Contents

8 Classification: Basic Concepts 3
8.1 Classification: Basic Concepts 3
8.1.1 What is Classification? 4
8.1.2 General Approach to Classification 4
8.2 Decision Tree Induction 6
8.2.1 Decision Tree Induction 7
8.2.2 Attribute Selection Measures 12
823 TreePruning 19
8.2.4 Rainforest: Scalability and Decision Tree Induction 21
8.2.5 Visual Mining for Decision Tree Induction 24
8.3 Bayes Classification Methods 25
8.3.1 Bayes’ Theorem 26
8.3.2 Naive Bayesian Classification 26
8.4 Rule-Based Classification 30
8.4.1 Using IF-THEN Rules for Classification 30
8.4.2 Rule Extraction from a Decision Tree 32
8.4.3 Rule Induction Using a Sequential Covering Algorithm . . 34
8.5 Model Evaluation and Selection 38
8.5.1 Metrics for Evaluation of the Performance of Classifiers . 39
8.5.2 Holdout Method and Random Subsampling 44
8.5.3 Cross-validation 45
8.5.4 Bootstrap o 45
8.5.5 Model Selection Using Statistical Tests of Significance . . 46
8.5.6 Comparing Classifiers Based on Cost-Benefit and ROC
CUrves o e 48
8.6 Techniques to Improve Classification Accuracy 51
8.6.1 Introducing Ensemble Methods 52
8.6.2 Bagging L o oo 53
8.6.3 Boosting and AdaBoost 54
8.6.4 Random Forests 57
8.6.5 Improving Classification Accuracy of Class-Imbalanced Data 58
8.7 Summary 60
8.8 Exercises 61
8.9 Bibliographic Notes. 64

CONTENTS

Chapter 8

Classification: Basic
Concepts

Databases are rich with hidden information that can be used for intelligent decision making.
Classification is a form of data analysis that extracts models describing impor-
tant data classes. Such models, called classifiers, predict categorical (discrete,
unordered) class labels. For example, we can build a classification model to
categorize bank loan applications as either safe or risky. Such analysis can help
provide us with a better understanding of the data at large. Many classifica-
tion methods have been proposed by researchers in machine learning, pattern
recognition, and statistics. Most algorithms are memory resident, typically as-
suming a small data size. Recent data mining research has built on such work,
developing scalable classification and prediction techniques capable of handling
large disk-resident data. Classification has numerous applications, including
fraud detection, target marketing, performance prediction, manufacturing, and
medical diagnosis.

We start off by introducing the main ideas of classification in Section 8.1. In
the rest of this chapter, you will learn the basic techniques for data classification,
such as how to build decision tree classifiers (Section 8.2), Bayesian classifiers
(Section 8.3), and rule-based classifiers (Section 8.4). Section 8.5 discusses how
to evaluate and compare different classifiers. Various measures of accuracy are
given as well as techniques for obtaining reliable accuracy estimates. Methods
for increasing classifier accuracy are presented in Section 8.6.1, including cases
for when the dataset is class imbalanced (that is, where the main class of interest
is rare).

8.1 Classification: Basic Concepts
We introduce the concept of classification in Section 8.1.1. Section 8.1.2 de-

scribes the general approach to classification as a two-step process. In the first
step, we build a classification model based on previous data. In the second step,

4 CHAPTER 8. CLASSIFICATION: BASIC CONCEPTS

we determine if the model’s accuracy is acceptable, and if so, we use the model
to classify new data.

8.1.1 What is Classification?

A bank loans officer needs analysis of her data in order to learn which loan
applicants are “safe” and which are “risky” for the bank. A marketing manager
at AllElectronics needs data analysis to help guess whether a customer with a
given profile will buy a new computer. A medical researcher wants to analyze
breast cancer data in order to predict which one of three specific treatments
a patient should receive. In each of these examples, the data analysis task
is classification, where a model or classifier is constructed to predict class
(categorical) labels, such as “safe” or “risky” for the loan application data; “yes”
or “no” for the marketing data; or “treatment A,” “treatment B,” or “treatment
C” for the medical data. These categories can be represented by discrete values,
where the ordering among values has no meaning. For example, the values 1,
2, and 3 may be used to represent treatments A, B, and C, where there is no
ordering implied among this group of treatment regimes.

Suppose that the marketing manager would like to predict how much a given
customer will spend during a sale at AllElectronics. This data analysis task is
an example of numeric prediction, where the model constructed predicts a
continuous-valued function, or ordered value, as opposed to a class label. This
model is a predictor. Regression analysis is a statistical methodology that
is most often used for numeric prediction, hence the two terms tend to be used
synonymously although other methods for numeric prediction exist. Classifica-
tion and numeric prediction are the two major types of prediction problems.
This chapter focuses on classification. Numeric prediction is discussed in volume
2.

8.1.2 General Approach to Classification

“How does classification work?” Data classification is a two-step process, con-
sisting of a learning step (where a classification model is constructed) and a clas-
sification step (where the model is used to predict class labels for given data). The
process is shown for the loan application data of Figure 8.1. (The data are simpli-
fied for illustrative purposes. In reality, we may expect many more attributes to
be considered.)

Inthe first step, a classifier is built describing a predetermined set of data classes
or concepts. This is the learning step (or training phase), where a classifica-
tion algorithm builds the classifier by analyzing or “learning from” a training
set made up of database tuples and their associated class labels. A tuple, X, is
represented by an n-dimensional attribute vector, X = (z1, z2, ..., x,), depict-
ing n measurements made on the tuple from n database attributes, respectively,
Ay, Ao, ..., A,.} Each tuple, X, is assumed to belong to a predefined class as de-
termined by another database attribute called the class label attribute. The

1Each attribute represents a “feature” of X. Hence, the pattern recognition literature uses

8.1. CLASSIFICATION: BASIC CONCEPTS 5

/ Classification algorithm
Training dal;

name age income loan_decision

Sandy Jones young low risky

Bill Lee young low risky

Caroline Fox middle_aged high safe

Rick Field middle_aged low risky

Susan Lake senior low safe Classification rule:

Claire Phips senior medium safe

Joe Smith middle_aged high safe

- IF age = youth THEN loan_decision = risky

IF income = high THEN loan_decision = safe
IF age = middle_aged AND income = low
THENIoan_decision = risky

@

Classification rules

Test dat;

name age income loan_decision (John Henry, middle_aged, low)
Juan Bello senior low safe Loan decision?
Sylvia Crest middle_aged low risky

Anne Yee middle_aged high safe

(b) risky

Figure 8.1: The data classification process: (a) Learning: Training data
are analyzed by a classification algorithm. Here, the class label attribute is
loan_decision, and the learned model or classifier is represented in the form of
classification rules. (b) Classification: Test data are used to estimate the ac-
curacy of the classification rules. If the accuracy is considered acceptable, the
rules can be applied to the classification of new data tuples. To editor: In
the right side of figure (a) ”If Age = Youth” should be changed to "If Age =
Young”.

class label attribute is discrete-valued and unordered. It is categorical (or nomi-
nal) in that each value serves as a category or class. The individual tuples making
up the training set are referred to as training tuples and are randomly sampled
from the database under analysis. In the context of classification, data tuples can
be referred to as samples, ezamples, instances, data points, or objects.?

Because the class label of each training tuple s provided, this step is also
known as supervised learning (i.e., the learning of the classifier is “super-
vised” in that it is told to which class each training tuple belongs). It contrasts
with unsupervised learning (or clustering), in which the class label of each
training tuple is not known, and the number or set of classes to be learned may

the term feature vector rather than attribute vector. Since our discussion is from a database
perspective, we propose the term “attribute vector.” In our notation, any variable representing
a vector is shown in bold italic font; measurements depicting the vector are shown in italic font,
e.g., X = (x1, x2, z3).

2In the machine learning literature, training tuples are commonly referred to as training
samples. Throughout this text, we prefer to use the term tuples instead of samples, since we
discuss the theme of classification from a database-oriented perspective.

6 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

not be known in advance. For example, if we did not have the loan_decision
data available for the training set, we could use clustering to try to determine
“groups of like tuples,” which may correspond to risk groups within the loan
application data. Clustering is the topic of Chapters 10 and 11.

