop computer” is an ancestor of “Dell laptop computer.” Based on this
definition, a rule can be considered redundant if its support and confidence are
close to their “expected” values, based on an ancestor of the rule.

Example 7.2 Checking redundancy among multilevel association rules. Suppose
that Rule (7.4) has a 70% confidence and 8% support, and that about one-
quarter of all “laptop computer” sales are for “Dell laptop computers.” We may
expect Rule (7.5) to have a confidence of around 70% (since all data samples of
“Dell laptop computer” are also samples of “laptop computer”) and a support
of around 2% (i.e., 8% × 1

4). If this is indeed the case, then Rule (7.5) is
not interesting because it does not offer any additional information and is less
general than Rule (7.4).

7.2.2 Mining Multidimensional Associations

So far, we have studied association rules that imply a single predicate, that is,
the predicate buys. For instance, in mining our AllElectronics database, we may
discover the Boolean association rule

buys(X , “digital camera”) ⇒ buys(X , “HP printer”). (7.6)

Following the terminology used in multidimensional databases, we refer to each
distinct predicate in a rule as a dimension. Hence, we can refer to Rule (7.6)

12 CHAPTER 7. ADVANCED PATTERN MINING

as a single-dimensional or intradimensional association rule because it
contains a single distinct predicate (e.g., buys) with multiple occurrences (i.e.,
the predicate occurs more than once within the rule). Such rules are commonly
mined from transactional data.

Instead of considering transactional data only, sales and related information
are often linked with relational data or integrated into a data warehouse. Such
data stores are multidimensional, in nature. For instance, in addition to keep-
ing track of the items purchased in sales transactions, a relational database may
record other attributes associated with the items and/or transactions, such as
the item description or the branch location of the sale. Additional relational
information regarding the customers who purchased the items, such as customer
age, occupation, credit rating, income, and address, may also be stored. Con-
sidering each database attribute or warehouse dimension as a predicate, we can
therefore mine association rules containing multiple predicates, such as

age(X , “20...29”) ∧ occupation(X , “student”)⇒ buys(X , “laptop”). (7.7)

Association rules that involve two or more dimensions or predicates can be
referred to as multidimensional association rules. Rule (7.7) contains three
predicates (age, occupation, and buys), each of which occurs only once in the
rule. Hence, we say that it has no repeated predicates. Multidimensional
association rules with no repeated predicates are called interdimensional as-
sociation rules. We can also mine multidimensional association rules with re-
peated predicates, which contain multiple occurrences of some predicates. These
rules are called hybrid-dimensional association rules. An example of such
a rule is the following, where the predicate buys is repeated:

age(X , “20...29”) ∧ buys(X , “laptop”)⇒ buys(X , “HP printer”) (7.8)

Database attributes can be nominal or quantitative. The values of nomi-
nal (or categorical) attributes are “names of things.” Nominal attributes have
a finite number of possible values, with no ordering among the values (e.g.,
occupation, brand, color). Quantitative attributes are numeric and have an
implicit ordering among values (e.g., age, income, price). Techniques for mining
multidimensional association rules can be categorized into two basic approaches
regarding the treatment of quantitative attributes.

In the first approach, quantitative attributes are discretized using predefined
concept hierarchies. This discretization occurs before mining. For instance, a
concept hierarchy for income may be used to replace the original numeric values
of this attribute by interval labels, such as “0..20K”, “21K..30K”, “31K..40K”,
and so on. Here, discretization is static and predetermined. Chapter 3 on data
preprocessing gave several techniques for discretizing numeric attributes. The
discretized numeric attributes, with their interval labels, can then be treated
as nominal attributes (where each interval is considered a category). We refer
to this as mining multidimensional association rules using static dis-
cretization of quantitative attributes.

7.2. PATTERN MINING IN MULTILEVEL, MULTIDIMENSIONAL SPACE13

In the second approach, quantitative attributes are discretized or clustered
into “bins” based on the distribution of the data. These bins may be further
combined during the mining process. The discretization process is dynamic
and established so as to satisfy some mining criteria, such as maximizing the
confidence of the rules mined. Because this strategy treats the numeric attribute
values as quantities rather than as predefined ranges or categories, association
rules mined from this approach are also referred to as (dynamic) quantitative
association rules.

Let’s study each of these approaches for mining multidimensional associa-
tion rules. For simplicity, we confine our discussion to interdimensional associ-
ation rules. Note that rather than searching for frequent itemsets (as is done
for single-dimensional association rule mining), in multidimensional association
rule mining we search for frequent predicate sets. A k-predicate set is a set
containing k conjunctive predicates. For instance, the set of predicates {age,
occupation, buys} from Rule (7.7) is a 3-predicate set. Similar to the notation
used for itemsets in Chapter 6, we use the notation Lk to refer to the set of
frequent k-predicate sets.

7.2.3 Mining Quantitative Association Rules

As discussed above, relational and data warehouse data often involve quanti-
tative attributes or measures. We can discretize quantitative attributes into
multiple intervals and then treat them as nominal data in association mining.
However, such simple discretization may lead to the generation of an enormous
number of rules, many of which may not be useful. Here we introduce three
methods that can help overcome this difficulty in order to discover novel asso-
ciation relationships: (1) a data cube method, (2) a clustering-based method,
and (3) a statistical analysis method to uncover exceptional behaviors.

(income) (buys)(age)

()

(income, buys)

(age, income, buys)

(age, income) (age, buys)

0-D (apex) cuboid

1-D cuboids

2-D cuboids

3-D (base) cuboid

Figure 7.5: Lattice of cuboids, making up a 3-D data cube. Each cuboid repre-
sents a different group-by. The base cuboid contains the three predicates age,
income, and buys.

14 CHAPTER 7. ADVANCED PATTERN MINING

Data Cube-Based Mining of Quantitative Associations

In many cases quantitative attributes can be discretized before mining using
predefined concept hierarchies or data discretization techniques, where numeric
values are replaced by interval labels. Nominal attributes may also be general-
ized to higher conceptual levels if desired. If the resulting task-relevant data are
stored in a relational table, then any of the frequent itemset mining algorithms
we have discussed can easily be modified so as to find all frequent predicate sets.
In particular, instead of searching on only one attribute like buys, we need to
search through all of the relevant attributes, treating each attribute-value pair
as an itemset.

Alternatively, the transformed multidimensional data may be used to con-
struct a data cube. Data cubes are well suited for the mining of multidimensional
association rules: They store aggregates (such as counts), in multidimensional
space, which is essential for computing the support and confidence of multidi-
mensional association rules. An overview of data cube technology was presented
in Chapter 4. Detailed algorithms for data cube computation were given in
Chapter 5. Figure 7.5 shows the lattice of cuboids defining a data cube for the
dimensions age, income, and buys. The cells of an n-dimensional cuboid can
be used to store the support counts of the corresponding n-predicate sets. The
base cuboid aggregates the task-relevant data by age, income, and buys ; the 2-D
cuboid, (age, income), aggregates by age and income, and so on; the 0-D (apex)
cuboid contains the total number of transactions in the task-relevant data.

Due to the ever-increasing use of data warehouse and OLAP technology, it
is possible that a data cube containing the dimensions that are of interest to
the user may already exist, fully or partially materialized. If this is the case,
we can simply fetch the corresponding aggregate values or compute them using
lower level materialized aggregates, and return the rules needed using a rule
generation algorithm. Notice that even in this case, the Apriori property can
still be used to prune the search space. If a given k-predicate set has support
sup, which does not satisfy minimum support, then further exploration of this
set should be terminated. This is because any more specialized version of the
k-itemset will have support no greater than sup and, therefore, will not satisfy
minimum support either. In cases where no relevant data cube exists for the
mining task, we must create one on the fly. This becomes an iceberg cube
computation problem, where the minimum support threshold is taken as the
iceberg condition (Chapter 5).

Mining Clustering-Based Quantitative Associations

Besides using discretization-based or data-cube-based datasets to generate quan-
titative association rules, we can also generate quantitative association rules by
clustering data in the quantitative dimensions to generate some interesting pat-
terns and association rules. (Recall that objects within a cluster are similar to
one another and dissimilar to those in other clusters.) The general assumption
is that interesting frequent patterns or association rules are in general found at

7.2. PATTERN MINING IN MULTILEVEL, MULTIDIMENSIONAL SPACE15

relatively dense clusters at quantitative attributes. Here, we described a top-
down approach and a bottom-up approach to clustering that finds quantitative
associations.

A typical top-down approach for finding clustering-based quantitative fre-
quent patterns is as follows. For each quantitative dimension, a standard clus-
tering algorithm (such as k-means or a density-based clustering algorithm (see
Chapter 10) can be applied to find clusters in this dimension that satisfy the
minimum support threshold. For each such cluster, we then examine the
two-dimensional spaces generated by combining the cluster with a cluster or
nominal value of another dimension to see if such a combination passes the
minimum support threshold. If it does, we continue to search for clusters in this
two dimensional region and progress to even higher dimensional combinations.
The Apriori pruning still applies in this process: if, at any point, the support
of a combination does not have minimum support, its further partitioning or
combination with other dimensions cannot have minimum support either.

A bottom-up approach for finding clustering-based frequent patterns works
by first clustering in high-dimensional space to form clusters whose support
satisfies the minimum support threshold, and then projecting and merging those
clusters in the space containing less dimensional combinations. However, for
high-dimensional data sets, finding high-dimensional clustering itself is a tough
problem. Thus this approach is less realistic.

Using Statistical Theory to Disclose Exceptional Behavior

It is possible to discover quantitative association rules that disclose exceptional
behavior, where “exceptional” is defined based on a statistical theory. For ex-
ample, the following association rule may indicate exceptional behavior:

sex = female ⇒ meanwage = $7.90 p/hr (overall mean wage = $9.02) (7.9)

This above rule states that the average wage for females is only $7.90 per hour.
This rule is (subjectively) interesting because it reveals a group of people earning
a significantly lower wage than the average wage of $9.02 p/hr. (If the average
wage was close to $7.90 p/hr, then the fact that females also earn $7.90 p/hr
would be “uninteresting”.) An integral aspect of our definition involves applying
statistical tests to confirm the validity of our rules. That is, the above rule is
only accepted if a statistical test (in this case, a Z-test) confirms that with high
confidence it can be inferred that the mean wage of the female population is
indeed lower than the mean wage of the rest of the population. (The above rule
was mined from a real database based on a 1985 census in the USA.)

An association rule under the new definition is a rule of the form:

population subset ⇒ mean of values for the subset (7.10)

where the mean of the subset is significantly different from the mean of its
complement in the database (and this is validated by an appropriate statistical
test).

16 CHAPTER 7. ADVANCED PATTERN MINING

7.2.4 Mining Rare Patterns and Negative Patterns

All of the methods presented so far in this chapter have been for mining fre-
quent patterns. Sometimes, however, it is interesting to find patterns that are
rare instead of frequent, or patterns that reflect a negative correlation between
items. These patterns are respectively referred to as rare patterns and negative
patterns. In this section, we consider various ways of defining rare patterns
and negative patterns, which are also useful to mine.

Example 7.3 Rare patterns and negative patterns. In jewelry sales data, sales of
diamond watches are rare, however, patterns involving the selling of diamond
watches could be interesting. In supermarket data, if we find that customers
frequently buy Coca-Cola Classic or Diet Coke but not both, then buying Coca-
Cola Classic and buying Diet Coke together is considered a negative (correlated)
pattern. In car sales data, a dealer sells a few fuel-thirsty vehicles (such as
SUVs) to a given customer, and then later sells hybrid mini-cars to the same
customer. Even though buying SUVs and buying hybrid mini-cars may be
negatively correlated events, it can be interesting to discover and examine such
exceptional cases.

An infrequent (or rare) pattern is a pattern whose frequency support
is below (or far below) a user-specified minimum support threshold. However,
since the occurrence frequencies of the majority of itemsets are usually below
or even far below the minimum support threshold, it is desirable in practice for
users to specify other conditions for rare patterns. For example, if we would like
to find patterns containing at least one item whose value is over $500, we should
specify such a constraint explicitly. Efficient mining of such itemsets is discussed
under mining multidimensional associations (Section 7.2.1), where the strategy
is to adopt multiple (such as item- or group-based) minimum support thresholds.
Other applicable methods are discussed under constraint-based pattern mining
(Section 7.3), where user-specified constraints are pushed deep into the iterative
mining process.

There are various ways we could define a negative pattern. We will consider
three such definitions.

Definition 1: If itemsets X and Y are both frequent but rarely occur together
(that is, sup(X∪Y) < sup(X)×sup(Y)), then itemsets X and Y are negatively
correlated, and the pattern X ∪ Y is a negatively correlated pattern. If
sup(X ∪ Y) ≪ sup(X) × sup(Y), then X and Y are strongly negatively
correlated, and the pattern X ∪ Y is a strongly negatively correlated
pattern.

This definition can easily be extended for patterns containing k itemsets for
k > 2.

A problem with the definition, however, is that it is not null-invariant. That
is, its value can be misleadingly influenced by null transactions, where a null
transaction is a transaction that does not contain any of the itemsets being
examined (Section 6.3.3). This is illustrated in the following example.

7.2. PATTERN MINING IN MULTILEVEL, MULTIDIMENSIONAL SPACE17

Example 7.4 Null-transaction problem with Definition 1. If there are a lot of null-
transactions in the dataset, then the number of null-transactions rather than the
patterns observed may strongly influence a measure’s assessment as to whether a
pattern is negatively correlated. For example, suppose a sewing store sells needle
packages A and B. The store sold 100 packages each of A and B, but only one
transaction contains both A and B. Intuitively, A is negatively correlated with
B since the purchase of one does not seem to encourage the purchase of the
other. Let’s see how the above definition handles this scenario. If there are
in total 200 transactions, we have sup(A ∪ B) = 1/200 = 0.005 and sup(A) ×
sup(B) = 100/200 × 100/200 = 0.25. Thus, sup(A ∪ B) ≪ sup(A) × sup(B),
and so the definition indicates that A and B are strongly negatively correlated.
What if, instead of only 200 transactions in the database, there are 106? In
this case, there are many null-transactions, that is, many contain neither A
nor B. How does the definition hold up? It computes sup(A ∪ B) = 1/106

and sup(X) × sup(Y) = 100/106 × 100/106 = 1/108. Thus, sup(A ∪ B) ≫
sup(X)× sup(Y), which contradicts the above finding even though the number
of occurrences of A and B has not changed. The measure in Definition 1 is
not null invariant, where null-invariance is essential for quality interestingness
measures as discussed in Section 6.3.3.