This first step of the classification process can also be viewed as the learning
of a mapping or function, y = f(X), that can predict the associated class label
y of a given tuple X. In this view, we wish to learn a mapping or function that
separates the data classes. Typically, this mapping is represented in the form of
classification rules, decision trees, or mathematical formulae. In our example,
the mapping is represented as classification rules that identify loan applications
as being either safe or risky (Figure 8.1(a)). The rules can be used to categorize
future data tuples, as well as provide deeper insight into the database contents.
They also provide a compressed representation of the data.

“What about classification accuracy?” In the second step (Figure 8.1(b)), the
model is used for classification. First, the predictive accuracy of the classifier is es-
timated. If we were to use the training set to measure the accuracy of the classi-
fier, this estimate would likely be optimistic, because the classifier tends to overfit
the data (i.e., during learning it may incorporate some particular anomalies of the
training data that are not present in the general data set overall). Therefore, a test
set is used, made up of test tuples and their associated class labels. They are in-
dependent of the training tuples, meaning that they were not used to construct the
classifier.

The accuracy of a classifier on a given test set is the percentage of test set tuples
that are correctly classified by the classifier. The associated class label of each test
tuple is compared with the learned classifier’s class prediction for that tuple. Sec-
tion 8.5 describes several methods for estimating classifier accuracy. If the accuracy
of the classifier is considered acceptable, the classifier can be used to classify future
data tuples for which the class label is not known. (Such data are also referred to
in the machine learning literature as “unknown” or “previously unseen” data.) For
example, the classification rules learned in Figure 8.1(a) from the analysis of data
from previous loan applications can be used to approve or reject new or future loan
applicants.

8.2 Decision Tree Induction

Decision tree induction is the learning of decision trees from class-labeled train-
ing tuples. A decision tree is a flowchart-like tree structure, where each internal
node (nonleafnode) denotes a test on an attribute, each branch represents an out-
come of the test, and each leafnode (or terminal node) holds a classlabel. The top-
most node in a tree is the root node. A typical decision tree is shown in Figure 8.2.
It represents the concept buys_computer, that is, it predicts whether a customer at
AllElectronics is likely to purchase a computer. Internal nodes are denoted by rect-
angles, and leaf nodes are denoted by ovals. Some decision tree algorithms produce
only binary trees (where each internal node branches to exactly two other nodes),

8.2. DECISION TREE INDUCTION 7

whereas others can produce nonbinary trees.

“How are decision trees used for classification?” Given a tuple, X, for which
the associated class label is unknown, the attribute values of the tuple are tested
against the decision tree. A path is traced from the root to a leaf node, which holds
the class prediction for that tuple. Decision trees can easily be converted to classi-
fication rules.

“Why are decision tree classifiers so popular?” The construction of decision tree
classifiers does not require any domain knowledge or parameter setting, and there-
fore is appropriate for exploratory knowledge discovery. Decision trees can handle
high dimensional data. Their representation of acquired knowledge in tree form is
intuitive and generally easy to assimilate by humans. The learning and classifica-
tion steps of decision tree induction are simple and fast. In general, decision tree
classifiers have good accuracy. However, successful use may depend on the data at
hand. Decision tree induction algorithms have been used for classification in many
application areas, such as medicine, manufacturing and production, financial anal-
ysis, astronomy, and molecular biology. Decision trees are the basis of several com-
mercial rule induction systems.

In Section 8.2.1, we describe a basic algorithm for learning decision trees. Dur-
ing tree construction, attribute selection measures are used to select the attribute
that best partitions the tuples into distinct classes. Popular measures of attribute
selection are given in Section 8.2.2. When decision trees are built, many of the branches
may reflect noise or outliers in the training data. Tree pruning attempts to iden-
tify and remove such branches, with the goal of improving classification accuracy
on unseen data. Tree pruning is described in Section 8.2.3. Scalability issues for
the induction of decision trees from large databases are discussed in Section 8.2.4.
Section 8.2.5 presents a visual mining approach to decision tree induction.

8.2.1 Decision Tree Induction

During the late 1970s and early 1980s, J. Ross Quinlan, a researcher in machine
learning, developed a decision tree algorithm known as ID3 (Iterative Dichotomiser).

senior

credit_rating?

fair excellent

youth

middle_aged

Figure8.2: A decision tree for the concept buys_computer, indicating whether a cus-
tomer at AllElectronics is likely to purchase a computer. Each internal (nonleaf)
node represents a test on an attribute. Each leaf node represents a class (either
buys_computer = yes or buys_computer = no).

8 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

Algorithm: Generate_decision_tree. Generate a decision tree from the training tuples of
data
partition D.

Input:

e Data partition, D, which is a set of training tuples and their associated class labels;
e attribute_list, the set of candidate attributes;

o Attribute_selection_method, a procedure to determine the splitting criterion that
“best” partitions the data tuples into individual classes. This criterion consists of a
splitting_attribute and, possibly, either a split point or splitting subset.

Output: A decision tree.
Method:

(1) create anode N;
) if tuplesin D are all of the same class, C then
) return IV as a leaf node labeled with the class C;
) if attribute_list is empty then
) return N as a leaf node labeled with the majority class in D; // majority voting
) apply Attribute_selection_method(D, attribute_list) to find the “best” splitting_criterion;
) label node N with splitting_criterion;
) if splitting_attribute is discrete-valued and
multiway splits allowed then // not restricted to binary trees

9) attribute_list < attribute_list — splitting-attribute; // remove splitting_attribute
(10) for each outcome j of splitting_criterion

// partition the tuples and grow subtrees for each partition

(11) let D; be the set of data tuples in D satisfying outcome j; // a partition

(12) if D; is empty then

(13) attach a leaf labeled with the majority class in D to node N;

(14) else attach the node returned by Generate_decision_tree(D;, attribute_list) to node N;
endfor

(15) return N;

Figure 8.3: Basic algorithm for inducing a decision tree from training tuples.

This work expanded on earlier work on concept learning systems, described by E. B.
Hunt, J. Marin, and P. T. Stone. Quinlan later presented C4.5 (asuccessor of ID3),
which became a benchmark to which newer supervised learning algorithms are of-
ten compared. In 1984, a group of statisticians (L. Breiman, J. Friedman, R. Ol-
shen, and C. Stone) published the book Classification and Regression Trees (CART),
which described the generation of binary decision trees. ID3 and CART were in-
vented independently of one another at around the same time, yet follow a similar
approach for learning decision trees from training tuples. These two cornerstone
algorithms spawned a flurry of work on decision tree induction.

ID3,C4.5,and CART adopt a greedy (i.e., nonbacktracking) approach in which
decision trees are constructed in a top-down recursive divide-and-conquer manner.
Most algorithms for decision tree induction also follow such a top-down approach,
which starts with a training set of tuples and their associated class labels. The train-
ing set is recursively partitioned into smaller subsets as the tree is being built. A
basic decision tree algorithm is summarized in Figure 8.3. At first glance, the algo-
rithm may appear long, but fear not! It is quite straightforward. The strategy is as

8.2. DECISION TREE INDUCTION 9

follows.

e Thealgorithmis called with three parameters: D, attribute_list, and Attribute_selec-
tion_method. Werefer to D as a data partition. Initially, it is the complete set
of training tuples and their associated classlabels. The parameter attribute_list
is alist of attributes describing the tuples. Attribute_selection_method speci-
fies aheuristic procedure for selecting the attribute that “best” discriminates
the given tuples according to class. This procedure employs an attribute se-
lection measure, such as information gain or the gini index. Whether the tree
isstrictly binary is generally driven by the attribute selection measure. Some
attribute selection measures, such as the gini index, enforce the resulting tree
tobebinary. Others, like information gain, do not, therein allowing multiway
splits (i.e., two or more branches to be grown from a node).

e Thetreestartsasasinglenode, N, representing the training tuplesin D (step
1).3

e If the tuplesin D are all of the same class, then node N becomes a leaf and is
labeled with that class (steps 2 and 3). Note that steps 4 and 5 are terminating
conditions. All of the terminating conditions are explained at the end of the
algorithm.

e Otherwise, the algorithm calls Attribute_selection-method to determine the
splitting criterion. The splitting criterion tells us which attribute to test
at node N by determining the “best” way to separate or partition the tuples
in D into individual classes (step 6). The splitting criterion also tells us which
branches to grow from node N with respect to the outcomes of the chosen test.
More specifically, the splitting criterion indicates the splitting attribute
and may also indicate either a split-point or a splitting subset. The split-
ting criterion is determined so that, ideally, the resulting partitions at each
branch are as “pure” as possible. A partition is pure if all of the tuples in it
belong to the same class. In other words, if we were to split up the tuples in
D according to the mutually exclusive outcomes of the splitting criterion, we
hope for the resulting partitions to be as pure as possible.

e Thenode N islabeled with the splitting criterion, which serves as a test at the
node (step 7). A branch is grown fromnode N for each of the outcomes of the
splitting criterion. The tuples in D are partitioned accordingly (steps 10 to
11). There are three possible scenarios, as illustrated in Figure 8.4. Let A be
the splitting attribute. A haswv distinct values, {a1, aq, ..., a, }, based on the
training data.

3The partition of class-labeled training tuples at node N is the set of tuples that follow a path
from the root of the tree to node N when being processed by the tree. This set is sometimes re-
ferred to in the literature as the family of tuples at node N. We have referred to this set as the
“tuples represented at node N,” “the tuples that reach node N,” or simply “the tuples at node
N.” Rather than storing the actual tuples at a node, most implementations store pointers to
these tuples.

10

Partitioning Scenarios

CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

Examples

a)

e
~
oy
8ree,
— onygq
- 9\65“6
©
~
loy,
wﬁ
&
P

— wmips

A < split_point A > split_point <42,000 > 42,000
1 \ / \
@ color € {red, green}?
yes no yes no
/S NV \
Figure 8.4: Three possibilities for partitioning tuples based on the splitting cri-

terion, shown with examples.

Let A be the splitting attribute. (a) If A is

discrete-valued, then one branch is grown for each known value of A. (b) If
A is continuous-valued, then two branches are grown, corresponding to A <

split_point
must be pr

and A > split_point. (c) If A is discrete-valued and a binary tree
oduced, then the test is of the form A € S 4, where S4 is the splitting

subset for A.

1.

A is discrete-valued: In this case, the outcomes of the test at node
N correspond directly to the known values of A. A branch is cre-
ated for each known value, a;, of A and labeled with that value
(Figure 8.4(a)). Partition D, is the subset of class-labeled tuples in
D having value a; of A. Because all of the tuples in a given parti-
tion have the same value for A, then A need not be considered in
any future partitioning of the tuples. Therefore, it is removed from
attribute_list (steps 8 to 9).

A is continuous-valued: In this case, the test at node N has two possi-
ble outcomes, corresponding to the conditions A < split_point and A >
split_point, respectively, where split_point is the split-point returned by
Attribute_selection_method as part of the splitting criterion. (In prac-
tice, the split-point, a, is often taken as the midpoint of two known adja-
cent values of A and therefore may not actually be a pre-existing value
of A from the training data.) Two branches are grown from N and la-
beled according to the above outcomes (Figure 8.4(b)). The tuples are
partitioned such that D; holds the subset of class-labeled tuplesin D for

8.2. DECISION TREE INDUCTION 11

which A < split_point, while D5 holds the rest.

3. Ais discrete-valued and a binary tree must be produced (as dictated by
the attribute selection measure or algorithm being used): The test at
node N is of the form “A € S47”. S4 is the splitting subset for A, re-
turned by Attribute_selection_method as part of the splitting criterion.
It is a subset of the known values of A. If a given tuple has value a; of A
and if a; € Sa, then the test at node IV is satisfied. T'wo branches are
grown from N (Figure 8.4(c)). By convention, the left branch out of N
is labeled yes so that D; corresponds to the subset of class-labeled tu-
ples in D that satisfy the test. The right branch out of NV is labeled no
so that D5 corresponds to the subset of class-labeled tuples from D that
do not satisfy the test.

e Thealgorithm uses the same process recursively to form a decision tree for the
tuples at each resulting partition, D;, of D (step 14).

e Therecursive partitioning stops only when any one of the following terminat-
ing conditions is true:

1. All of the tuples in partition D (represented at node N) belong to the
same class (steps 2 and 3), or

2. There are no remaining attributes on which the tuples may be further
partitioned (step 4). In this case, majority voting is employed (step
5). This involves converting node N into a leaf and labeling it with the
most common classin D. Alternatively, the classdistribution ofthenode
tuples may be stored.

3. There are no tuples for a given branch, that is, a partition D; is empty
(step 12). In this case, aleafis created with the majority class in D (step
13).

e The resulting decision tree is returned (step 15).

The computational complexity of the algorithm given training set D is O(n X
|D| x log(|D|)), where n is the number of attributes describing the tuples in D and
| D] is the number of training tuples in D. This means that the computational cost
of growing a tree grows at most n x | D| x log(|D|) with | D| tuples. The proofis left
as an exercise for the reader.

Incremental versions of decision tree induction have also been proposed. When
given new training data, these restructure the decision tree acquired from learning
on previous training data, rather than relearning a new tree from scratch.

Differences in decision tree algorithms include how the attributes are selected in
creating the tree (Section 8.2.2) and the mechanisms used for pruning (Section 8.2.3).
The basic algorithm described above requires one pass over the training tuplesin D
for each level of the tree. This can lead to long training times and lack of available
memory when dealing with large databases. Improvements regarding the scalabil-
ity of decision tree induction are discussed in Section 8.2.4. A discussion of strate-
gies for extracting rules from decision trees is given in Section 8.4.2 regarding rule-
based classification.

12 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

8.2.2 Attribute Selection Measures

An attribute selection measure is a heuristic for selecting the splitting criterion
that “best” separates a given data partition, D, of class-labeled training tuples into
individual classes. If we were to split D into smaller partitions according to the out-
comes of the splitting criterion, ideally each partition would be pure (i.e., all of the
tuples that fall into a given partition would belong to the same class). Conceptually,
the “best” splitting criterion is the one that most closely results in such a scenario.
Attribute selection measures are also known as splitting rules because they de-
termine how the tuples at a given node are to be split. The attribute selection mea-
sure provides a ranking for each attribute describing the given training tuples. The
attribute having the best score for the measure? is chosen as the splitting attribute
for the given tuples. If the splitting attribute is continuous-valued or if we are re-
stricted to binary trees then, respectively, either a split point or a splitting subset
must also be determined as part of the splitting criterion. The tree node created
for partition D is labeled with the splitting criterion, branches are grown for each
outcome of the criterion, and the tuples are partitioned accordingly. This section
describes three popular attribute selection measures—information gain, gain ra-
tio, and gini index.

The notation used herein is as follows. Let D, the data partition, be a training
set of class-labeled tuples. Suppose the class label attribute has m distinct values
defining m distinct classes, C; (fori = 1,..., m). Let C; p be the set of tuples of
class C;in D. Let | D| and |C;, p| denote the number of tuples in D and C;, p, respec-
tively.

Information gain

ID3 usesinformation gain asits attribute selection measure. This measureis based
on pioneering work by Claude Shannon on information theory, which studied the
value or “information content” of messages. Let node NN represent or hold the tu-
plesof partition D. The attribute with the highest information gain is chosen as the
splitting attribute for node V. This attribute minimizes the information needed to
classify the tuples in the resulting partitions and reflects the least randomness or
“impurity” in these partitions. Such an approach minimizes the expected number
of tests needed to classify a given tuple and guarantees that a simple (but not nec-
essarily the simplest) tree is found.
The expected information needed to classify a tuple in D is given by

Info(D) = = " pilogy(ps), (8.1)
=1

where p; is the non-zero probability that an arbitrary tuple in D belongs to class
Cj and is estimated by |C;, p|/|D|. A log function to the base 2 is used, because the
information is encoded in bits. Info(D) is just the average amount of information

4Depending on the measure, either the highest or lowest score is chosen as the best (i-e., some
measures strive to maximize while others strive to minimize).

8.2. DECISION TREE INDUCTION 13

needed to identify the classlabel of a tuple in D. Note that, at this point, the infor-
mation we have is based solely on the proportions of tuples of each class. Info(D) is
also known as the entropy of D.