Definition 2: If X and Y are strongly negatively correlation, then

sup(X ∪ Y) × sup(X ∪ Y) ≫ sup(X ∪ Y) × sup(X ∪ Y).

Is this measure null-invariant?

Example 7.5 Null-transaction problem with Definition 2. Given our needle package
example, when there are in total 200 transactions in the database, we have

sup(A ∪ B) × sup(A ∪ B) = 99/200× 99/200 = 0.245 ≫

sup(A ∪ B) × sup(A ∪ B) = 199/200× 1/200 ≈ 0.005,

which according to the definition, indicates that A and B are strongly negatively
correlated. What if there are 106 transactions in the database? The measure
would compute

sup(A ∪ B) × sup(A ∪ B) = 99/106 × 99/106 = 9.8 × 10−9 ≪

sup(A ∪ B) × sup(A ∪ B) = 199/106 × (106 − 199)/106 ≈ 1.99 × 10−4.

This time, the measure indicates that A and B are positively correlated, hence,
a contradiction. The measure is not null-invariant.

As a third alternative, consider Definition 3, which is based on the Kulczyn-
ski measure (i.e., the average of conditional probabilities). It follows the spirit
of interestingness measures introduced in Section 6.3.3.

18 CHAPTER 7. ADVANCED PATTERN MINING

Definition 3. Suppose that itemsets X and Y are both frequent, that is,
sup(X) ≥ min sup and sup(Y) ≥ min sup, where min sup is the minimum
support threshold. If (P (X |Y) + P (Y |X))/2 < ǫ, where ǫ is a negative pattern
threshold, then pattern X ∪ Y is a negatively correlated pattern.

Example 7.6 Negatively correlated patterns using Definition 3, based on the Kul-
czynski measure. Let’s re-examine our needle package example. Let min sup
be 0.01%, and ǫ = 0.02. When there are 200 transactions in the database, we
have sup(A) = sup(B) = 100/200 = 0.5 > 0.01% and (P (B|A) + P (A|B))/2 =
(0.01 + 0.01)/2 < 0.02, thus A and B are negatively correlated. Does this still
hold true if we have many more transactions? When there are 106 transac-
tions in the database, the measure computes sup(A) = sup(B) = 100/106 =
0.01% ≥ 0.01% and (P (B|A) + P (A|B))/2 = (0.01 + 0.01)/2 < 0.02, again
indicating that A and B are negatively correlated. This matches our intuition.
The measure does not have the null-invariance problem of the first two defini-
tions considered. Moreover, let’s examine another case: suppose that among
100,000 transactions, the store sold 1000 needle packages of A but only 10
packages of B, however, every time package B is sold, package A is also sold
(i.e., they appear in the same transaction). In this case, the measure computes
(P (B|A) + P (A|B))/2 = (0.01 + 1)/2 = 0.505 ≫ 0.02, which indicates that
A and B are positively correlated instead of negatively correlated. This also
matches our intuition.

With this new definition of negative correlation, efficient methods can easily
be derived for mining negative patterns in large databases. This is left as an
exercise for interested readers.

7.3 Constraint-Based Frequent Pattern Mining

A data mining process may uncover thousands of rules from a given set of data,
most of which end up being unrelated or uninteresting to the users. Often, users
have a good sense of which “direction” of mining may lead to interesting patterns
and the “form” of the patterns or rules they would like to find. They may also
have a sense of “conditions” for the rules, which would eliminate the discovery of
certain rules that they know would not be of interest. Thus, a good heuristic is
to have the users specify such intuition or expectations as constraints to confine
the search space. This strategy is known as constraint-based mining. The
constraints can include the following:

• Knowledge type constraints: These specify the type of knowledge to
be mined, such as association, correlation, classification, or clustering.

• Data constraints: These specify the set of task-relevant data.

• Dimension/level constraints: These specify the desired dimensions (or
attributes) of the data, the levels of abstraction, or the level of the concept
hierarchies, to be used in mining.

7.3. CONSTRAINT-BASED FREQUENT PATTERN MINING 19

• Interestingness constraints: These specify thresholds on statistical
measures of rule interestingness, such as support, confidence, and cor-
relation.

• Rule constraints: These specify the form of, or conditions on, the
rules to be mined. Such constraints may be expressed as metarules (rule
templates), as the maximum or minimum number of predicates that can
occur in the rule antecedent or consequent, or as relationships among
attributes, attribute values, and/or aggregates.

The above constraints can be specified using a high-level declarative data mining
query language and user interface.

The first four of the above types of constraints have already been addressed
in earlier parts of this book and chapter. In this section, we discuss the use of
rule constraints to focus the mining task. This form of constraint-based mining
allows users to describe the rules that they would like to uncover, thereby making
the data mining process more effective. In addition, a sophisticated mining
query optimizer can be used to exploit the constraints specified by the user,
thereby making the mining process more efficient.

Constraint-based mining encourages interactive exploratory mining and anal-
ysis. In Section 7.3.1, you will study metarule-guided mining, where syntactic
rule constraints are specified in the form of rule templates. Section 7.3.2 dis-
cusses the use of pattern space pruning (which prunes patterns being mined)
and data space pruning (which prunes pieces of the data space whose further
exploration cannot contribute to the discovery of patterns satisfying the con-
straints). For pattern space pruning, we introduce three classes of properties
that facilitate constraint-based search space pruning: antimonotonicity, mono-
tonicity, and succinctness. We also discuss a special class of constraints, called
convertible constraints, where by proper ordering of data, the constraints can
be pushed deep into the iterative mining process and have the same pruning
power as monotonic or anti-monotonic constraints. For data space pruning, we
introduce two classes of properties—data succinctness and data antimonoton-
icty—and study how they can be integrated within a data mining process.

For ease of discussion, we assume that the user is searching for associa-
tion rules. The procedures presented can easily be extended to the mining
of correlation rules by adding a correlation measure of interestingness to the
support-confidence framework.

7.3.1 Metarule-Guided Mining of Association Rules

“How are metarules useful?” Metarules allow users to specify the syntactic
form of rules that they are interested in mining. The rule forms can be used
as constraints to help improve the efficiency of the mining process. Metarules
may be based on the analyst’s experience, expectations, or intuition regarding
the data or may be automatically generated based on the database schema.

20 CHAPTER 7. ADVANCED PATTERN MINING

Example 7.7 Metarule-guided mining. Suppose that as a market analyst for AllElec-
tronics, you have access to the data describing customers (such as customer
age, address, and credit rating) as well as the list of customer transactions. You
are interested in finding associations between customer traits and the items that
customers buy. However, rather than finding all of the association rules reflect-
ing these relationships, you are particularly interested only in determining which
pairs of customer traits promote the sale of office software. A metarule can be
used to specify this information describing the form of rules you are interested
in finding. An example of such a metarule is

P1(X , Y) ∧ P2(X , W) ⇒ buys(X , “office software”), (7.11)

where P1 and P2 are predicate variables that are instantiated to attributes
from the given database during the mining process, X is a variable representing
a customer, and Y and W take on values of the attributes assigned to P1 and P2,
respectively. Typically, a user will specify a list of attributes to be considered
for instantiation with P1 and P2. Otherwise, a default set may be used.

In general, a metarule forms a hypothesis regarding the relationships that
the user is interested in probing or confirming. The data mining system can then
search for rules that match the given metarule. For instance, Rule (7.12) matches
or complies with Metarule (7.11).

age(X , “30..39”) ∧ income(X , “41K..60K”) ⇒ buys(X , “office software”)
(7.12)

“How can metarules be used to guide the mining process?” Let’s examine
this problem closely. Suppose that we wish to mine interdimensional association
rules, such as in the example above. A metarule is a rule template of the form

P1 ∧ P2 ∧ · · · ∧ Pl ⇒ Q1 ∧ Q2 ∧ · · · ∧ Qr, (7.13)

where Pi (i = 1, . . . , l) and Qj (j = 1, . . . , r) are either instantiated predicates
or predicate variables. Let the number of predicates in the metarule be p = l+r.
In order to find interdimensional association rules satisfying the template,

• We need to find all frequent p-predicate sets, Lp.

• We must also have the support or count of the l-predicate subsets of Lp

in order to compute the confidence of rules derived from Lp.

This is a typical case of mining multidimensional association rules. By ex-
tending such methods using constraint-pushing techniques described in the fol-
lowing section, we can derive efficient methods for metarule-guided mining.

7.3.2 Constraint-Based Pattern Generation: Pruning Pat-

tern Space and Pruning Data Space

Rule constraints specify expected set/subset relationships of the variables in the
mined rules, constant initiation of variables, constraints on aggregate functions

7.3. CONSTRAINT-BASED FREQUENT PATTERN MINING 21

and other forms of constraints. Users typically employ their knowledge of the
application or data to specify rule constraints for the mining task. These rule
constraints may be used together with, or as an alternative to, metarule-guided
mining. In this section, we examine rule constraints as to how they can be used
to make the mining process more efficient. Let’s study an example where rule
constraints are used to mine hybrid-dimensional association rules.

Example 7.8 Constraints for mining association rules. Suppose that AllElectronics
has a sales multidimensional database with the following interrelated relations:

• item(item ID, item name, description, category, price)

• sales(transaction ID, day, month, year, store ID, city)

• trans item(item ID, transaction ID)

where the item table contains attributes item ID, item name, description, cat-
egory, and price; the sales table contains attributes transaction ID day, month,
year, store ID, and city; and the two tables are linked via the foreign key
attributes, item ID and transaction ID, in the table trans item.

Suppose our association mining query is “Find the patterns or rules about
the sales of which cheap items (where the sum of the prices is less than $10) that
may promote (i.e., shown in the same transaction) the sales of which expensive
items (where the minimum price is $50), shown in the sales in Chicago in 2010.”

This query contains the following four constraints: (i) sum(I.price) < $10,
where I represents the item ID of a cheap item, (ii) min(J.price) ≥ $50) where
J represents the item ID of an expensive item, (iii) T.city = Chicago, and (iv)
T.year = 2010, where T represents a transaction ID. For conciseness, we do not
show the mining query explicitly here, however, the context of the constraints
are clear from the mining query semantics.

Dimension/level constraints and interestingness constraints can be applied
after mining to filter out discovered rules, although it is generally more effi-
cient and less expensive to use them during mining, to help prune the search
space. Dimension/level constraints were discussed in Section 7.2, and interest-
ingness constraints, such as support, confidence, and correlation measures, were
discussed in the previous chapter. Let’s focus now on rule constraints.

“How can we use rule constraints to prune the search space? More specifi-
cally, what kind of rule constraints can be ‘pushed’ deep into the mining process
and still ensure the completeness of the answer returned for a mining query?”

In general, an efficient frequent pattern mining processor can prune its search
space during mining in two major ways: pruning pattern search space and
pruning data search space. The former checks candidate patterns and decides
whether a pattern can be pruned. Applying the Apriori property, it prunes a
pattern if no superpattern of it can be generated in the remaining mining pro-
cess. The latter checks the dataset to determine whether the particular piece
of data will be able to contribute to the subsequent generation of satisfiable

22 CHAPTER 7. ADVANCED PATTERN MINING

patterns (for a particular pattern) in the remaining mining process. If not, the
data piece is pruned from further exploration. A constraint that may facilitate
pattern space pruning is called a pattern pruning constraint, whereas one that
can be used for data space pruning is called a data pruning constraint.

Pruning Pattern Space with Pattern Pruning Constraints

Based on how a constraint may interact with the pattern mining process, there
are five categories of pattern mining constraints: (1) antimonotonic, (2) mono-
tonic, (3) succinct, (4) convertible, and (5) inconvertible. For each category,
we use an example to show its characteristics and explain how such kinds of
constraints can be used in the mining process.

The first category of constraints is antimonotonic. Consider the rule con-
straint “sum(I.price) ≤ $100” of Example 7.3.2. Suppose we are using the
Apriori framework, which explores itemsets of size k at the k-th iteration. If
the price summation of the items in a candidate itemset is no less than $100,
this itemset can be pruned from the search space, since adding more items into
the set (assuming price is no less than zero) will only make it more expen-
sive and thus will never satisfy the constraint. In other words, if an itemset
does not satisfy this rule constraint, none of its supersets can satisfy the con-
straint. If a rule constraint obeys this property, it is antimonotonic. Pruning
by antimonotonic constraints can be applied at each iteration of Apriori-style
algorithms to help improve the efficiency of the overall mining process while
guaranteeing completeness of the data mining task.

The Apriori property, which states that all nonempty subsets of a frequent
itemset must also be frequent, is antimonotonic. If a given itemset does not
satisfy minimum support, none of its supersets can. This property is used
at each iteration of the Apriori algorithm to reduce the number of candidate
itemsets examined, thereby reducing the search space for association rules.

Other examples of antimonotonic constraints include “min(J.price) ≥ $50,”
“count(I) ≤ 10,” and so on. Any itemset that violates either of these constraints
can be discarded since adding more items to such itemsets can never satisfy
the constraints. Note that a constraint such as “avg(I.price) ≤ $10” is not
antimonotonic. For a given itemset that does not satisfy this constraint, a
superset created by adding some (cheap) items may result in satisfying the
constraint. Hence, pushing this constraint inside the mining process will not
guarantee completeness of the data mining task. A list of SQL-primitives-based
constraints is given in the first column of Table 7.2. The antimonotonicity of
the constraints is indicated in the second column of the table. To simplify our
discussion, only existence operators (e.g., = , ∈, but not 6= , /∈) and comparison
(or containment) operators with equality (e.g., ≤ , ⊆) are given.