Now, suppose we were to partition the tuples in D on some attribute A hav-
ing v distinct values, {a1, as, ..., a,}, as observed from the training data. If A is
discrete-valued, these values correspond directly to the v outcomes of a test on A.
Attribute A can be used to split D into v partitions or subsets, { D1, D2, ..., Dy},
where D; contains those tuples in D that have outcome a; of A. These partitions
would correspond to the branches grown from node N. Ideally, we would like this
partitioning to produce an exact classification of the tuples. That is, we would like
for each partition to be pure. However, it is quite likely that the partitions will be
impure (e.g., where a partition may contain a collection of tuples from different classes
rather than from a single class). How much more information would we still need
(after the partitioning) in order to arrive at an exact classification? This amount is
measured by

D;
Info, (D Z ||D|| x Info(Dj). (8.2)

The term ‘IDDJ'II acts as the weight of the jth partition. Info, (D) is the expected in-
formation required to classify a tuple from D based on the partitioning by A. The
smaller the expected information (still) required, the greater the purity of the par-
titions.

Information gain is defined as the difference between the original information
requirement (i.e., based on just the proportion of classes) and the new requirement
(i.e., obtained after partitioning on A). That is,

Gain(A) = Info(D) — Info, (D). (8.3)

In other words, Gain(A) tells us how much would be gained by branching on A. Tt
is the expected reduction in the information requirement caused by knowing the
value of A. The attribute A with the highest information gain, (Gain(A)), is cho-
sen as the splitting attribute at node IV. This is equivalent to saying that we want
to partition on the attribute A that would do the “best classification,” so that the
amount of information still required to finish classifying the tuples is minimal (i.e.,
minimum Info 4 (D)).

Example 8.1 Induction of a decision tree using information gain. Table 8.1 presents a
training set, D, of class-labeled tuples randomly selected from the AllFlectronics
customer database. (The data are adapted from [Qui86]. In this example, each at-
tribute is discrete-valued. Continuous-valued attributes have been generalized.)
The class label attribute, buys_ computer, has two distinct values (namely, {yes,
no}); therefore, there are two distinct classes (that is, m = 2). Let class C; corre-
spond to yes and class C5 correspond to no. There are nine tuples of class yes and
five tuples of class no. A (root) node N is created for the tuples in D. To find the
splitting criterion for these tuples, we must compute the information gain of each
attribute. We first use Equation (8.1) to compute the expected information needed

14 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

Table 8.1: Class-labeled training tuples from the AllFElectronics customer

database.

RID age income student credit_rating Class: buys_computer
1 youth high no fair no
2 youth high no excellent no
3 middle_aged high no fair yes
4 senior medium no fair yes
5 senior low yes fair yes
6 senior low yes excellent no
7 middle_aged low yes excellent yes
8 youth medium no fair no
9 youth low yes fair yes

10 senior medium yes fair yes

11 youth medium yes excellent yes

12 middle_.aged medium no excellent yes

13 middle_aged high yes fair yes

14 senior medium no excellent no

to classify a tuple in D:

Info(D) = —1—94 log, (19—4) - 15—4 log, (%) = 0.940 bits.

Next, we need to compute the expected information requirement for each at-
tribute. Let’s start with the attribute age. We need to look at the distribution of yes
and no tuples for each category of age. For the age category youth, there are two yes
tuples and three no tuples. For the category middle_aged, there are four yes tuples
and zero no tuples. For the category senior, there are three yes tuples and two no
tuples. Using Equation (8.2), the expected information needed to classify a tuple
in D if the tuples are partitioned according to age is

5 2 2 3 3

(D) = —x (—g log, 575 log, g)
4 4
=«)
14 4
5Bt 20,2
T ¥ (Tl —ploeeg
= 0.694 bits.

Info

age

4
+ (- 1 log,

Hence, the gain in information from such a partitioning would be

Gain(age) = Info(D) — Info,,.(D) = 0.940 — 0.694 = 0.246 bits.

Similarly, we can compute Gain(income) = 0.029 bits, Gain(student) = 0.151 bits,
and Gain(credit_rating) = 0.048 bits. Because age has the highest information
gain among the attributes, it is selected as the splitting attribute. Node IV islabeled

8.2. DECISION TREE INDUCTION

age? I

15

youth middle_aged senior

income student credit_rating class income student credit_rating class
high no fair no medium no fair yes
high no excellent no low yes fair yes
medium | no fair no low yes excellent no
low yes fair yes medium yes fair yes
medium | yes excellent yes medium no excellent no

income student credit_rating class

high no fair yes

low yes excellent yes

medium | no excellent yes

high yes fair yes

Figure 8.5: The attribute age has the highest information gain and therefore be-
comes the splitting attribute at the root node of the decision tree. Branches are
grown for each outcome of age. The tuples are shown partitioned accordingly.

with age, and branches are grown for each of the attribute’s values. The tuples are
then partitioned accordingly, as shown in Figure 8.5. Notice that the tuples falling
into the partition for age = middle_aged all belong to the same class. Because they
all belong to class “yes,” aleaf should therefore be created at the end of this branch
and labeled with “yes.” The final decision tree returned by the algorithm is shown
in Figure 8.2.

“But how can we compute theinformation gain of an attribute that is continuous-
valued, unlike above?” Suppose, instead, that we have an attribute A that is continuous-
valued, rather than discrete-valued. (For example, suppose that instead of the dis-
cretized version of age above, we have the raw values for this attribute.) For such a
scenario, we must determine the “best” split-point for A, where the split-point is a
threshold on A. We first sort the values of A in increasing order. Typically, the mid-
point between each pair of adjacent values is considered as a possible split-point.
Therefore, given v values of A, then v — 1 possible splits are evaluated. For exam-
ple, the midpoint between the values a; and a;41 of A is

a; + Qit1

- (8.4)

If the values of A are sorted in advance, then determining the best split for A re-
quires only one pass through the values. For each possible split-point for A, we eval-
uate Info 4(D), where the number of partitions is two, that isv = 2 (or j = 1,2) in

16 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

Equation (8.2). The point with the minimum expected information requirement
for A is selected as the split_point for A. D is the set of tuples in D satisfying A <
split_point, and Ds is the set of tuples in D satisfying A > split_point.

Gain ratio

The information gain measure is biased toward tests with many outcomes. That is,

it prefers toselect attributes having alarge number of values. For example, consider
an attribute that acts as a unique identifier, such as product_ID. A split on prod-
uct_ID would result in a large number of partitions (as many as there are values),
each one containing just one tuple. Because each partition is pure, the information
required to classify dataset D based on this partitioning would be Info,,. ,qyet_rp (D) =
0. Therefore, the information gained by partitioning on this attribute is maximal.
Clearly, such a partitioning is useless for classification.

C4.5, a successor of ID3, uses an extension to information gain known as gain
ratio, which attempts to overcome this bias. It applies a kind of normalization to in-
formation gain using a “split information” value defined analogously with Info(D)
as

, — |D, D,
SplitInfo, (D) = — Z % X logQ(%). (8.5)
j=1

This value represents the potential information generated by splitting the train-
ing data set, D, into v partitions, corresponding to the v outcomes of a test on at-
tribute A. Note that, for each outcome, it considers the number of tuples having
that outcome with respect to the total number of tuples in D. It differs from infor-
mation gain, which measures the information with respect to classification that is
acquired based on the same partitioning. The gain ratio is defined as

Gain(A)
GainRatio(A) = —————. 8.6
(4) SplitInfo ,(D) (86)
The attribute with the maximum gain ratio is selected as the splitting attribute.
Note, however, that as the split information approaches 0, the ratio becomes un-
stable. A constraint is added to avoid this, whereby the information gain of the test
selected must be large—at least as great as the average gain over all tests examined.

Example 8.2 Computation of gain ratio for the attribute income. A test on income splits
the data of Table 8.1 into three partitions, namely low, medium, and high, contain-

ing four, six, and four tuples, respectively. To compute the gain ratio of income, we
first use Equation (8.5) to obtain

SplitInfo,,come(D) = —% X logQ(%) - 1—64 X 10g2(16—4) - 14—4 x log, (%)

= 1.557.

8.2. DECISION TREE INDUCTION 17

From Example 6.1, we have Gain(income) =0.029. Therefore, GainRatio(income)
=0.029/1.557=0.019.

Giniindex

The Giniindexisused in CART. Using the notation described above, the Giniindex
measures the impurity of D, a data partition or set of training tuples, as

Gini(D) =1-Y p}, (8.7)
i=1

where p; is the probability that a tuple in D belongs to class C; and is estimated by
|Ci,p|/|D]. The sum is computed over m classes.

The Gini index considers a binary split for each attribute. Let’s first consider
the case where A isadiscrete-valued attribute having v distinct values, {a1, as, . .., a, },
occurring in D. To determine the best binary split on A, we examine all of the pos-
sible subsets that can be formed using known values of A. Each subset, S 4, can be
considered as a binary test for attribute A of the form “A € S47”. Given a tuple,
this test is satisfied if the value of A for the tuple is among the values listed in S 4.
If A has v possible values, then there are 2V possible subsets. For example, if in-
come has three possible values, namely {low, medium, high}, then the possible sub-
sets are {low, medium, high}, {low, medium}, {low, high}, { medium, high}, {low},
{medium}, {high}, and {}. We exclude the power set, {low, medium, high}, and
the empty set from consideration since, conceptually, they do not represent a split.
Therefore, there are 2" —2 possible ways to form two partitions of the data, D, based
on a binary split on A.

When considering a binary split, we compute a weighted sum of the impurity of
each resulting partition. For example, if a binary split on A partitions D into D
and Ds, the gini index of D given that partitioning is

Ginia(D) = 1Dy} Gini(Dy) + 1D2] Gini(Ds). (8.8)
|D| 1D
For each attribute, each of the possible binary splits is considered. For a discrete-
valued attribute, the subset that gives the minimum gini index for that attribute is
selected as its splitting subset.

For continuous-valued attributes, each possible split-point must be considered.
Thestrategy issimilar to that described above for information gain, where the mid-
point between each pair of (sorted) adjacent values is taken as a possible split-point.
The point giving the minimum Gini index for a given (continuous-valued) attribute
is taken as the split-point of that attribute. Recall that for a possible split-point of
A, D1 is the set of tuples in D satisfying A < split_point, and D5 is the set of tuples
in D satisfying A > split_point.

Thereduction in impurity that would be incurred by a binary split on a discrete-
or continuous-valued attribute A is

AGini(A) = Gini(D) — Ginia(D). (8.9)

18 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

The attribute that maximizes the reduction in impurity (or, equivalently, has the
minimum Gini index) is selected as the splitting attribute. This attribute and ei-
ther its splitting subset (for a discrete-valued splitting attribute) or split-point (for
a continuous-valued splitting attribute) together form the splitting criterion.

Example 8.3 Induction of a decision tree using gini index. Let D be the training data of
Table 8.1 where there are nine tuples belonging to the class buys_computer = yes
and the remaining five tuples belong to the class buys_computer =no. A (root) node
N is created for the tuples in D. We first use Equation (8.7) for Gini index to com-
pute the impurity of D:

Gini(D 1 AN 5\ 0.459
ni(D) =1~ (g7) - (7) =045

To find the splitting criterion for the tuples in D, we need to compute the gini
index for each attribute. Let’s start with the attribute income and consider each of
the possible splitting subsets. Consider the subset {low, medium}. This would re-
sultin 10 tuples in partition D satisfying the condition “income € {low, medium}.”
The remaining four tuples of D would be assigned to partition Dy. The Gini index
value computed based on this partitioning is

Giniincome € {low,medium} (D)

10 . . 4
= ﬂsz(Dl) + ﬂGZnZ(DQ)

B 6))-4(--)

= Giniincome {nighy (D)

Similarly, the Gini index values for splits on the remaining subsets are: 0.458 (for
the subsets {low, high} and {medium}) and 0.450 (for the subsets { medium, high}
and {low}). Therefore, the best binary split for attribute income ison {low, medium}
(or { high}) because it minimizes the Gini index. Evaluating age, we obtain { youth,
senior} (or {middle_aged}) as the best split for age with a Gini index of 0.375; the
attributes student and credit_rating are both binary, with Giniindex values of 0.367
and 0.429, respectively.

The attribute age and splitting subset youth, senior therefore give the minimum
Gini index overall, with a reduction in impurity of 0.459 0.357 = 0.102. The bi-
nary split age IN youth, senior? results in the maximum reduction in impurity of
the tuples in D and is returned as the splitting criterion. Node N is labeled with
the criterion, two branches are grown from it, and the tuples are partitioned ac-
cordingly. [Authors note: For the expression, age IN youth, senior? use the mathe-
matical symbol for element of (not available here) in place of IN.] The attribute age
and splitting subset {youth, senior} therefore give the minimum Gini index over-
all, with a reduction in impurity of 0.459 — 0.357 = 0.102. The binary split “age €
{youth, senior?}” results in the maximum reduction in impurity of the tuples in D

8.2. DECISION TREE INDUCTION 19

and is returned as the splitting criterion. Node N is labeled with the criterion, two
branches are grown from it, and the tuples are partitioned accordingly.

This section on attribute selection measures was not intended to be exhaustive.
We have shown three measures that are commonly used for building decision trees.
These measures are not without their biases. Information gain, as we saw, is bi-
ased toward multivalued attributes. Although the gain ratio adjusts for this bias,
it tends to prefer unbalanced splits in which one partition is much smaller than the
others. The Gini index is biased toward multivalued attributes and has difficulty
when the number of classes is large. It also tends to favor tests that result in equal-
sized partitions and purity in both partitions. Although biased, these measures give
reasonably good results in practice.

Many other attribute selection measures have been proposed. CHAID, a deci-
sion tree algorithm that is popular in marketing, uses an attribute selection mea-
sure that is based on the statistical x? test for independence. Other measures in-
clude C-SEP (which performs better than information gain and Gini index in cer-
tain cases) and G-statistic (an information theoretic measure that is a close approx-
imation to x? distribution).

Attribute selection measures based on the Minimum Description Length
(MDL) principle have the least bias toward multivalued attributes. MDL-based
measures use encoding techniques to define the “best” decision tree as the one that
requires the fewest number of bits to both (1) encode the tree and (2) encode the
exceptions to the tree (i.e., cases that are not correctly classified by the tree). Its
main idea is that the simplest of solutions is preferred.

Other attribute selection measures consider multivariate splits (i.e., where
the partitioning of tuples is based on a combination of attributes, rather than on
a single attribute). The CART system, for example, can find multivariate splits
based on a linear combination of attributes. Multivariate splits are a form of at-
tribute (or feature) construction, where new attributes are created based on the
existing ones. (Attribute construction is also discussed in Chapter 2, as a form of
data transformation.) These other measures mentioned here are beyond the scope
of this book. Additional references are given in the Bibliographic Notes at the end
of this chapter.

“Which attribute selection measure is the best?” All measures have some bias.

It has been shown that the time complexity of decision tree induction generally in-
creases exponentially with tree height. Hence, measures that tend to produce shal-
lower trees (e.g., with multiway rather than binary splits, and that favor more bal-
anced splits) may be preferred. However, some studies have found that shallow trees
tend to have a large number of leaves and higher error rates. Despite several com-
parative studies, no one attribute selection measure has been found to be signifi-
cantly superior to others. Most measures give quite good results.

8.2.3 TreePruning

When a decision treeis built, many of the branches will reflect anomaliesin the training
data due to noise or outliers. Tree pruning methods address this problem of overfit-
ting the data. Such methods typically use statistical measures to remove the least

20 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

Figure 8.6: An unpruned decision tree and a pruned version of it.

reliable branches. An unpruned tree and a pruned version of it are shown in Fig-
ure 8.6. Pruned trees tend to be smaller and less complex and, thus, easier to com-
prehend. They are usually faster and better at correctly classifying independent
test data (i.e., of previously unseen tuples) than unpruned trees.

“How does tree pruning work?” There are two common approaches to tree prun-
ing: prepruning and postpruning.

Inthe prepruningapproach, atreeis “pruned” by halting its construction early
(e.g., by deciding not to further split or partition the subset of training tuples at a
given node). Upon halting, the node becomes a leaf. The leaf may hold the most
frequent class among the subset tuples or the probability distribution of those tu-
ples.