The second category of constraints is monotonic. If the rule constraint in Ex-
ample7.3. were “sum(I.price) ≥ $100,” the constraint-based processing method
would be quite different. If an itemset I satisfies the constraint, that is, the sum
of the prices in the set is no less than $100, further addition of more items to
I will increase cost and will always satisfy the constraint. Therefore, further

7.3. CONSTRAINT-BASED FREQUENT PATTERN MINING 23

testing of this constraint on itemset I becomes redundant. In other words, if an
itemset satisfies this rule constraint, so do all of its supersets. If a rule constraint
obeys this property, it is monotonic. Similar rule monotonic constraints in-
clude “min(I.price) ≤ $10,” “count(I) ≥ 10,” and so on. The monotonicity of
the list of SQL-primitives-based constraints is indicated in the third column of
Table 7.2.

The third category is succinct constraints. For this category of con-
straints, we can enumerate all and only those sets that are guaranteed to satisfy
the constraint. That is, if a rule constraint is succinct, we can directly gener-
ate precisely the sets that satisfy it, even before support counting begins. This
avoids the substantial overhead of the generate-and-test paradigm. In other
words, such constraints are precounting prunable. For example, the constraint
“min(J.price) ≥ $50” in Example 7.3.2 is succinct, because we can explicitly
and precisely generate all the sets of items satisfying the constraint. Specifically,
such a set must consist of a nonempty set of items whose price is no less than
$50. It is of the form S, where S 6= ∅ is a subset of the set of all those items
with prices no less than $50. Because there is a precise “formula” for generating
all of the sets satisfying a succinct constraint, there is no need to iteratively
check the rule constraint during the mining process. The succinctness of the
list of SQL-primitives-based constraints is indicated in the fourth column of
Table 7.2.2

The fourth category is convertible constraints. Some constraints belong to
none of the above three categories. However, if the items in the itemset are ar-
ranged in a particular order, the constraint may become monotonic or antimono-
tonic with regard to the frequent itemset mining process. For example, the con-
straint “avg(I.price) ≤ $10” is neither antimonotonic nor monotonic. However,
if items in a transaction are added to an itemset in price-ascending order, the con-
straint becomes antimonotonic, because if an itemset I violates the constraint (i.e.,
with an average price greater than $10), then further addition of more expensive
items into the itemset will never make it satisfy the constraint. Similarly, if items
in a transaction are added to an itemset in price-descending order, it becomes
monotonic, because if the itemset satisfies the constraint (i.e., with an average
price no greater than $10), then adding cheaper items into the current itemset will
still make the average price no greater than $10. Aside from “avg(S) ≤ v,” and
“avg(S) ≥ v,” given in Table 7.2, there are many other convertible constraints,
such as “variance(S) ≥ v,” “standard deviation(S) ≥ v,” and so on.

Note that the above discussion does not imply that every constraint is con-
vertible. For example, “sum(S) θv,” where θ ∈ {≤ , ≥} and each element in
S could be of any real value, is not convertible. Therefore, there is yet a fifth
category of constraints, called inconvertible constraints. The good news is
that although there still exist some tough constraints that are not convertible,
most simple SQL expressions with built-in SQL aggregates belong to one of the
first four categories to which efficient constraint mining methods can be applied.

2For constraint count(S) ≤ v (and similarly for count(S) ≥ v), we can have a member
generation function based on a cardinality constraint (i.e., {X | X ⊆ Itemset ∧ |X| ≤ v}).
Member generation in this manner takes a different flavor and thus is called weakly succinct.

24 CHAPTER 7. ADVANCED PATTERN MINING

Table 7.2: Characterization of commonly used SQL-based pattern
pruning constraints.
Constraint Antimonotonic Monotonic Succinct

v ∈ S no yes yes
S ⊇ V no yes yes
S ⊆ V yes no yes
min(S) ≤ v no yes yes
min(S) ≥ v yes no yes
max(S) ≤ v yes no yes
max(S) ≥ v no yes yes
count(S) ≤ v yes no weakly
count(S) ≥ v no yes weakly
sum(S) ≤ v (∀a ∈ S, a ≥ 0) yes no no
sum(S) ≥ v (∀a ∈ S, a ≥ 0) no yes no
range(S) ≤ v yes no no
range(S) ≥ v no yes no
avg(S) θ v, θ ∈ {≤ , ≥} convertible convertible no
support(S) ≥ ξ yes no no
support(S) ≤ ξ no yes no
all confidence(S) ≥ ξ yes no no
all confidence(S) ≤ ξ no yes no

Pruning Data Space with Data Pruning Constraints

The second way of search space pruning in constraint-based frequent pattern
mining is pruning data space. This strategy prunes pieces of data if they will
not contribute to the subsequent generation of satisfiable patterns in the mining
process. We consider two properties: data succinctness and data antimonotonic-
ity.

Constraints are data-succinct if they can be used at the beginning of a
pattern mining process to prune the data subsets that cannot satisfy the con-
straints. For example, if a mining query requires that the mined pattern must
contain digital camera, then any transaction that does not contain digital cam-
era can be pruned at the beginning of the mining process, which effectively
reduces the set of data to be examined.

Interestingly, many constraints are data-antimonotonic in the sense that
during the mining process, if a data entry cannot satisfy a data-antimonotonic
constraint based on the current pattern, then it can be pruned. We prune it
because it will not be able to contribute to the generation of any superpattern
of the current pattern in the remaining mining process.

Example 7.9 Data antimonotonicity. A mining query requires that C1 : sum(I.price) ≥
$100, that is, the sum of the prices of the items in the mined pattern must
be no less than $100. Suppose that the current frequent itemset, S, does not
satisfy constraint C1 (say, because the sum of the prices of the items in S is

7.3. CONSTRAINT-BASED FREQUENT PATTERN MINING 25

$50). If the remaining frequent items in a transaction Ti are such that, say,
{i2.price = $5, i5.price = $10, i8.price = $20}, then Ti will not be able to make
S satisfy the constraint. Thus, Ti cannot contribute to the patterns to be
mined from S, and thus can be pruned. Note that such pruning cannot be done
at the beginning of the mining because at that time, we do not know yet if the
total sum of the prices of all the items in Ti will be over $100 (e.g., we may
have i3.price = $80). However, during the iterative mining process, we may find
some items (e.g., i3) that are not frequent with S in the transaction dataset,
and thus they would be pruned. Therefore such checking and pruning should
be enforced at each iteration to reduce the data search space.

Notice that constraint C1 is a monotonic constraint with respect to pattern
space pruning. As we have seen, this constraint has very limited power for
reducing search space in pattern pruning. However, the same constraint can be
used for effective reduction of the data search space.

For an anti-monotonic constraint, such as C2 : sum(I.price) ≤ $100, we
can prune both pattern and data search spaces at the same time. Based on
our study of pattern pruning, we already know that the current itemset can be
pruned if the sum of the prices in it is over $100 (since its further expansion can
never satisfy C2). At the same time, we can also prune any remaining items in
a transaction Ti that cannot make the constraint C2 valid. For example, if the
sum of the prices of items in the current itemset S is $90, any patterns over $10
in the remaining frequent items in Ti can be pruned. If none of the remaining
items in Ti can make the constraint valid, the entire transaction Ti should be
pruned.

Consider pattern constraints that are neither antimonotonic nor monotonic,
such as “C3 : avg(I.price) ≤ 10”. These can be data-antimonotonic because if
the remaining items in a transaction Ti cannot make the constraint valid, then
Ti can be pruned as well. Therefore, data-antimonotonic constraints can be
quite useful for constraint-based data space pruning.

Notice that search space pruning by data anti-monotonicity discussed above
is confined only to a pattern growth-based mining algorithm because the pruning
of a data entry is determined based on whether it can contribute to a specific
pattern. Data anti-monotonicity cannot be used for pruning the data space
if the Apriori algorithm is used because the data are associated with all of
the currently active patterns. At any iteration, there are usually many active
patterns. A data entry that cannot contribute to the formation of the super-
patterns of a given pattern may still be able to contribute to the superpattern
of other active patterns. Thus, the power of data space pruning can be very
limited for non-pattern growth-based algorithms.

26 CHAPTER 7. ADVANCED PATTERN MINING

7.4 Mining High-Dimensional Data and Colos-

sal Patterns

The frequent pattern mining methods presented so far handle large datasets
having a small number of dimensions. However, some applications may need
to mine high-dimensional data, i.e., data with hundreds or thousands of dimen-
sions. Can we use the methods studied so far to mine high-dimensional data?
The answer is unfortunately negative because the search spaces of such typical
methods grow exponentially with the number of dimensions.

Researchers have proceeded to overcome this difficulty in two directions.
One direction extends a pattern-growth approach by further exploring vertical
data format to handle datasets with a large number of dimensions (also called
features or items, e.g., genes) but a small number of rows (also called transac-
tions or tuples, e.g., samples). This is useful in applications like the analysis of
gene expressions in bioinformatics, for example, where we often need to analyze
micro-array data that contains a large number (e.g., 10,000 to 100,000) of genes
but only a small number (e.g., 100 to 1000) of samples. The other direction de-
velops a new mining methodology, called Pattern-Fusion, which mines colossal
patterns, that is, patterns of very long length.

Let’s first briefly examine the first direction, in particular, a pattern growth-
based row enumeration approach. Its general philosophy is to explore vertical
data format, as described in Section 6.2.5, which is also known as row enumera-
tion. Row enumeration differs from traditional column (i.e., item) enumeration
(also known as horizontal data format). In traditional column enumeration, the
dataset, D, is viewed as a set of rows, where each row consists of a set of items.
In row enumeration, the dataset is instead viewed as a set of items, each con-
sisting of a set of row IDs indicating where the item appears in the traditional
view of D. The original dataset, D, can easily be transformed into a transposed
dataset, T . A dataset with a small number of rows but a large number of di-
mensions is then transformed into a transposed dataset with a large number of
rows but a small number of dimensions. Efficient pattern-growth methods can
be then developed on such relatively low dimensional datasets. The details of
such an approach are left as an exercise for interested readers.

The remainder of this section focuses on the second direction. We introduce
Pattern-Fusion, a new mining methodology that mines colossal patterns (or
patterns of very long length). This method takes leaps in the pattern search
space, leading to a good approximation of the complete set of colossal frequent
patterns.

7.4.1 Mining Colossal Patterns by Pattern Fusion

Although we have studied methods for mining frequent patterns in various sit-
uations, many applications have hidden patterns that are tough to mine, due
mainly to their immense length or size. Consider bioinformatics, for example,
where a common activity is DNA or microarray data analysis. This involves

7.4. MINING HIGH-DIMENSIONAL DATA AND COLOSSAL PATTERNS27

mapping and analyzing very long DNA and protein sequences. Researchers
are more interested in finding large patterns (e.g., long sequences) than finding
small ones since larger patterns usually carry more significant meaning. We
call these large patterns colossal patterns, as distinguished from patterns with
large support sets. Finding colossal patterns is challenging because incremental
mining tends to get “trapped” by an explosive number of mid-sized patterns
before it can even reach candidate patterns of large size. This is illustrated in
the following simple example.

row/col 1 2 3 4 . . . 38 39
1 2 3 4 5 . . . 39 40
2 1 3 4 5 . . . 39 40
3 1 2 4 5 . . . 39 40
4 1 2 3 5 . . . 39 40
5 1 2 3 4 . . . 39 40
. .
39 1 2 3 4 . . . 38 40
40 1 2 3 4 . . . 38 39
41 41 42 43 44 . . . 78 79
42 41 42 43 44 . . . 78 79
. .
60 41 42 43 44 . . . 78 79

Figure 7.6: A simple example that illustrates colossal patterns: The dataset
contains an exponential number of mid-sized patterns of size 20 but only one
that is colossal, namely (41, 42, . . . , 79).

Example 7.10 The challenge of mining colossal patterns. Consider a 40 × 40 square
table where each row contains the integers 1 to 40 in increasing order. Remove
the integers on the diagonal, and this gives a 40 × 39 table. Add 20 identical
rows to the bottom of the table, where each row contains the integers 41 to 79
in increasing order, resulting in a 60 × 39 table (Figure 7.6). We consider each
row as a transaction and set the minimum support threshold at 20. The table
has an exponential number (i.e.,

(

40
20

)

) of mid-sized closed/maximal frequent
patterns of size 20, but only one that is colossal: α = (41, 42, . . . , 79) of size
39. None of the frequent pattern mining algorithms that we have introduced
so far can complete execution in a reasonable amount of time. The pattern
search space is similar to that in Figure 7.7, where mid-sized patterns largely
outnumber colossal patterns.

All of the pattern mining strategies we have studied so far, such as Apriori
and FP-growth, use an incremental growth strategy by nature, that is, they
increase the length of candidate patterns by one at a time. Breadth-first search
methods like Apriori cannot bypass the generation of an explosive number of

28 CHAPTER 7. ADVANCED PATTERN MINING

Colossal Patterns

Mid-sized Patterns

Figure 7.7: Synthetic data that contain some colossal patterns but exponentially
many mid-sized patterns.

mid-sized patterns generated, making it impossible to reach colossal patterns.
Even depth-first search methods like FP-Growth can easily to be trapped in huge
amount of subtrees before reaching colossal patterns. Clearly, a completely new
mining methodology is needed to overcome such a hurdle.

A new mining strategy called Pattern-Fusion was developed, which fuses a
small number of shorter frequent patterns into colossal pattern candidates. It
thereby takes leaps in the pattern search space and avoids the pitfalls of both
breadth-first and depth-first search. This method finds a good approximation
to the complete set of colossal frequent patterns.

The Pattern-Fusion method has the following major characteristics. First, it
traverses the tree in a bounded-breadth way. Only a fixed number of patterns
in a bounded-size candidate pool are used as starting nodes to search downwards
in the pattern tree. As such, it avoids the problem of exponential search space.

Second, Pattern-Fusion has the capability to identify “shortcuts” whenever
possible. The growth of each pattern is not performed with one-item addition,
but with an agglomeration of multiple patterns in the pool. These shortcuts di-
rect Pattern-Fusion much more rapidly down the search tree toward the colossal
patterns. Figure 7.8 conceptualizes this mining model.

Colossal Patterns

Pattern Candidates

Figure 7.8: Pattern tree traversal: Candidates are taken from a pool of patterns,
which results in shortcuts through pattern space to the colossal patterns.