When constructing a tree, measures such as statistical significance, information
gain, Gini index, and so on can be used to assess the goodness of a split. If parti-
tioning the tuples at a node would result in a split that falls below a prespecified
threshold, then further partitioning of the given subset is halted. There are difficul-
ties, however, in choosing an appropriate threshold. High thresholds could result
in oversimplified trees, whereas low thresholds could result in very little simplifica-
tion.

The second and more common approach is postpruning, which removes sub-
trees from a “fully grown” tree. A subtree at a given node is pruned by removing its
branches and replacing it with aleaf. Theleafislabeled with the most frequent class
among the subtree being replaced. For example, notice the subtree at node “Agz?”
in the unpruned tree of Figure 8.6. Suppose that the most common class within
this subtree is “class B.” In the pruned version of the tree, the subtree in question
is pruned by replacing it with the leaf “class B.”

The cost complexity pruning algorithm used in CART is an example of the
postpruning approach. This approach considers the cost complexity of a tree to be
afunction of the number of leaves in the tree and the error rate of the tree (where the
error rate is the percentage of tuples misclassified by the tree). It starts from the

8.2. DECISION TREE INDUCTION 21

bottom of the tree. For each internal node, N, it computes the cost complexity of
the subtree at IV, and the cost complexity of the subtree at IV if it were to be pruned
(i.e., replaced by a leaf node). The two values are compared. If pruning the sub-
tree at node NV would result in a smaller cost complexity, then the subtree is pruned.
Otherwise, it iskept. A pruning set of class-labeled tuples is used to estimate cost
complexity. This set is independent of the training set used to build the unpruned
tree and of any test set used for accuracy estimation. The algorithm generates a set
of progressively pruned trees. In general, the smallest decision tree that minimizes
the cost complexity is preferred.

C4.5 uses a method called pessimistic pruning, which is similar to the cost
complexity method in that it also uses error rate estimates to make decisions re-
garding subtree pruning. Pessimistic pruning, however, does not require the use
of a prune set. Instead, it uses the training set to estimate error rates. Recall that
an estimate of accuracy or error based on the training set is overly optimistic and,
therefore, strongly biased. The pessimistic pruning method therefore adjusts the
error rates obtained from the training set by adding a penalty, so as to counter the
bias incurred.

Rather than pruning trees based on estimated error rates, we can prune trees
based on the number of bits required to encode them. The “best” pruned tree is
the one that minimizes the number of encoding bits. This method adopts the Min-
imum Description Length (MDL) principle, which was briefly introduced in Sec-
tion 8.2.2. The basicidea is that the simplest solution is preferred. Unlike cost com-
plexity pruning, it does not require an independent set of tuples.

Alternatively, prepruning and postpruning may be interleaved for a combined
approach. Postpruning requires more computation than prepruning, yet generally
leads to a more reliable tree. No single pruning method has been found to be supe-
rior over all others. Although some pruning methods do depend on the availability
of additional data for pruning, this is usually not a concern when dealing with large
databases.

Although pruned trees tend to be more compact than their unpruned counter-
parts, they may still be rather large and complex. Decision trees can suffer from
repetition and replication (Figure 8.7), making them overwhelming to interpret.
Repetition occurs when an attribute is repeatedly tested along a given branch of
the tree (such as “age < 60?27, followed by “age < 45”¢,and soon). Inreplication,
duplicate subtrees exist within the tree. These situations can impede the accuracy
and comprehensibility of a decision tree. The use of multivariate splits (splits based
on acombination of attributes) can prevent these problems. Another approachisto
use a different form of knowledge representation, such as rules, instead of decision
trees. Thisis described in Section 8.4.2, which shows how a rule-based classifier can
be constructed by extracting IF-THEN rules from a decision tree.

8.2.4 Rainforest: Scalability and Decision Tree Induction

“Whatif D, the disk-resident training set of class-labeled tuples, does not fit in mem-
ory? In other words, how scalable is decision tree induction?” The efficiency of ex-
isting decision tree algorithms, such as ID3, C4.5, and CART, has been well estab-

22 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

Figure 8.7: An example of subtree (a) repetition (where an attribute is repeat-
edly tested along a given branch of the tree, e.g., age) and (b) replication (where
duplicate subtrees exist within a tree, such as the subtree headed by the node
“credit_rating?”).

lished for relatively small data sets. Efficiency becomes an issue of concern when
these algorithms are applied to the mining of very large real-world databases. The
pioneering decision tree algorithms that we have discussed so far have the restric-
tion that the training tuples should reside in memory. In data mining applications,
very large training sets of millions of tuples are common. Most often, the training
data will not fit in memory! Decision tree construction therefore becomes ineffi-
cient due to swapping of the training tuples in and out of main and cache memories.
More scalable approaches, capable of handling training data that are too large to
fit in memory, are required. Earlier strategies to “savespace” included discretizing
continuous-valued attributes and sampling data at each node. These techniques,
however, still assume that the training set can fit in memory.

Recent studies have introduce several scalable decision tree induction methods.
Weintroduce an interesting one called RainForest . It adapts to the amount of main

8.2. DECISION TREE INDUCTION 23

age buys_computer income buys_computer
yes no yes no
youth 2 3 low 3 1
middle_aged 4 0 medium 4
senior 3 2 high 2 2
student buys_computer credit_rating | buys_computer
yes no yes no
yes 6 1 fair 6 2
no 3 4 excellent 3 3

Figure 8.8: The use of data structures to hold aggregate information regarding the
training data (such as these AVC-sets describing the data of Table 8.1) are one ap-
proach to improving the scalability of decision tree induction.

memory available and applies to any decision tree induction algorithm. The method
maintains an AVC-set (where AVC stands for “Attribute-Value, Classlabel”) for
each attribute, at each tree node, describing the training tuples at the node. The
AVC-set of an attribute A at node IV gives the class label counts for each value of A
for the tuples at N. Figure 8.8 shows AVC-sets for the tuple data of Table 8.1. The
set of all AVC-sets at anode N is the AVC-group of N. The size of an AVC-set for
attribute A at node N depends only on the number of distinct values of A and the
number of classes in the set of tuples at V. Typically, this size should fit in memory,
even for real-world data. RainForest has also techniques, however, for handling the
case where the AVC-group does not fit in memory. Therefore, the method has high
scalability for decision-tree induction in very large datasets.

BOAT (Bootstrapped Optimistic Algorithm for Tree Construction) is a deci-
sion tree algorithm that takes a completely different approach to scalability—it is
not based on the use of any special data structures. Instead, it uses a statistical
technique known as “bootstrapping” (Section 8.5.4) to create several smaller sam-
ples (or subsets) of the given training data, each of which fits in memory. Each sub-
set is used to construct a tree, resulting in several trees. The trees are examined
and used to construct a new tree, T”, that turns out to be “very close” to the tree
that would have been generated if all of the original training data had fit in mem-
ory. BOAT can use any attribute selection measure that selects binary splits and
that is based on the notion of purity of partitions, such as the gini index. BOAT
uses alower bound on the attribute selection measure in order to detect if this “very
good” tree, T”, is different from the “real” tree, T', that would have been generated
using the entire data. It refines 7" in order to arrive at T'.

BOAT usually requires only two scans of D. Thisis quite an improvement, even
in comparison to traditional decision tree algorithms (such as the basic algorithm in
Figure 8.3), which require one scan per level of the tree! BOAT was found to be two
to three times faster than RainForest, while constructing exactly the same tree. An
additional advantage of BOAT is that it can be used for incremental updates. That
is, BOAT can take new insertions and deletions for the training data and update the

24 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

decision tree to reflect these changes, without having to reconstruct the tree from
scratch.

8.2.5 Visual Mining for Decision Tree Induction

” Are there any interactive approaches to decision tree induction that allow us to vi-
sualize the data and the tree as it is being constructed? Can we use any knowledge
of our data to help in building the tree?” In this section, you will learn about an ap-
proach to decision tree induction that supports these options. Perception Based
Classification (PBC) is an interactive approach based on multidimensional vi-
sualization techniques and allows the user to incorporate background knowledge
about the data when building a decision tree. By visually interacting with the data,
the user is also likely to develop a deeper understanding of the data. The resulting
trees tend to be smaller than those built using traditional decision tree induction
methods and so are easier to interpret, while achieving about the same accuracy.

” How can the data be visualized to support interactive decision tree construction?”
PBC uses apixel-oriented approach to view multidimensional data with its class la-
belinformation. The circle segments approach is adapted, which maps d-dimensional
data objects to a circle that is partitioned into d segments, each representing one
attribute (Section 2.3.1). Here, an attribute value of a data object is mapped to
one colored pixel, reflecting the class label of the object. This mapping is done for
each attribute-value pair of each data object. Sorting is done for each attribute in
order to determine the order of arrangement within a segment. For example, at-
tribute values within a given segment may be organized so as to display homoge-
neous (with respect to class label) regions within the same attribute value. The
amount of training data that can be visualized at one time is approximately deter-
mined by the product of the number of attributes and the number of data objects.

The PBC system displays a split screen, consisting of a Data Interaction Win-
dow and aKnowledge Interaction Window (Figure8.9). The Data Interaction Win-
dow displays the circle segments of the data under examination, while the Knowl-
edge Interaction Window displays the decision tree constructed so far. Initially,
the complete training set is visualized in the Data Interaction Window, while the
Knowledge Interaction Window displays an empty decision tree.

Traditional decision tree algorithms allow only binary splits for numerical at-
tributes. PBC, however, allows the user to specify multiple split-points, resulting
in multiple branches to be grown from a single tree node.

A tree is interactively constructed as follows. The user visualizes the multidi-
mensional data in the Data Interaction Window and selects a splitting attribute
and one or more split-points. The current decision tree in the Knowledge Inter-
action Window is expanded. The user selects a node of the decision tree. The user
may either assign a class label to the node (which makes the node a leaf), or request
the visualization of the training data corresponding to the node. This leads to a
new visualization of every attribute except the ones used for splitting criteria on the
same path from theroot. Theinteractive process continues until a class has been as-
signed to each leaf of the decision tree. The trees constructed with PBC were com-
pared with trees generated by the CART, C4.5, and SPRINT algorithms from var-

8.3. BAYES CLASSIFICATION METHODS 25

e !:_ﬂe 1ools Operations Options View “e|

A3 rawalue rrean Bpit;- £.8]- 38 |- 7]
3 quc moar Bpit- 2.7 |- 1.3)]
W rouscc
W vwinCewr
[wokin progress
[} workir progrese
L3 wacir progress
D walkir progress

Altrib e
Izcords: 937 ‘

| L=t mauce buton insort

Figure 8.9: A screen shot of PBC, an system for interactive decision tree construc-
tion. Multidimensional training data are viewed as circle segments in the Data In-
teraction Window (left-hand side). The Knowledge Interaction Window (right-
hand side) displays the current decision tree. From Ankerst, Elsen, Ester, and
Kriegel [AEEK99).

ious data sets. The trees created with PBC were of comparable accuracy with the
tree from the algorithmic approaches yet were significantly smaller and thus, eas-
ier tounderstand. Users can use their domain knowledge in building a decision tree,
but also gain a deeper understanding of their data during the construction process.

8.3 Bayes Classification Methods

“What are Bayesian classifiers?” Bayesian classifiers are statistical classifiers. They
can predict class membership probabilities, such as the probability that a given tu-
ple belongs to a particular class.

Bayesian classification is based on Bayes’ theorem, described below. Studies
comparing classification algorithms have found a simple Bayesian classifier known
as the naive Bayesian classifier to be comparable in performance with decision tree
and selected neural network classifiers. Bayesian classifiers have also exhibited high
accuracy and speed when applied to large databases.

Naive Bayesian classifiers assume that the effect of an attribute value on a given
class is independent of the values of the other attributes. This assumption is called
class conditional independence. It is made to simplify the computations involved
and, in this sense, is considered “naive.”

Section 8.3.1 reviews basic probability notation and Bayes’ theorem. In Sec-
tion 8.3.2 you will learn how to do naive Bayesian classification.

26 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

8.3.1 Bayes’ Theorem

Bayes’ theorem is named after Thomas Bayes, a nonconformist English clergyman
who did early work in probability and decision theory during the 18th century. Let
X be adata tuple. In Bayesian terms, X is considered “evidence.” Asusual, it is de-
scribed by measurements made on a set of n attributes. Let H be some hypothesis,
such as that the data tuple X belongs to a specified class C'. For classification prob-
lems, we want to determine P(H |X), the probability that the hypothesis H holds
given the “evidence” or observed data tuple X. In other words, we are looking for
the probability that tuple X belongs to class C, given that we know the attribute
description of X.

P(H|X) is the posterior probability, or a posteriori probability, of H condi-
tioned on X. For example, suppose our world of data tuples is confined to customers
described by the attributes age and income, respectively, and that X is a 35-year-old
customer with an income of $40,000. Suppose that H is the hypothesis that our cus-
tomer will buy a computer. Then P(H |X) reflects the probability that customer X
will buy a computer given that we know the customer’s age and income.

In contrast, P(H) is the prior probability, or a priori probability, of H. For
our example, this is the probability that any given customer will buy a computer,
regardless of age, income, or any other information, for that matter. The posterior
probability, P(H|X),isbased on more information (e.g., customer information) than
the prior probability, P(H), which is independent of X.

Similarly, P(X|H) is the posterior probability of X conditioned on H. That is,
it is the probability that a customer, X, is 35 years old and earns $40,000, given that
we know the customer will buy a computer.

P(X) is the prior probability of X. Using our example, it is the probability that
a person from our set of customers is 35 years old and earns $40,000.

“How are these probabilities estimated?” P(H), P(X|H), and P(X) may be es-
timated from the given data, as we shall see below. Bayes’ theorem is useful in
that it provides a way of calculating the posterior probability, P(H|X), from P(H),
P(X|H), and P(X). Bayes’ theorem is

X|H)P(H)

paax) = 2 P (8.10)

Now that we’ve got that out of the way, in the next section, we will look at how
Bayes’ theorem is used in the naive Bayesian classifier.

8.3.2 Naive Bayesian Classification

The naive Bayesian classifier, or simple Bayesian classifier, works as follows:

1. Let D be a training set of tuples and their associated class labels. As usual,
each tupleisrepresented by an n-dimensional attribute vector, X = (z1, 2, . . .
depicting n measurements made on the tuple from n attributes, respectively,
Ay, Ag, ..., Ay

7:En)7

8.3. BAYES CLASSIFICATION METHODS 27

2. Suppose that there are m classes, Cq, Cs, ..., Cy,. Given atuple, X, the clas-
sifier will predict that X belongs to the class having the highest posterior prob-
ability, conditioned on X. That is, the naive Bayesian classifier predicts that
tuple X belongs to the class C; if and only if

P(C;|X) > P(C;|X) for1<j<m,j#i.

Thus we maximize P(C;|X). The class C; for which P(C;|X) is maximized is
called the mazimum posteriori hypothesis. By Bayes’ theorem (Equation (8.10)),

P(X|Ci)P(Cy)

(8.11)

3. As P(X)is constant for all classes, only P(X|C;)P(C;) need to be maximized.
If the class prior probabilities are not known, then it is commonly assumed
that the classes are equally likely, that is, P(Cy) = P(Cy) = --- = P(C,),
and we would therefore maximize P(X|C;). Otherwise, we maximize P(X|C;)P(C;).
Note that the class prior probabilities may be estimated by P(C;) = |C; p|/| D],
where |C; p|is the number of training tuples of class C; in D.

4. Given data sets with many attributes, it would be extremely computation-
ally expensive to compute P(X|C;). In order to reduce computation in eval-
uating P(X|C;), the naive assumption of class conditional independence
is made. This presumes that the values of the attributes are conditionally in-
dependent of one another, given the class label of the tuple (i.e., that there are
no dependence relationships among the attributes). Thus,

Pexic) =[] Planicy .12
k=1

We can easily estimate the probabilities P(x1|C;), P(22|C;), ..., P(zy|C;)
from the training tuples. Recall that here xzj refers to the value of attribute
Ay for tuple X. For each attribute, we look at whether the attribute is cate-
gorical or continuous-valued. For instance, to compute P(X|C;), we consider
the following:

(a) If Ay is categorical, then P(z|C;) is the number of tuples of class C; in
D having the value x, for Ay, divided by |C;, p|, the number of tuples of
class C;in D.