7.4. MINING HIGH-DIMENSIONAL DATA AND COLOSSAL PATTERNS29

As Pattern-Fusion is designed to give an approximation to the colossal pat-
terns, a quality evaluation model is introduced to assess the patterns returned
by the algorithm. An empirical study verifies that Pattern-Fusion is able to
efficiently return results of high quality.

Let’s examine the Pattern-Fusion method in more detail. First, we introduce
the concept of core pattern. For a pattern α, an itemset β ⊆ α is said to be

a τ-core pattern of α if |Dα|
|Dβ |

≥ τ , 0 < τ ≤ 1, where |Dα| is the number of

patterns containing α in database D. τ is called the core ratio. A pattern α
is (d, τ)-robust if d is the maximum number of items that can be removed from
α for the resulting pattern to remain a τ -core pattern of α, i.e.,

d = max
β

{|α| − |β||β ⊆ α, and β is a τ -core pattern of α}

Transactions Core Patterns (τ = 0.5)
(# of Transactions)

(abe) (100) (abe),(ab),(be),(ae),(e)
(bcf) (100) (bcf),(bc),(bf)
(acf) (100) (acf),(ac),(af)
(abcef) (100) (ab),(ac),(af),(ae),(bc),(bf),(be),(ce),(fe),(e),(abc),

(abf),(abe),(ace),(acf),(afe),(bcf),(bce),(bfe),(cfe),
(abcf),(abce),(bcfe),(acfe),(abfe),(abcef)

Figure 7.9: A transaction database (containing duplicates) and core patterns
for each distinct transaction.

Example 7.11 Core patterns. Figure 7.9 shows a simple transaction database of four dis-
tinct transactions, each with 100 duplicates. {α1 = (abe), α2 = (bcf), α3 =
(acf), α4 = (abcfe)}. If we set τ = 0.5, then, (ab) is a core pattern of α1

because (ab) is contained only by α1 and α4. Therefore,
|Dα1 |

|D(ab)|
= 100

200 ≥ τ . α1

is (2, 0.5)-robust while α4 is (4, 0.5)-robust. The table also shows that larger
patterns, e.g., (abcfe), has far more core patterns than smaller ones, e.g., (bcf).

From Example 7.11, we can deduce that large or colossal patterns have far
more core patterns than smaller-sized patterns do. Thus a colossal pattern is
more robust in the sense that if a small number of items are removed from
the pattern, the resulting pattern would have a similar support set. The larger
the pattern size, the more prominent this robustness is. Such a robustness
relationship between a colossal pattern and its corresponding core patterns can
be extended to multiple levels. The lower-level core patterns of a colossal pattern
are called core descendants.

Given a small c, a colossal pattern usually has far more core descendants of
size c than a smaller-sized pattern. This means that if we were to draw randomly

30 CHAPTER 7. ADVANCED PATTERN MINING

from the complete set of patterns of size c, we would be more likely to pick a
core descendant of a colossal pattern than that of a smaller-sized pattern. In
Figure 7.9, consider the complete set of patterns of size c = 2, which contains
(

5
2

)

= 10 patterns in total. For illustrative purposes, let’s assume that the
larger pattern, abcef , is colossal. The probability of randomly drawing a core
descendant of abcef is 0.9. Contrast this to the probability of randomly drawing
a core descendent of smaller-sized (non-colossal) patterns, which is at most 0.3.
Therefore, a colossal pattern can be generated by merging a proper set of its
core patterns. For instance, abcef can be generated by merging just two of its
core patterns, ab and cef , instead of having to merge all of its 26 core patterns.

Now, let’s see how the above observations can help us leap through pattern
space more directly towards colossal patterns. Consider the following scheme.
First, generate a complete set of frequent patterns up to a user-specified small
size, and then randomly pick a pattern, β. β will have a high probability of
being a core-descendant of some colossal pattern, α. Identify all of α’s core-
descendants in this complete set, and merge all of them. This generates a much
larger core-descendant of α, giving us the ability to leap along a path toward α
in the core-pattern tree Tα. In the same fashion we select K patterns. The set
of larger core-descendants generated is the candidate pool for the next iteration.

A question arises: Given β, a core-descendant of a colossal pattern α, how
can we find the other core-descendants of α? Given two patterns, α and β, the

pattern distance between them is defined as Dist(α, β) = 1− |Dα∩Dβ |
|Dα∪Dβ |

. Pattern

distance satisfies the triangle inequality.

For a pattern, α, let Cα be the set of all of its core patterns. It can be
shown that Cα is bounded in metric space by a “ball” of diameter r(τ), where
r(τ) = 1− 1

2/τ−1 . This means that given a core pattern β ∈ Cα, we can identify

all of α’s core patterns in the current pool by posing a range query. Note that in
the mining algorithm, each randomly drawn pattern could be a core-descendant
of more than one colossal pattern, and as such, when merging the patterns found
by the “ball”, more than one larger core-descendant could be generated.

From this discussion, the Pattern-Fusion method is outlined as follows. It
consists of two phases.

1. Initial Pool: Pattern-Fusion assumes an initial pool of small frequent
patterns is available. This is the complete set of frequent patterns up to a
small size, e.g., 3. This initial pool can be mined with any existing efficient
mining algorithm.

2. Iterative Pattern Fusion: Pattern-Fusion takes as input a user-specified
parameter, K, which is the maximum number of patterns to be mined.
The mining process is iterative. At each iteration, K seed patterns are
randomly picked from the current pool. For each of these K seeds, we find
all of the patterns within a ball of a size specified by τ . All of the patterns
in each “ball” are then fused together to generate a set of superpatterns.
These superpatterns form a new pool. If the pool contains more than K
patterns, the next iteration begins with this pool for the new round of

7.5. MINING COMPRESSED OR APPROXIMATE PATTERNS 31

random drawing. As the support set of every superpattern shrinks with
each new iteration, the iteration process terminates.

Colossal Pattern Small Pattern

Figure 7.10: Pattern metric space: Each point represents a core pattern. The
core patterns of a colossal pattern are denser than those of a small pattern, as
shown within the dotted lines.

Note that Pattern-Fusion merges small subpatterns of a large pattern instead
of incremental expanding patterns with single items. This gives the method an
advantage to circumvent mid-sized patterns and progress on a path leading to
a potential colossal pattern. The idea is illustrated in Figure 7.10. Each point
shown in the metric space represents a core pattern. In comparison to a smaller
pattern, a larger pattern has far more core patterns that are close to one another,
all of which are bounded by a ball as shown by dotted lines. When drawing
randomly from the initial pattern pool, we have a much higher probability of
getting a core pattern of a large pattern, because the ball of a larger pattern is
much denser.

It has been theoretically shown that Pattern-Fusion leads to a good ap-
proximation of colossal patterns. The method was tested on synthetic and real
datasets constructed from program tracing data and microarray data. Exper-
iments show that the method can find most of the colossal patterns with high
efficiency.

7.5 Mining Compressed or Approximate Pat-

terns

A major challenge in frequent-pattern mining is the huge number of discovered
patterns. Using a minimum support threshold to control the number of patterns
found has limited effect. Too low a value can lead to the generation of an
explosive number of output patterns, while too high a value can lead to the
discovery of only commonsense patterns.

To reduce the huge set of frequent patterns generated in mining while main-
taining a high quality of patterns, we can instead mine a compressed or ap-
proximate set of frequent patterns. Top-k most frequent closed patterns were

32 CHAPTER 7. ADVANCED PATTERN MINING

proposed to make the mining process concentrate on only the set of k most fre-
quent patterns. Although interesting, they usually do not epitomize the most
k representative patterns because of the uneven frequency distribution among
itemsets. Constraint-based mining of frequent patterns (Section 7.3) incorpo-
rates user-specified constraints to filter out uninteresting patterns. Measures of
pattern/rule interestingness and correlation (Section 6.3) can also be used to
help confine the search to patterns/rules of interest.

In this section, we look at two forms of “compression” of frequent patterns
that build on the concepts of closed patterns and maxpatterns. Recall from
Section 6.2.6, a closed pattern is a lossless compression of the set of frequent pat-
terns, whereas a maxpattern is a lossy compression. In particular, Section 7.5.1
explores clustering-based compression of frequent patterns, which groups pat-
terns together based on their similarity and frequency support. Section 7.5.2
takes a “summarization” approach where the aim is to derive redundancy-aware
top-k representative patterns that cover the whole set of (closed) frequent item-
sets. The approach considers not only the representativeness of patterns but
also their mutual independence to avoid redundancy in the set of generated pat-
terns. The k representatives provide compact compression over the collection
of frequent patterns, making them easier to interpret and use.

7.5.1 Mining Compressed Patterns by Pattern Clustering

Pattern compression can be achieved by pattern clustering. Clustering tech-
niques are described in detail in Chapters 10 and 11. In this section, it is not
necessary to know the fine details of clustering. Rather, you will learn how the
concept of clustering can be applied to compress frequent patterns. Clustering is
the automatic process of grouping like objects together, so that objects within a
cluster are similar to one another and dissimilar to objects in other clusters. In
this case, the objects are frequent patterns. The frequent patterns are clustered
using a tightness measure called δ-cluster. A representative pattern is selected
for each cluster, thereby offering a compressed version of the set of frequent
patterns.

Before we begin, let’s review some definitions. An itemset X is a closed
frequent itemset in a data set D if X is frequent and there exists no proper
super-itemset Y of X such that Y has the same support count as X in D. An
itemset X is a maximal frequent itemset in data set D if X is frequent, and
there exists no super-itemset Y such that X ⊂ Y and Y is frequent in D. Using
these concepts alone is not enough to obtain a good representative compression
of a data set, as we see in the following example.

Example 7.12 Shortcomings of closed itemsets and maximal itemsets for compres-
sion. Table 7.3 shows a subset of frequent itemsets on a large data set, where
a, b, c, d, e, f represent individual items. There are no closed itemsets here,
therefore we cannot use closed frequent itemsets to compress the data. The only
maximal frequent itemset is P3. However, we observe that itemsets P2, P3 and
P4 are significantly different with respect to their support counts. If we were to

7.5. MINING COMPRESSED OR APPROXIMATE PATTERNS 33

use P3 to represent a compressed version of the data, we would lose this support
count information entirely. From visual inspection, consider the two pairs (P1,
P2) and (P4, P5). The patterns within each pair are very similar with respect to
their support and expression. Therefore, intuitively, P2, P3 and P4, collectively,
should serve as a better compressed version of the data.

Table 7.3: A Subset of Frequent Itemsets

ID Itemsets Support

P1 {b, c, d, e} 205227
P2 {b, c, d, e, f} 205211
P3 {a, b, c, d, e, f} 101758
P4 {a, c, d, e, f} 161563
P5 {a, c, d, e} 161576

So, let’s see if we can find a way of clustering frequent patterns as a means
of obtaining a compressed representation of them. We will need to define a
good similarity measure, cluster patterns according to this measure, and then
select and output only a representative pattern for each cluster. Since the set of
closed frequent patterns is a lossless compression over the original set of frequent
patterns, it is a good idea to discover representative patterns over the collection
of closed patterns.

We can use the following distance measure between closed patterns. Let P1

and P2 be two closed patterns. Their supporting transaction sets are T (P1) and
T (P2), respectively. The pattern distance of P1 and P2, Pat Dist(P1, P2), is
defined as:

Pat Dist(P1, P2) = 1 −
|T (P1) ∩ T (P2)|

|T (P1) ∪ T (P2)|
.

Pattern distance is a valid distance metric defined on the set of transactions.
Note that it incorporates the support information of patterns, as desired above.

Example 7.13 Pattern distance. Suppose P1 and P2 are two patterns such that T (P1) =
{t1, t2, t3, t4, t5} and T (P2) = {t1, t2, t3, t4, t6}, where ti is a transaction in the
database. The distance between P1 and P2 is Pat Dist(P1, P2) = 1 − 4

6 = 1
3 .

Now, let’s consider the expression of patterns. Given two patterns A and
B, we say B can be expressed by A if O(B) ⊂ O(A), where O(A) is the
corresponding itemset of pattern A. Following this definition, assume patterns
P1, P2, . . . , Pk are in the same cluster. The representative pattern Pr of the
cluster should be able to express all of the other patterns in the cluster. Clearly,
we have ∪k

i=1O(Pi) ⊆ O(Pr).
Using the distance measure, we can simply apply a clustering method, such

as k-means (Section 10.2) on the collection of frequent patterns. However, this
introduces two problems. First, the quality of the clusters cannot be guaranteed;
and second, it may not be able to find a representative pattern for each cluster

34 CHAPTER 7. ADVANCED PATTERN MINING

(i.e., the pattern Pr may not belong to the same cluster). To overcome these
problems, this is where the concept of δ-cluster comes in, where δ (0 ≤ δ ≤ 1)
measures the tightness of a cluster.

A pattern P is δ-covered by another pattern P
′

if O(P) ⊆ O(P
′

) and
Pat Dist(P, P

′

) ≤ δ. A set of patterns form a δ-cluster if there exists a
representative pattern Pr such that for each pattern P in the set, P is δ-covered
by Pr.

Note that according to the concept of δ-cluster, a pattern can belong to
multiple clusters. Also, using δ-cluster, we only need to compute the distance
between each pattern and the representative pattern of the cluster. Because a
pattern P is δ-covered by a representative pattern Pr only if O(P) ⊆ O(Pr),
we can simplify the distance calculation by considering only the supports of the

patterns: Pat Dist(P, Pr) = 1 − |T (P)∩T (Pr)|
|T (P)∪T (Pr)| = 1 − |T (Pr)|

|T (P)| .

If we restrict the representative pattern to be frequent, then the number
of representative patterns (i.e., clusters) is no less than the number of maxi-
mal frequent patterns. This is because a maximal frequent pattern can only
be covered by itself. In order to achieve more succinct compression, we re-
lax the constraints on representative patterns, that is, we allow the support of
representative patterns to be somewhat less than minsup.

For any representative pattern Pr, assume its support is k. Since it has to
cover at least one frequent pattern (i.e., P) whose support is at least minsup,
we have

δ ≥ Pat Dist(P, Pr) = 1 −
|T (Pr)|

|T (P)|
≥ 1 −

k

min sup
.

That is, k ≥ (1−δ)×min sup. This is the minimum support for a representative
pattern, denoted as min supr.

Based on the above discussion, the pattern compression problem can be
defined as follows: Given a transaction database, a minimum support min sup
and the cluster quality measure δ, the pattern compression problem is to find
a set of representative patterns R, such that for each frequent pattern P (with
respect to min sup), there is a representative pattern Pr ∈ R (with respect to
min supr), which covers P , and the value of |R| is minimized.

Finding a minimum set of representative patterns is an NP-Hard problem.
However, efficient methods have been developed that reduce the number of
closed frequent patterns generated by orders of magnitude with respect to the
original collection of closed patterns. The methods succeed in finding a high
quality compression of the pattern set.

7.5.2 Extracting Redundancy-Aware Top-k Patterns

Mining the top-k most frequent patterns is a strategy for reducing the number
of patterns returned during mining. However, in many cases, frequent patterns
are not mutually independent but often clustered in small regions. This is some-
what like finding 20 population centers in the world, which may result in cities
clustered in a small number of countries rather than evenly distributed across

7.5. MINING COMPRESSED OR APPROXIMATE PATTERNS 35

the globe. Instead, most users would prefer to derive the k most interesting
patterns, which are not only significant, but also mutual independent and con-
taining little redundancy. A small set of k representative patterns that have not
only high significance but also low redundancy are called redundancy-aware
top-k patterns.

(a)

significance

(b)
significance + relevance

(c)
significance

(d)
relevance

Figure 7.11: A conceptual view comparing top-k methodologies (where gray
level represents pattern significance, and the closer that two patterns are dis-
played, the more redundant they are to one another): (a) original patterns,
(b) redundancy-aware top-k patterns, (c) traditional top-k patterns, and (d) k
summarized patterns

Example 7.14 Redundancy-aware top-k strategy vs. other top-k strategies. Fig-
ure 7.11 illustrates the intuition behind redundancy-aware top-k patterns versus
traditional top-k patterns and k summarized patterns. Suppose we have the
set of frequent patterns shown in Figure 7.11(a), where each circle represents a
pattern whose significance is colored in gray scale. The distance between two
circles reflects the redundancy of the two corresponding patterns: The closer
the circles are, the more redundant the respective patterns are to one another.
Let’s say we want to find three patterns that will best represent the given set,
that is, k = 3. Which three should we choose? Arrows are used to show
the patterns chosen if using redundancy-aware top-k patterns (Figure 7.11(b)),
traditional top-k patterns (Figure 7.11(c)), or k summarized patterns (Fig-
ure 7.11(d)). In Figure 7.11(c)) the traditional top-k strategy relies solely on
significance: it selects the three most significant patterns to represent the set.
Figure 7.11(d), k-summarized pattern strategy selects patterns based solely

36 CHAPTER 7. ADVANCED PATTERN MINING

on non-redundancy. It detects three clusters, and finds the most representative
patterns to be the “centremost’” pattern from each cluster. These patterns are
chosen to represent the data. The selected patterns are considered “summarized
patterns” in the sense that they represent or “provide a summary” of the clus-
ters they stand for. By contrast, in Figure 7.11(d) the redundancy-aware
top-k patterns make a trade-off between significance and redundancy. The
three patterns chosen here have high significance and low redundancy. Observe,
for example, the two highly significant patterns that, based on their redundancy,
are displayed next to each other. The redundancy-aware top-k strategy selects
only one of them, taking into consideration that two would be redundant. To
formalize the definition of redundancy-aware top-k patterns, we’ll need to define
the concepts of significance and redundancy.

A significance measure S is a function mapping a pattern p ∈ P to a
real value such that S(p) is the degree of interestingness (or usefulness) of the
pattern p. In general, significance measures can be either objective or subjec-
tive. Objective measures depend only on the structure of the given pattern and
the underlying data used in the discovery process. Commonly used objective
measures include support, confidence, correlation, and tf-idf (or term frequency
vs. inverse document frequency), where the latter is often used in information
retrieval. Subjective measures are based on user beliefs in the data. They
therefore depend on the users who examine the patterns. A subjective measure
is usually a relative score based on user prior knowledge or a background model.
It often measures the unexpectedness of a pattern by computing its divergence
from the background model. Let S(p, q) be the combined significance of
patterns p and q, and S(p|q) = S(p, q) − S(q) be the relative significance of
p given q. Note that the combined significance, S(p, q), means the collective
significance of two individual patterns p and q, not the significance of a single
super pattern p ∪ q.

Given the significance measure S, the redundancy R between two pat-
terns p and q is defined as R(p, q) = S(p) + S(q) − S(p, q). Subsequently, we
have S(p|q) = S(p) − R(p, q).

We assume that the combined significance of two patterns is no less than
the significance of any individual pattern (since it is a collective significance of
two patterns) and does not exceed the sum of two individual significance (since
there exists redundancy). That is, the redundancy between two patterns should
satisfy

0 ≤ R(p, q) ≤ min(S(p), S(q)). (7.14)

The ideal redundancy measure R(p, q) is usually hard to obtain. However, we
can approximate redundancy using distance between patterns, such as with the
distance measure defined in Section 7.5.1.

The problem of finding redundancy-aware top-k patterns can thus be trans-
formed into finding a k-pattern set that maximizes the marginal significance,
which is a well-studied problem in information retrieval. In this field, a docu-
ment has high marginal relevance if it is both relevant to the query and con-

7.6. PATTERN EXPLORATION AND APPLICATION 37

tains minimal marginal similarity to previously selected documents, where the
marginal similarity is computed by choosing the most relevant selected docu-
ment. Experimental studies have shown this method to be efficient and able to
find high-significant and low-redundant top-k patterns.

7.6 Pattern Exploration and Application

For discovered frequent patterns, is there any way the mining process can re-
turn additional information that will help us to better understand the patterns?
What kinds of applications exist for frequent pattern mining? These topics are
discussed in this section. Section 7.6.1 looks at the automated generation of se-
mantic annotations for frequent patterns. Such annotations are dictionary-
like. They provide semantic information relating to patterns, based on the
context and usage of the patterns, which aids in their understanding. Semanti-
cally similar patterns also form part of the annotation, providing a more direct
connection between discovered patterns and any other patterns already known
to the users.

Section 7.6.2 presents an overview of applications of frequent pattern mining.
While the applications discussed in Chapter 6 and this chapter mainly involved
market basket analysis and correlation analysis, there are many other areas in
which frequent pattern mining is useful. These range from data preprocessing
and classification to clustering and the analysis of complex data.

7.6.1 Semantic Annotation of Frequent Patterns

Pattern mining typically generates a huge set of frequent patterns without pro-
viding enough information to interpret the meaning of the patterns. In the
previous section, we introduced pattern processing techniques to shrink the size
of the output set of frequent patterns, such as by extracting redundancy-aware
top-k patterns or compressing the pattern set. These, however, do not provide
any semantic interpretation of the patterns. It would be helpful if we could also
generate semantic annotations for the frequent patterns found, which would
help us to better understand the patterns.

“What is an appropriate semantic annotation for a frequent pattern?” Think
about what we find when we look up the meaning of terms in a dictionary.
Suppose we are looking up the term“pattern”. A dictionary typically contains
the following components to explain the term:

1. a set of definitions, such as “a decorative design, as for wallpaper, china,
or textile fabrics, etc.; a natural or chance configuration;”

2. example sentences : such as “patterns of frost on the window; the behavior
patterns of teenagers; . . . ”,

3. synonyms from a thesaurus, like “model, archetype, design, exemplar,
motif, . . . ”.

38 CHAPTER 7. ADVANCED PATTERN MINING

Analogically, what if we could extract similar types of semantic information
and provide such structured annotations for frequent patterns? This would
greatly help users in interpreting the meaning of patterns and in deciding on
how or whether to further explore them. Unfortunately, it is infeasible to provide
such precise semantic definitions for patterns without expertise in the domain.
Nevertheless, we can explore how to approximate such a process for frequent
pattern mining.

In general, the hidden meaning of a pattern can be inferred from patterns
with similar meanings, data objects co-occurring with it, and transactions in
which the pattern appears. Annotations with such information are analogous
to dictionary entries, which can be regarded as annotating each term with struc-
tured semantic information. Let’s examine an example.

Pattern: “{frequent, pattern}”
context indicators:

“mining”, “constraint”, “Apriori”, “FP-growth”
“rakesh agrawal”, “jiawei han”, . . .

representative transactions:
1) mining frequent patterns without candidate . . .
2) . . . mining closed frequent graph patterns

semantically similar patterns:
“{frequent, sequential, pattern}”, “{graph, pattern}”
“{maximal, pattern}”, “{frequent, closed, pattern}”, . . .

Figure 7.12: Semantic annotation of the pattern “frequent, pattern”.

Example 7.15 Semantic annotation of a frequent pattern. Figure 7.12 shows an
example of a semantic annotation for the pattern, “{frequent, pattern}”. This
dictionary-like annotation provides semantic information related to “{frequent,
pattern}”, consisting of its strongest context indicators, the most representative
data transactions, and the most semantically similar patterns. This kind of
semantic annotation is similar to natural language processing. The semantics
of a word can be inferred from its context, and words sharing similar contexts
tend to be semantically similar. The context indicators and the representative
transactions provide a view of the context of the pattern from different angles
to help users understand the pattern. The semantically similar patterns provide
a more direct connection between the pattern and any other patterns already
known to the users.

“How can we perform automated semantic annotation for a frequent pat-
tern?” The key to high quality semantic annotation of a frequent pattern is the
successful context modeling of the pattern. For context modeling of a pattern,
p, consider the following.

• A context unit is a basic object in a database D that carries semantic

7.6. PATTERN EXPLORATION AND APPLICATION 39

information and co-occurs with at least one frequent pattern p in at least
one transaction in D. A context unit can be an item, a pattern, or even
a transaction, depending on the specific task and data.

• The context of a pattern, p, is a selected set of weighted context units
(referred to as context indicators) in the database. It carries semantic
information, and co-occurs with frequent pattern, p. The context of p
can be modeled using a vector space model, that is, the context of p
can be represented as C(p) = 〈w(u1), w(u2), . . . , w(un)〉, where w(ui) is
a weight function of term ui. A transaction t is represented as a vector
〈v1, v2, . . . , vm〉, where vi = 1 if and only if vi ∈ t, otherwise vi = 0.

Based on the above concepts, we can define the basic task of semantic
pattern annotation as follows:

1. Select context units and design a strength weight for each unit to model
the contexts of frequent patterns.

2. Design similarity measures for the contexts of two patterns, and for a
transaction and a pattern context.

3. For a given frequent pattern, extract the most significant context indi-
cators, representative transactions and semantically similar patterns to
construct a structured annotation.

“Which context units should we select as context indicators?” Although a
context unit can be an item, a transaction, or a pattern, typically, frequent
patterns provide the most semantic information of the three. There are usually
a large number of frequent patterns associated with a pattern p. Therefore, we
need a systematic way to select only the important and non-redundant frequent
patterns from a large pattern set.

Considering that the set of closed patterns is a lossless compression of fre-
quent pattern sets, we can first derive the set of closed patterns by applying
efficient closed pattern mining methods. However, as discussed in Section 7.5,
a closed pattern set is not compact enough, and pattern compression needs to
be performed. We could use the pattern compression methods introduced in
Section 7.5.1 or explore alternative compression methods, such as performing
micro-clustering using the Jaccard coefficient (Chapter 2) and then selecting the
most representative patterns from each cluster.

“How, then, can we assign weights for each context indicator?” A good
weighting function should obey the following properties: (1) the best semantic
indicator of a pattern p is itself, (2) assign the same score to two patterns if
they are equally strong, and (3) if two patterns are independent, neither can
indicate the meaning of the other. The meaning of a pattern p can be inferred
from either the appearance or absence of indicators.

Mutual information is one of several possible weighting functions. It is widely
used in information theory to measure the mutual independency of two random
variables. Intuitively, it measures how much information a random variable tells

40 CHAPTER 7. ADVANCED PATTERN MINING

about the other. Given two frequent patterns, pα and pβ, let X = {0, 1} and
Y = {0, 1} be two random variables representing the appearance of pα and pβ,
respectively. Mutual information I(X ; Y) is computed as

I(X ; Y) =
∑

x∈X

∑

y∈Y

P (x, y)log
P (x, y)

P (x)P (y)
,

where P (x = 1, y = 1) =
|Dα∩Dβ |

|D| , P (x = 0, y = 1) =
|Dβ |−|Dα∩Dβ |

|D| , P (x =

1, y = 0) =
|Dα|−|Dα∩Dβ |

|D| , and P (x = 0, y = 0) =
|D|−|Dα∪Dβ |

|D| . Standard

Laplace smoothing can be used to avoid zero probability.
Mutual information favors strongly correlated units and thus can be used

to model the indicative strength of the context units selected. With context
modeling, pattern annotation can be accomplished as follows:

1. To extract the most significant context indicators, we can use cosine sim-
ilarity (Chapter 2) to measure the semantic similarity between pairs of
context vectors, rank the context indicators by the weight strength, and
extract the strongest ones;

2. To extract representative transactions, represent each transaction as a
context vector. Rank the transactions with semantic similarity to the
pattern p; and

3. To extract semantically similar patterns, rank each frequent pattern, p,
by the semantic similarity between their context models and the context
of p.

Pattern Type Annotations

Context Indicator spiros papadimitriou; fast; use fractal; graph; use
correlate;

christos Rep. Transactions multiattribute hash use gray code
faloutso Rep. Transactions recovery latent time-series their observe sum net-

work tomography particle filter
Rep. Transactions index multimedia database tutorial
Sem. Similar Patterns spiros papadimitriou&christos faloutso;

spiros papadimitriou; flip korn; timos k selli;
ramakrishnan srikant,
ramakrishnan srikant&rakesh agrawal

Context Indicator w bruce croft; web information;
monika rauch henzinger; james p callan; full-
text;

Rep. Transactions web information retrieval
information Rep. Transactions language model information retrieval
retrieval Sem. Similar Patterns information use; web information; probabilist in-

formation; information filter;
text information

Table 7.4: Annotations generated for frequent patterns in the DBLP Dataset

Based on the above principles, experiments have been conducted on large
datasets to generate semantic annotations. Table 7.4 shows one such experiment

7.6. PATTERN EXPLORATION AND APPLICATION 41

on a portion of the DBLP dataset3, containing papers from the proceedings of 12
major conferences in the fields of database systems, information retrieval, and
data mining. Each transaction consists of two parts – the authors and the title of
the corresponding paper. Consider two types of patterns: (1) frequent author or
co-authorship, each of which is a frequent itemset of authors, and (2) frequent
title terms, each of which is a frequent sequential pattern of the title words.
The method can automatically generate dictionary-like annotations for different
kinds of frequent patterns. For frequent itemsets like co-authorship or single
authors, the strongest context indicators are usually the other co-authors and
discriminative title terms that appear in their work. The semantically similar
patterns extracted also reflect the authors and terms related to their work.
However, these similar patterns may not even co-occur with the given pattern
in a paper. For example, the patterns “timos k selli”, “ramakrishnan srikant”,
etc. do not co-occur with the pattern “christos faloutsos”, but are extracted
because their contexts are similar since they all are database and/or data mining
researchers, thus the annotation is meaningful. For the title term “information
retrieval”, which is a sequential pattern, its strongest context indicators are
usually the authors who tend to use the term in the titles of their papers, or
the terms that tend to co-appear with it. Its semantically similar patterns
usually provide interesting concepts or descriptive terms, which are close in
meaning, e.g. “information retrieval → information filter”. In both scenarios,
the representative transactions extracted give us the titles of papers that well
capture the meaning of the given patterns. The experiment demonstrates the
effectiveness of the semantic pattern annotation to generate a dictionary-like
annotation for frequent patterns, which can help a user understand the meaning
of annotated patterns.

The context modeling and semantic analysis method presented here is gen-
eral and can deal with any type of frequent patterns with context information.
Such semantic annotations can have many other applications, such as ranking
patterns, categorizing and clustering patterns with semantics, and summarizing
databases. Applications of the pattern context model and semantical analysis
method are also not limited to pattern annotation; other example applications
include pattern compression, transaction clustering, pattern relations discovery,
and pattern synonym discovery.

7.6.2 Applications of Pattern Mining

We have studied many aspects of frequent pattern mining, with topics rang-
ing from efficient mining algorithms and the diversity of patterns to pattern
interestingness, pattern compression/approximation, and semantic pattern an-
notation. Let’s take a moment to consider why this field has generated so much
attention. What are some of the application areas in which frequent pattern
mining is useful? This section presents an overview of applications for frequent
pattern mining. We have touched on several application areas already, such as

3http://www.informatik.uni-trier.de/∼ley/db/

42 CHAPTER 7. ADVANCED PATTERN MINING

market basket analysis and correlation analysis, yet frequent pattern mining can
be applied to many other areas as well. These range from data preprocessing
and classification to clustering and the analysis of complex data.

To summarize, frequent pattern mining is a data mining task that discovers
patterns that occur frequently together and/or have some distinctive proper-
ties that distinguish them from others, often disclosing something inherent and
valuable. The patterns may be sets of items, subsequences, substructures, or
values. The task also includes the discovery of rare patterns, revealing items
that occur very rarely together yet are of interest. Uncovering frequent patterns
and rare patterns leads to many broad and interesting applications, described
as follows.

Pattern mining is widely used for noise filtering and data cleaning as
preprocessing in many data-intensive applications. We can use it to analyze
micro-array data, for instance, which typically consists of tens of thousands of
dimensions (representing genes, for example). Such data can be rather noisy.
Frequent pattern mining of the data can help us distinguish between what is
noise and what isn’t. We may assume that items that occur frequently together
are less likely to be random noise and should not be filtered out. On the other
hand, those that occur very frequently (similar to stop-words in text documents)
are likely indistinctive and may be filtered out. Frequent pattern mining can
help in background information identification and noise reduction.

Pattern mining often helps in the discovery of inherent structures and
clusters hidden in the data. Given the DBLP dataset, for instance, frequent
pattern mining can easily find interesting clusters like co-author clusters (by
examining authors that frequently collaborate together) and conference clusters
(by examining the sharing of many common authors and terms). Such structure
or cluster discovery can be used as preprocessing for more sophisticate data
mining.

Chapters 8 and 9 will introduce a good set of classification methods. Al-
though there are numerous classification methods, research has found that fre-
quent patterns can be used as building blocks in the construction of high-quality
classification models, hence called pattern-based classification. The ap-
proach is successful because (1) the appearance of very infrequent item(s) or
itemset(s) could be caused by random noise and may not be reliable for model
construction, yet a relatively frequent pattern often carries more information
gain for constructing more reliable models; (2) patterns in general (i.e., item-
sets consisting of multiple attributes) usually carry more information gain than a
single attribute (feature); and (3) the patterns so generated are often intuitively
understandable and easy to explain. Recent research has reported several meth-
ods that mine interesting, frequent and discriminative patterns and use them
for effective classification. Pattern-based classification methods are introduced
in Chapter 9.

Frequent patterns can also be used effectively for subspace clustering
in high-dimensional space. Clustering is challenging in high-dimensional
space, where the distance between two objects is often difficult to measure. This
is because such a distance is dominated by the different sets of dimensions in

7.6. PATTERN EXPLORATION AND APPLICATION 43

which the objects are residing. Thus instead of clustering objects in their full
high-dimensional spaces, it is often more meaningful to find clusters in some
subspaces. Recently, researchers have developed subspace-based pattern growth
methods that cluster objects based on their common frequent patterns. They
have shown that such methods are effective for clustering micro-array-based
gene expression data. We will examine such subspace clustering methods in
Chapter 10.

Pattern analysis is useful in the analysis of spatiotemporal data, time-
series data, image data, video data, and multimedia data. An area of
spatiotemporal data analysis is the discovery of co-location patterns. These,
for example, can help determine if a certain disease is geographically co-located
with certain objects, like a well, a hospital, or a river. In time-series data
analysis, researchers have discretized time-series values into multiple intervals
(or levels) so that tiny fluctuations and value differences can be ignored. The
data can then be summarized into sequential patterns, which can be indexed
to facilitate similarity search or comparative analysis. In image analysis and
pattern recognition, researchers have also identified frequently occurring visual
fragments as “visual words”, which can be used for effective clustering, classifi-
cation, and comparative analysis.

Pattern mining has also been used for the analysis of sequence or struc-
tural data, such as trees, graphs, subsequences, and networks. In software
engineering, researchers have identified consecutive or gapped subsequences
in program execution as sequential patterns that help identify software bugs.
Copy-and-paste bugs in large software programs can be identified by extended
sequential pattern analysis of source programs. Plagiarized software programs
can be identified based on their essentially identical program flow/loop struc-
tures. Authors’ commonly-used sentence substructures can be identified and
used to distinguish articles written by different authors.

To help search large complex structured datasets and networks, frequent and
discriminative patterns can be used as primitive indexing structures, known
as graph indices, to support similarity search in graph-structured data, such as
chemical compound databases or XML structured databases. Such patterns can
also be used for data compression and summarization.

Furthermore, frequent patterns have been used in recommendation sys-
tems, where people can find correlations, clusters of customer behaviors and
classification models based on commonly occurring or discriminative patterns.

Finally, studies on efficient computation methods in pattern mining mutually
enhance many other studies on scalable computation. For example, the com-
putation and materialization of iceberg cubes using the BUC and StarCubing
algorithms (Chapter 5) respectively share many similarities to computing fre-
quent patterns by the Apriori and FP-growth algorithms (Chapter 6).

44 CHAPTER 7. ADVANCED PATTERN MINING

7.7 Summary

• The scope of frequent pattern mining research reaches far beyond the
basic concepts and methods introduced in Chapter 6 for mining frequent
itemsets and associations. This chapter presented a road map of the field,
where topics are organized with respect to the kinds of patterns and rules
that can be mined, mining methods, and applications.

• In addition to mining for basic frequent itemsets and associations, ad-
vanced forms of patterns can be mined such as multilevel associa-
tions and multidimensional associations, quantitative association rules,
rare patterns, and negative patterns. We can also mine high dimensional
patterns, and compressed or approximate patterns.

• Multilevel associations involve data at more than one level of abstrac-
tion (such as “buys computer” and “buys laptop”). These may be mined
using multiple minimum support thresholds. Multidimensional asso-
ciations contain more than one dimension. Techniques for mining such
associations differ in how they handle repetitive predicates. Quantita-
tive association rules involve quantitative attributes. Discretization,
clustering, and statistical analysis that discloses exceptional behavior can
be integrated with the pattern mining process.

• Rare patterns occur rarely but are of special interest. Negative pat-
terns are patterns whose components exhibit negatively correlated be-
havior. Care should be taken in the definition of negative patterns, with
consideration of the null invariance property. Rare and negative patterns
may highlight exceptional behavior in the data, which are likely of interest.

• Constraint-based mining strategies can be used to help direct the
mining process towards patterns that match users’ intuition or satisfy
certain constraints. Many user-specified constraints can be pushed deep
into the mining process. Constraints can be categorized into pattern-
pruning and data-pruning constraints. Properties of such constraints
include monotonicity, anti-monotonicity, data-antimonotonicity, and suc-
cinctness. Constraints with such properties can be properly incorporated
into efficient pattern mining processes.

• Methods have been developed for mining patterns in high-dimensional
space. This includes exploring a tree structure constructed based on row-
enumeration for mining data sets where the number of dimensions is large
and the number of data tuples is small (such as for microarray data), as
well as mining colossal patterns (that is, patterns of very long length)
by a pattern fusion method.

• To reduce the number of patterns returned in mining, we can instead
mine compressed patterns or approximate patterns. Compressed patterns

7.8. EXERCISES 45

can be mined with representative patterns defined based on the con-
cept of clustering, and approximate patterns can be mined by extracting
redundancy-aware top-k patterns (that is, a small set of k representa-
tive patterns that have not only high significance but also low redundancy
with respect to one another).

• Semantic annotations can be generated to help users understand the
meaning of the frequent patterns found, such as for textual terms like
“{frequent, pattern}”. Such annotations are dictionary-like, providing se-
mantic information relating to the term. This information consists of
context indicators (e.g., terms indicating the context of that pattern),
the most representative data transactions (e.g., fragments or sentences
containing the term), and the most semantically similar patterns (e.g.,
“{maximal, pattern}” is semantically similar to “{frequent, pattern}”).
The annotations provide a view of the context of the pattern from differ-
ent angles, which aids in their understanding.

• Due to limited space, this chapter does not cover other advanced issues
in pattern mining such as sequential pattern mining; structural pattern
mining; and pattern mining in data streams, in spatiotemporal data, in
time-series data, and in networked data. Pattern mining methods for such
complex types of data will be studied in the second volume of this book.

• Frequent pattern mining has many diverse applications, ranging from
pattern-based data cleaning, to pattern-based classification, clustering,
and outlier or exception analysis. These methods are discussed in the
subsequent chapters in this book.

7.8 Exercises

1. Propose and outline a level-shared mining approach to mining multi-
level association rules in which each item is encoded by its level position.
Design it so that an initial scan of the database collects the count for each
item at each concept level, identifying frequent and subfrequent items.
Comment on the processing cost of mining multilevel associations with
this method in comparison to mining single-level associations.

2. Suppose, as manager of a chain of stores, you would like to use sales trans-
actional data to analyze the effectiveness of your store’s advertisements.
In particular, you would like to study how specific factors influence the ef-
fectiveness of advertisements that announce a particular category of items
on sale. The factors to study are: the region in which customers live,
and the day-of-the-week, and time-of-the-day of the ads. Discuss how to
design an efficient method to mine the transaction datasets and explain
how multidimensional and multilevel mining methods can help you
derive a good solution.

46 CHAPTER 7. ADVANCED PATTERN MINING

3. Quantitative association rules may disclose exceptional behaviors within
a dataset, where“exceptional” can be defined based on statistical theory.
For example, Section 7.2.3 shows the association rule:

sex = female ⇒ meanwage = $7.90p/hr (overallmeanwage = $9.02),

which suggests an exceptional pattern. The rule states that the average
wage for females is only $7.90 per hour, which is a significantly lower
wage than the overall average of $9.02 p/hr. Discuss how such quantitative
rules can be discovered systematically and efficiently in large datasets with
quantitative attributes.

4. In multidimensional data analysis, it is interesting to extract pairs of simi-
lar cell characteristics associated with substantial changes in measure in a
data cube, where cells are considered similar if they are related by roll-up
(i.e, ancestors), drill-down (i.e, descendants), or 1-dimensional mutation
(i.e, siblings) operations. Such an analysis is called cube gradient anal-
ysis. Suppose the measure of the cube is average. A user poses a set of
probe cells and would like to find their corresponding sets of gradient cells
each of which satisfies a certain gradient threshold. For example, find the
set of corresponding gradient cells whose average sale price is greater than
20% of that of the given probe cells. Develop an algorithm than mines the
set of constrained gradient cells efficiently in a large data cube.

5. Section 7.2.4 presented various ways of defining negatively correlated pat-
terns. Consider Definition 3: “Suppose that itemsets X and Y are both
frequent, that is, sup(X) ≥ min sup and sup(Y) ≥ min sup, where
min sup is the minimum support threshold. If (P (X |Y)+P (Y |X))/2 < ǫ,
where ǫ is a negative pattern threshold, then pattern X∪Y is a negatively
correlated pattern.” Design an efficient pattern-growth algorithm for
mining the set of negatively correlated patterns.

6. Prove that each entry in the following table correctly characterizes its
corresponding rule constraint for frequent itemset mining.

Rule constraint Antimonotonic Monotonic Succinct

a) v ∈ S no yes yes
b) S ⊆ V yes no yes
c) min(S) ≤ v no yes yes
d) range(S) ≤ v yes no no
e) variance(S) ≤ v convertible convertible no

7. The price of each item in a store is nonnegative. The store manager
is only interested in rules of the form: “one free item may trigger $200
total purchases in the same transaction”. State how to mine such rules
efficiently using constraint-based pattern mining.

7.8. EXERCISES 47

8. The price of each item in a store is nonnegative. For each of the following
cases, identify the kinds of constraint they represent and briefly discuss
how to mine such association rules efficiently.

(a) Containing at least one Blueray DVD movie.

(b) Containing items whose sum of the prices is less than $150

(c) Containing one free item and other items whose sum of the prices is
at least $200

(d) Where the average price of all the items is between $100 and $500

9. Association rule mining often generates a large number of rules, many
of which may be similar, thus not containing much novel information.
Design an efficient algorithm that compresses a large set of patterns into
a small compact set. Discuss whether your mining method is robust under
different pattern similarity definitions.

10. Section 7.5.1 defined a pattern distance measure between closed patterns
P1 and P2 as

Pat Dist(P1, P2) = 1 −
|T (P1) ∩ T (P2)|

|T (P1) ∪ T (P2)|
,

where T (P1) and T (P2) are the supporting transaction sets of P1 and
P2, respectively. Is this a valid distance metric? Show the derivation to
support your answer.

11. Frequent pattern mining may generate many superfluous patterns. There-
fore, it is important to develop methods that mine compressed patterns.
Suppose a user would like to obtain only k patterns (where k is a small
integer). Outline an efficient method that generates the k most repre-
sentative patterns, where more distinct patterns are preferred over very
similar patterns. Illustrate the effectiveness of your method using a small
data set.

12. For mining high-dimensional data, we introduced two methods: (a)
a top-down closed pattern mining method, and (b) a core-pattern-fusion
method. Discuss situations for which (a) would be preferred over (b), and
vice versa.

13. It is interesting to generate semantic annotations for mined patterns.
Section 7.6.1 presented a pattern annotation method. Alternative meth-
ods are possible, such as by utilizing type information. For example, in
the DBLP dataset, authors, conferences, terms, and papers form multiple
typed data. Develop a method for automated semantic pattern annotation
that makes good use of typed information.

48 CHAPTER 7. ADVANCED PATTERN MINING

7.9 Bibliographic Notes

The basic techniques of frequent itemset mining, presented in Chapter 6, have
been extended in various ways, as detailed in this chapter. One line of ex-
tension is mining multilevel and multidimensional association rules. Multilevel
association mining was studied in Srikant and Agrawal [SA95], and Han and
Fu [HF95]. In Srikant and Agrawal [SA95], such mining was studied in the
context of generalized association rules, and an R-interest measure was pro-
posed for removing redundant rules. Mining multidimensional association rules
using static discretization of quantitative attributes and data cubes was stud-
ied by Kamber, Han, and Chiang [KHC97]. Another line of extension is to
mine patterns on numerical attributes. Srikant and Agrawal [SA96] proposed a
non-grid-based technique for mining quantitative association rules, which uses a
measure of partial completeness. Mining quantitative association rules based on
rule clustering was proposed by Lent, Swami, and Widom [LSW97]. Techniques
for mining quantitative rules based on x-monotone and rectilinear regions were
presented by Fukuda, Morimoto, Morishita, and Tokuyama [FMMT96], and
Yoda, Fukuda, Morimoto, et al. [YFM+97]. Mining (distance-based) associa-
tion rules over interval data was proposed by Miller and Yang [MY97]. Mining
quantitative association rules based on a statistical theory to present only those
that deviate substantially from normal data was studied by Aumann and Lindell
[AL99].

Mining rare patterns by pushing group-based constraints was proposed by
Wang, He and Han [WHH00]. Mining negative association rules was discussed
by Savasere, Omiecinski and Navathe [SON98], and by Tan, Steinbach and
Kumar [TSK05].

Constraint-based mining directs the mining process towards patterns that
are likely of interest to the user. The use of metarules as syntactic or semantic
filters defining the form of interesting single-dimensional association rules was
proposed in Klemettinen, Mannila, Ronkainen, et al. [KMR+94]. Metarule-
guided mining, where the metarule consequent specifies an action (such as
Bayesian clustering or plotting) to be applied to the data satisfying the metarule
antecedent, was proposed in Shen, Ong, Mitbander, and Zaniolo [SOMZ96].
A relation-based approach to metarule-guided mining of association rules was
studied in Fu and Han [FH95]. Methods for constraint-based mining using
pattern pruning constraints were studied by Ng, Lakshmanan, Han, and Pang
[NLHP98], Lakshmanan, Ng, Han, and Pang [LNHP99], and Pei, Han, and Lak-
shmanan [PHL01]. Constraint-based pattern mining by data reduction using
data pruning constraints was studied by Bonchi, Giannotti, Mazzanti, and Pe-
dreschi [BGMP03], and Zhu, Yan, Han and Yu [ZYHY07]. An efficient method
for mining constrained correlated sets was given in Grahne, Lakshmanan, and
Wang [GLW00]. A dual mining approach was proposed by Bucila, Gehrke,
Kifer, and White [BGKW03]. Other ideas involving the use of templates or
predicate constraints in mining have been discussed in [AK93], [DT93], [HK91],
[LHC97], [ST96], [SVA97].

Traditional pattern mining methods encounter challenges when mining high-

7.9. BIBLIOGRAPHIC NOTES 49

dimensional patterns, with applications like bioinformatics. Pan, Cong, Tung, et
al. [PCT+03] proposed CARPENTER, a method for finding closed patterns in
high-dimensional biological datasets, which integrates the advantages of vertical
data formats and pattern-growth method. Pan, Tung, Cong, and Xu [PTC+04]
proposed COBBLER, which finds frequent closed itemsets by integrating row
enumeration with column enumeration. Liu, Han, Xin, and Shao [LHXS06]
proposed TDClose to mine frequent closed patterns in high-dimensional data
by starting from the maximal rowset, integrated with a row-enumeration tree.
It uses the pruning power of the minimum support threshold to reduce the
search space. For mining rather long patterns, called colossal patterns, Zhu,
Yan, Han, et al. [ZYH+07] developed a core pattern fusion method that leaps
over an exponential number of intermediate patterns to reach colossal patterns.

To generate a reduced set of patterns, recent studies have focussed on mining
compressed sets of frequent patterns. Closed patterns can be viewed as a loss-
less compression of frequent patterns, whereas maximal patterns can be viewed
as a simple lossy compression of frequent patterns. Top-k patterns, such as
that by Wang, Han, Lu, and Tsvetkov [WHLT05], and error-tolerant patterns
by Yang, Fayyad, and Bradley [YFB01] are alternative forms of interesting pat-
terns. Afrati, Gionis, and Mannila [AGM04] proposed to use k itemsets to cover
a collection of frequent itemsets. For frequent itemset compression, Yan, Cheng,
Han, and Xin [YCHX05] proposed a profile-based approach, and Xin, Han, Yan,
and Cheng [XHYC05] proposed a clustering-based approach. By taking into
consideration of both pattern significance and pattern redundancy, Xin, Cheng,
Yan, and Han [XCYH06] proposed a method for extracting redundancy-aware
top-k patterns.

Automated semantic annotation of frequent patterns is useful for explaining
the meaning of patterns. Mei, Xin, Cheng, et al. [MXC+07] studied methods
for semantic annotation of frequent patterns.

An important extension to frequent itemset mining is mining sequence and
structural data. This includes mining sequential patterns (such as in Agrawal
and Srikant [AS95], Pei, Han, Mortazavi-Asl et al. [PHMA+01, PHMA+04],
and Zaki [Zak01]), mining frequent espisodes (Mannila, Toivonen, and Verkamo
[MTV97]), mining structural patterns (e.g., Inokuchi, Washio, and Motoda
[IWM98], Kuramochi and Karypis [KK01], and Yan and Han [YH02]), mining
cyclic association rules (Özden, Ramaswamy, and Silberschatz [ORS98]), inter-
transaction association rule mining (Lu, Han, and Feng [LHF98]), and calen-
dric market basket analysis (Ramaswamy, Mahajan, and Silberschatz [RMS98]).
Mining such patterns will be studied in-depth in the second volume of this book.

Pattern mining has been extended to help effective data classification and
clustering. Pattern-based classification (such as Liu, Hsu and Ma [LHM98],
and Cheng, Yan, Han, and Hsu [CYHH07] is discussed in Chapter 9. Pattern-
based cluster analysis (such as Agrawal, Gehrke, Gunopulos, and Raghavan
[AGGR98], and H. Wang, W. Wang, Yang, and Yu [WWYY02]) is discussed in
Chapter 11.

Pattern mining also helps many other data analysis and processing tasks,
such as cube gradient mining and discriminative analysis (Imielinski, Khachiyan

50 CHAPTER 7. ADVANCED PATTERN MINING

and Abdulghani [IKA02]; Dong, Han, Lam, et al. [DHL+04]; Ji, Bailey and Dong
[JBD05]), discriminative pattern-based indexing (Yan, Yu and Han [YYH05]),
and discriminative pattern-based similarity search (Yan, Zhu, Yu and Han
[YZYH06]).

Pattern mining has been extended to mining spatial, temporal, time-series,
multimedia data, and data streams. Mining spatial association rules or spatial
collocation rules was studied by Koperski and Han [KH95], Xiong, Shekhar,
Huang, et al. [XSH+04], and Cao, Mamoulis and Cheung [CMC05]. Pattern-
based mining of time-series data is discussed in Shieh and Keogh [SK08] and
Ye and Keogh [YK09]. There are many studies on pattern-based mining of
multimedia data, such as Zäıane, Han and Zhu [ZHZ00], and Yuan, Wu and
Yang [YWY07]. Methods for mining frequent patterns on stream data have
been proposed by many researchers, including Manku and Motwani [MM02],
Karp, Papadimitriou and Shenker [KPS03], and Metwally, Agrawal, and El
Abbadi [MAA05]. These pattern mining methods will be discussed in-depth in
the second volume of this book.

Pattern mining claims broad applications. Application areas include com-
puter science, such as software bug analysis, sensor network mining, and per-
formance improvement of operating systems. For example, CPMiner by Li,
Lu, Myagmar, and Zhou [LLMZ04] uses pattern mining to identify copy-pasted
code for bug isolation. PRMiner by Li and Zhou [LZ05] uses pattern mining
to extract application-specific programming rules from source code. Discrimi-
native pattern mining is used for program failure detection to classify software
behaviors (Lo, Cheng, Han, et al. [LCH+09]), and for troubleshooting in sensor
networks (Khan, Le, Ahmadi et al. [KLA+08]). Such applications will also be
covered in the second volume of this book.

Bibliography

[AGGR98] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Auto-
matic subspace clustering of high dimensional data for data mining
applications. In Proc. 1998 ACM-SIGMOD Int. Conf. Manage-
ment of Data (SIGMOD’98), pages 94–105, Seattle, WA, June
1998.

[AGM04] F. N. Afrati, A. Gionis, and H. Mannila. Approximating a col-
lection of frequent sets. In Proc. 2004 ACM SIGKDD Int. Conf.
Knowledge Discovery in Databases (KDD’04), pages 12–19, Seat-
tle, WA, Aug. 2004.

[AK93] T. Anand and G. Kahn. Opportunity explorer: Navigating large
databases using knowledge discovery templates. In Proc. AAAI-93
Workshop Knowledge Discovery in Databases, pages 45–51, Wash-
ington, DC, July 1993.

[AL99] Y. Aumann and Y. Lindell. A statistical theory for quantitative
association rules. In Proc. 1999 Int. Conf. Knowledge Discovery
and Data Mining (KDD’99), pages 261–270, San Diego, CA, Aug.
1999.

[AS95] R. Agrawal and R. Srikant. Mining sequential patterns. In Proc.
1995 Int. Conf. Data Engineering (ICDE’95), pages 3–14, Taipei,
Taiwan, Mar. 1995.

[BGKW03] C. Bucila, J. Gehrke, D. Kifer, and W. White. DualMiner: A dual-
pruning algorithm for itemsets with constraints. Data Mining and
Knowledge Discovery, 7:241–272, 2003.

[BGMP03] F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. ExAnte:
Anticipated data reduction in constrained pattern mining. In Proc.
7th European Conf. Principles and Pratice of Knowledge Discovery
in Databases (PKDD’03), Sept. 2003.

[CMC05] H. Cao, N. Mamoulis, and D. W. Cheung. Mining frequent spatio-
temporal sequential patterns. In Proc. 2005 Int. Conf. on Data
Mining (ICDM’05), pages 82–89, Houston, TX, Nov. 2005.

51

52 BIBLIOGRAPHY

[CYHH07] H. Cheng, X. Yan, J. Han, and C.-W. Hsu. Discriminative fre-
quent pattern analysis for effective classification. In Proc. 2007
Int. Conf. Data Engineering (ICDE’07), pages 716–725, Istanbul,
Turkey, April 2007.

[DHL+04] G. Dong, J. Han, J. Lam, J. Pei, K. Wang, and W. Zou. Min-
ing constrained gradients in multi-dimensional databases. IEEE
Trans. Knowledge and Data Engineering, 16:922–938, 2004.

[DT93] V. Dhar and A. Tuzhilin. Abstract-driven pattern discovery in
databases. IEEE Trans. Knowledge and Data Engineering, 5:926–
938, 1993.

[FH95] Y. Fu and J. Han. Meta-rule-guided mining of association rules
in relational databases. In Proc. 1995 Int. Workshop Integra-
tion of Knowledge Discovery with Deductive and Object-Oriented
Databases (KDOOD’95), pages 39–46, Singapore, Dec. 1995.

[FMMT96] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama.
Data mining using two-dimensional optimized association rules:
Scheme, algorithms, and visualization. In Proc. 1996 ACM-
SIGMOD Int. Conf. Management of Data (SIGMOD’96), pages
13–23, Montreal, Canada, June 1996.

[HF95] J. Han and Y. Fu. Discovery of multiple-level association rules
from large databases. In Proc. 1995 Int. Conf. Very Large Data
Bases (VLDB’95), pages 420–431, Zurich, Switzerland, Sept. 1995.

[HK91] P. Hoschka and W. Klösgen. A support system for interpreting sta-
tistical data. In G. Piatetsky-Shapiro and W. J. Frawley, editors,
Knowledge Discovery in Databases, pages 325–346. AAAI/MIT
Press, 1991.

[IKA02] T. Imielinski, L. Khachiyan, and A. Abdulghani. Cubegrades:
Generalizing association rules. Data Mining and Knowledge Dis-
covery, 6:219–258, 2002.

[IWM98] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algo-
rithm for mining frequent substructures from graph data. In Proc.
2000 European Symp. Principle of Data Mining and Knowledge
Discovery (PKDD’00), pages 13–23, Lyon, France, Sept. 1998.

[JBD05] X. Ji, J. Bailey, and G. Dong. Mining minimal distinguishing
subsequence patterns with gap constraints. In Proc. 2005 Int.
Conf. on Data Mining (ICDM’05), pages 194–201, Houston, TX,
Nov. 2005.

[KH95] K. Koperski and J. Han. Discovery of spatial association rules
in geographic information databases. In Proc. 1995 Int. Symp.

BIBLIOGRAPHY 53

Large Spatial Databases (SSD’95), pages 47–66, Portland, ME,
Aug. 1995.

[KHC97] M. Kamber, J. Han, and J. Y. Chiang. Metarule-guided mining
of multi-dimensional association rules using data cubes. In Proc.
1997 Int. Conf. Knowledge Discovery and Data Mining (KDD’97),
pages 207–210, Newport Beach, CA, Aug. 1997.

[KK01] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In
Proc. 2001 Int. Conf. Data Mining (ICDM’01), pages 313–320,
San Jose, CA, Nov. 2001.

[KLA+08] M. Khan, H. Le, H. Ahmadi, T. Abdelzaher, and J. Han. Dust-
Miner: Troubleshooting interactive complexity bugs in sensor net-
works. In Proc. 2008 ACM Int. Conf. on Embedded Networked
Sensor Systems (SenSys’08), Raleigh, NC, Nov. 2008.

[KMR+94] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I.
Verkamo. Finding interesting rules from large sets of discovered
association rules. In Proc. 3rd Int. Conf. Information and Knowl-
edge Management, pages 401–408, Gaithersburg, MD, Nov. 1994.

[KPS03] R. M. Karp, C. H. Papadimitriou, and S. Shenker. A simple al-
gorithm for finding frequent elements in streams and bags. ACM
Trans. Database Systems, 28, 2003.

[LCH+09] D. Lo, H. Cheng, J. Han, S. Khoo, and C. Sun. Classification of
software behaviors for failure detection: A discriminative pattern
mining approach. In Proc. 2009 ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining (KDD’09), Paris, France,
June 2009.

[LHC97] B. Liu, W. Hsu, and S. Chen. Using general impressions to ana-
lyze discovered classification rules. In Proc. 1997 Int. Conf. Knowl-
edge Discovery and Data Mining (KDD’97), pages 31–36, Newport
Beach, CA, Aug. 1997.

[LHF98] H. Lu, J. Han, and L. Feng. Stock movement and n-dimensional
inter-transaction association rules. In Proc. 1998 SIGMOD Work-
shop Research Issues on Data Mining and Knowledge Discovery
(DMKD’98), pages 12:1–12:7, Seattle, WA, June 1998.

[LHM98] B. Liu, W. Hsu, and Y. Ma. Integrating classification and associ-
ation rule mining. In Proc. 1998 Int. Conf. Knowledge Discovery
and Data Mining (KDD’98), pages 80–86, New York, NY, Aug.
1998.

[LHXS06] H. Liu, J. Han, D. Xin, and Z. Shao. Mining frequent patterns
on very high dimensional data: A top-down row enumeration ap-
proach. In Proc. 2006 SIAM Int. Conf. Data Mining (SDM’06),
Bethesda, MD, April 2006.

54 BIBLIOGRAPHY

[LLMZ04] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A tool for
finding copy-paste and related bugs in operating system code. In
Proc. 2004 Symp. Operating Systems Design and Implementation
(OSDI’04), San Francisco, CA, Dec. 2004.

[LNHP99] L. V. S. Lakshmanan, R. Ng, J. Han, and A. Pang. Optimization
of constrained frequent set queries with 2-variable constraints. In
Proc. 1999 ACM-SIGMOD Int. Conf. Management of Data (SIG-
MOD’99), pages 157–168, Philadelphia, PA, June 1999.

[LSW97] B. Lent, A. Swami, and J. Widom. Clustering association rules.
In Proc. 1997 Int. Conf. Data Engineering (ICDE’97), pages 220–
231, Birmingham, England, April 1997.

[LZ05] Z. Li and Y. Zhou. PR-Miner: Automatically extracting implicit
programming rules and detecting violations in large software code.
In Proc. 2005 ACM SIGSOFT Symp. Foundations Software Eng.
(FSE’05), Lisbon, Portugal, Sept. 2005.

[MAA05] A. Metwally, D. Agrawal, and A. El Abbadi. Efficient computation
of frequent and top-k elements in data streams. In Proc. 2005 Int.
Conf. Database Theory (ICDT’05), Edinburgh, UK, Jan. 2005.

[MM02] G. Manku and R. Motwani. Approximate frequency counts over
data streams. In Proc. 2002 Int. Conf. Very Large Data Bases
(VLDB’02), pages 346–357, Hong Kong, China, Aug. 2002.

[MTV97] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of fre-
quent episodes in event sequences. Data Mining and Knowledge
Discovery, 1:259–289, 1997.

[MXC+07] Q. Mei, D. Xin, H. Cheng, J. Han, and C. Zhai. Semantic annota-
tion of frequent patterns. ACM Trans. Knowledge Discovery from
Data (TKDD), 15:321–348, 2007.

[MY97] R. J. Miller and Y. Yang. Association rules over interval data. In
Proc. 1997 ACM-SIGMOD Int. Conf. Management of Data (SIG-
MOD’97), pages 452–461, Tucson, AZ, May 1997.

[NLHP98] R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory
mining and pruning optimizations of constrained associations
rules. In Proc. 1998 ACM-SIGMOD Int. Conf. Management of
Data (SIGMOD’98), pages 13–24, Seattle, WA, June 1998.

[ORS98] B. Özden, S. Ramaswamy, and A. Silberschatz. Cyclic association
rules. In Proc. 1998 Int. Conf. Data Engineering (ICDE’98), pages
412–421, Orlando, FL, Feb. 1998.

BIBLIOGRAPHY 55

[PCT+03] F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. Zaki. CARPEN-
TER: Finding closed patterns in long biological datasets. In Proc.
2003 ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining (KDD’03), pages 637–642, Washington, DC, Aug. 2003.

[PHL01] J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent itemsets
with convertible constraints. In Proc. 2001 Int. Conf. Data En-
gineering (ICDE’01), pages 433–332, Heidelberg, Germany, April
2001.

[PHMA+01] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and
M.-C. Hsu. PrefixSpan: Mining sequential patterns efficiently by
prefix-projected pattern growth. In Proc. 2001 Int. Conf. Data En-
gineering (ICDE’01), pages 215–224, Heidelberg, Germany, April
2001.

[PHMA+04] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen,
U. Dayal, and M.-C. Hsu. Mining sequential patterns by pattern-
growth: The prefixspan approach. IEEE Trans. Knowledge and
Data Engineering, 16:1424–1440, 2004.

[PTC+04] F. Pan, A. K. H. Tung, G. Cong, X. Xu, COBBLER: Combining
Column, and Row Enumeration for Closed Pattern Discovery. In
Proc. 2004 Int. Conf. Scientific and Statistical Database Manage-
ment (SSDBM’04), pages 21–30, Santorini Island, Greece, June
2004.

[RMS98] S. Ramaswamy, S. Mahajan, and A. Silberschatz. On the discovery
of interesting patterns in association rules. In Proc. 1998 Int. Conf.
Very Large Data Bases (VLDB’98), pages 368–379, New York,
NY, Aug. 1998.

[SA95] R. Srikant and R. Agrawal. Mining generalized association rules.
In Proc. 1995 Int. Conf. Very Large Data Bases (VLDB’95), pages
407–419, Zurich, Switzerland, Sept. 1995.

[SA96] R. Srikant and R. Agrawal. Mining sequential patterns: General-
izations and performance improvements. In Proc. 5th Int. Conf.
Extending Database Technology (EDBT’96), pages 3–17, Avignon,
France, Mar. 1996.

[SK08] J. Shieh and E. Keogh. iSAX: Indexing and mining terabyte sized
time series. In Proc. 2008 ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining (KDD’08), Las Vegas, NV, Aug. 2008.

[SOMZ96] W. Shen, K. Ong, B. Mitbander, and C. Zaniolo. Metaqueries for
data mining. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth,
and R. Uthurusamy, editors, Advances in Knowledge Discovery
and Data Mining, pages 375–398. AAAI/MIT Press, 1996.

56 BIBLIOGRAPHY

[SON98] A. Savasere, E. Omiecinski, and S. Navathe. Mining for strong
negative associations in a large database of customer transactions.
In Proc. 1998 Int. Conf. Data Engineering (ICDE’98), pages 494–
502, Orlando, FL, Feb. 1998.

[ST96] A. Silberschatz and A. Tuzhilin. What makes patterns interesting
in knowledge discovery systems. IEEE Trans. Knowledge and Data
Engineering, 8:970–974, Dec. 1996.

[SVA97] R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with
item constraints. In Proc. 1997 Int. Conf. Knowledge Discovery
and Data Mining (KDD’97), pages 67–73, Newport Beach, CA,
Aug. 1997.

[TSK05] P. N. Tan, M. Steinbach, and V. Kumar. Introduction to Data
Mining. Addison Wesley, 2005.

[WHH00] K. Wang, Y. He, and J. Han. Mining frequent itemsets using
support constraints. In Proc. 2000 Int. Conf. Very Large Data
Bases (VLDB’00), pages 43–52, Cairo, Egypt, Sept. 2000.

[WHLT05] J. Wang, J. Han, Y. Lu, and P. Tzvetkov. TFP: An efficient
algorithm for mining top-k frequent closed itemsets. IEEE Trans.
Knowledge and Data Engineering, 17:652–664, 2005.

[WWYY02] H. Wang, W. Wang, J. Yang, and P. S. Yu. Clustering by pattern
similarity in large data sets. In Proc. 2002 ACM-SIGMOD Int.
Conf. Management of Data (SIGMOD’02), pages 418–427, Madi-
son, WI, June 2002.

[XCYH06] D. Xin, H. Cheng, X. Yan, and J. Han. Extracting redundancy-
aware top-k patterns. In Proc. 2006 ACM SIGKDD Int. Conf.
Knowledge Discovery in Databases (KDD’06), pages 444–453,
Philadelphia, PA, Aug. 2006.

[XHYC05] D. Xin, J. Han, X. Yan, and H. Cheng. Mining compressed
frequent-pattern sets. In Proc. 2005 Int. Conf. Very Large Data
Bases (VLDB’05), pages 709–720, Trondheim, Norway, Aug. 2005.

[XSH+04] H. Xiong, S. Shekhar, Y. Huang, V. Kumar, X. Ma, and J. S. Yoo.
A framework for discovering co-location patterns in data sets with
extended spatial objects. In Proc. 2004 SIAM Int. Conf. Data
Mining (SDM’04), Lake Buena Vista, FL, April 2004.

[YCHX05] X. Yan, H. Cheng, J. Han, and D. Xin. Summarizing itemset
patterns: A profile-based approach. In Proc. 2005 ACM SIGKDD
Int. Conf. Knowledge Discovery in Databases (KDD’05), pages
314–323, Chicago, IL, Aug. 2005.

BIBLIOGRAPHY 57

[YFB01] C. Yang, U. Fayyad, and P. S. Bradley. Efficient discovery of error-
tolerant frequent itemsets in high dimensions. In Proc. 2001 ACM
SIGKDD Int. Conf. Knowledge Discovery in Databases (KDD’01),
pages 194–203, San Fransisco, CA, Aug. 2001.

[YFM+97] K. Yoda, T. Fukuda, Y. Morimoto, S. Morishita, and
T. Tokuyama. Computing optimized rectilinear regions for as-
sociation rules. In Proc. 1997 Int. Conf. Knowledge Discovery and
Data Mining (KDD’97), pages 96–103, Newport Beach, CA, Aug.
1997.

[YH02] X. Yan and J. Han. gSpan: Graph-based substructure pattern
mining. In Proc. 2002 Int. Conf. Data Mining (ICDM’02), pages
721–724, Maebashi, Japan, Dec. 2002.

[YK09] L. Ye and E. Keogh. Time series shapelets: A new primitive for
data mining. In Proc. 2009 ACM SIGKDD Int. Conf. on Knowl-
edge Discovery and Data Mining (KDD’09), Paris, France, June
2009.

[YWY07] J. Yuan, Y. Wu, and M. Yang. Discovery of collocation patterns:
from visual words to visual phrases. In Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR’07), Minneapolis,
MN, June 2007.

[YYH05] X. Yan, P. S. Yu, and J. Han. Graph indexing based on discrimi-
native frequent structure analysis. ACM Trans. Database Systems,
30:960–993, 2005.

[YZYH06] X. Yan, F. Zhu, P. S. Yu, and J. Han. Feature-based substructure
similarity search. ACM Trans. Database Systems, 31:1418–1453,
2006.

[Zak01] M. Zaki. SPADE: An efficient algorithm for mining frequent se-
quences. Machine Learning, 40:31–60, 2001.

[ZHZ00] O. R. Zäıane, J. Han, and H. Zhu. Mining recurrent items in mul-
timedia with progressive resolution refinement. In Proc. 2000 Int.
Conf. Data Engineering (ICDE’00), pages 461–470, San Diego,
CA, Feb. 2000.

[ZYH+07] F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng. Mining colossal
frequent patterns by core pattern fusion. In Proc. 2007 Int. Conf.
Data Engineering (ICDE’07), Istanbul, Turkey, April 2007.

[ZYHY07] F. Zhu, X. Yan, J. Han, and P. S. Yu. gPrune: A constraint push-
ing framework for graph pattern mining. In Proc. 2007 Pacific-
Asia Conf. Knowledge Discovery and Data Mining (PAKDD’07),
Nanjing, China, May 2007.