(b) If A, is continuous-valued, then we need to do a bit more work, but the
calculation is pretty straightforward. A continuous-valued attribute is
typically assumed to have a Gaussian distribution with a mean p and

standard deviation o, defined by
1 _(@=w)?
g(x, u, o) = _27me 207 (8.13)

28 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

so that
P(z|Ci) = g(zx, pe,, oc,)- (8.14)

These equations may appear daunting, but hold on! We need to com-
pute pc, and o¢,, which are the mean (i.e., average) and standard de-
viation, respectively, of the values of attribute Ay, for training tuples of
class C;. We then plug these two quantities into Equation (8.13), to-
gether with z, in order to estimate P(zy|C;). For example, let X = (35,
$40,000), where A; and A, are the attributes age and income, respec-
tively. Let the class label attribute be buys_computer. The associated
class label for X is yes (i.e., buys_computer = yes). Let’s suppose that
age has not been discretized and therefore exists as a continuous-valued
attribute. Suppose that from the training set, we find that customers in
D who buy a computer are 38 &+ 12 years of age. In other words, for at-
tribute age and this class, we have yt = 38 years and o = 12. We can plug
these quantities, along with z1 = 35 for our tuple Xinto Equation (8.13)
in order to estimate P(age = 35|buys_computer = yes). For a quick re-
view of mean and standard deviation calculations, please see Section 2.2.

5. In order to predict the class label of X, P(X|C;)P(C;) is evaluated for each
class C;. The classifier predicts that the class label of tuple X is the class C; if
and only if

P(X|C;)P(C;) > P(X|C;)P(Cy) for 1 <j<m,j#i. (8.15)
Inother words, the predicted classlabel is the class C; for which P(X|C;) P(C;)

is the maximum.

“How effective are Bayesian classifiers?” Various empirical studies of this clas-
sifier in comparison to decision tree and neural network classifiers have found it to
be comparable in some domains. In theory, Bayesian classifiers have the minimum
error rate in comparison to all other classifiers. However, in practice this is not al-
ways the case, owing to inaccuracies in the assumptions made for its use, such as
class conditional independence, and the lack of available probability data.

Bayesian classifiers are also useful in that they provide a theoretical justification
for other classifiers that do not explicitly use Bayes’ theorem. For example, under
certain assumptions, it can be shown that many neural network and curve-fitting
algorithms output the maximum posteriori hypothesis, as does the naive Bayesian
classifier.

Example 8.4 Predicting a class label using naive Bayesian classification. We wish to
predict the class label of a tuple using naive Bayesian classification, given the same
training data as in Example 6.3 for decision tree induction. The training data are
in Table 8.1. The data tuples are described by the attributes age, income, student,
and credit_rating. The classlabel attribute, buys_computer, has two distinct values
(namely, {yes, no}). Let Cy correspond to the class buys_computer = yes and Co

8.3. BAYES CLASSIFICATION METHODS

correspond to buys_computer = no. The tuple we wish to classify is

X = (age = youth, income = medium, student = yes, credit_rating = fair)

29

We need to maximize P(X|C;)P(C;), fori =1, 2. P(C;), the prior probability

of each class, can be computed based on the training tuples:

P(buys_computer = yes) = 9/14 = 0.643
P(buys_computer =no) = 5/14 = 0.357

To compute P(X|C;), fori =1, 2, we compute the following conditional proba-

bilities:

P(age = youth | buys_computer = yes) =2/9 =0.222
(age = youth | buys_computer = no) =3/5=0.600
(income = medium | buys_computer = yes) = 4/9 = 0.444
(income = medium | buys_computer =no) = 2/5= 0.400
(
(
(

P
P
P
P
P
P
P

Using the above probabilities, we obtain

student = yes | buys_computer = yes) =6/9 = 0.667
student = yes | buys_computer = no) =1/5=0.200
credit_rating = fair | buys_computer = yes) = 6/9 = 0.667
(credit_rating = fair | buys_computer = no) = 2/5 = 0.400

P(X|buys_computer = yes) = P(age = youth | buys_computer = yes) X
P(income = medium | buys_computer = yes) X

P(student = yes | buys_computer = yes) x

P(credit_rating = fair | buys_computer = yes)

=0.222 x 0.444 x 0.667 x 0.667 = 0.044.

Similarly,

P(X|buys_computer = no) = 0.600 x 0.400 x 0.200 x 0.400 = 0.019.

To find the class, C;, that maximizes P(X|C;)P(C;), we compute
P(X|buys_computer = yes) P(buys_computer = yes) = 0.044 x 0.643 = 0.028
P(X|buys_computer = no) P(buys_computer = no) = 0.019 x 0.357 = 0.007

Therefore, the naive Bayesian classifier predicts buys_computer = yes for tuple X.

“Whatif I encounter probability values of zero?” Recall that in Equation (8.12),

we estimate P(X|C;) as the product of the probabilities P(z1|C;),

P($2|Cl), ey

P(z,|C;), based on the assumption of class conditional independence. These prob-
abilities can be estimated from the training tuples (step 4). We need to compute

P(X|C;) for eachclass (i = 1,2, ..., m)inorder tofind the class C; for which P(X|C;) P(

is the maximum (step 5). Let’s consider this calculation. For each attribute-value
pair (i.e., Ay = zx, fork = 1,2,...,n) in tuple X, we need to count the number

of tuples having that attribute-value pair, per class (i.e., per C;, fori =1, ...,

In Example 6.4, we have two classes (m = 2), namely buys_computer = yes and
buys_computer = no. Therefore, for the attribute-value pair student = yes of X,
say, we need two counts—the number of customers who are students and for which

buys_computer = yes (which contributes to P(X|buys_computer = yes)) and the num-

ber of customers who are students and for which buys_computer = no (which con-
tributes to P(X|buys-computer = no)). But what if, say, there are no training tu-

C;)

30 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

ples representing students for the class buys_computer = no, resulting in

P(student = yes|buys_computer = no) = 07 Inother words, what happens if we should
end up with a probability value of zero for some P(z|C;)? Plugging this zero value
into Equation (8.12) would return a zero probability for P(X|C;), even though, with-
out the zero probability, we may have ended up with a high probability, suggesting
that X belonged to class C;! A zero probability cancels the effects of all of the other
(posteriori) probabilities (on C;) involved in the product.

There is a simple trick to avoid this problem. We can assume that our train-
ing database, D, is so large that adding one to each count that we need would only
make a negligible difference in the estimated probability value, yet would conve-
niently avoid the case of probability values of zero. This technique for probability
estimation is known as the Laplacian correction or Laplace estimator, named
after Pierre Laplace, a French mathematician who lived from 1749 to 1827. If we
have, say, ¢ counts to which we each add one, then we must remember to add ¢ to
the corresponding denominator used in the probability calculation. We illustrate
this technique in the following example.

Example 8.5 Usingthe Laplacian correction to avoid computing probability values of
zero. Suppose that for the class buys_computer = yes in some training database,
D, containing 1,000 tuples, we have 0 tuples with income = low, 990 tuples with
income = medium, and 10 tuples with income = high. The probabilities of these
events, without the Laplacian correction, are 0, 0.990 (from 990/1000), and 0.010
(from 10/1,000), respectively. Using the Laplacian correction for the three quanti-
ties, we pretend that we have 1 more tuple for each income-value pair. In this way,
we instead obtain the following probabilities (rounded up to three decimal places):
1 991 11

— 0.001, 2= — 0.988, and
1,003 ' 1,003 M T003

=0.011,

respectively. The “corrected” probability estimates are close to their “uncorrected”
counterparts, yet the zero probability value is avoided.

8.4 Rule-Based Classification

In this section, we look at rule-based classifiers, where the learned model is repre-
sented as a set of IF-THEN rules. We first examine how such rules are used for clas-
sification (Section 8.4.1). We then study ways in which they can be generated, ei-
ther from a decision tree (Section 8.4.2) or directly from the training data using a
sequential covering algorithm (Section 8.4.3).

8.4.1 Using IF-THEN Rules for Classification

Rulesare agood way of representing information or bits of knowledge. A rule-based
classifier uses a set of IF-THEN rules for classification. An IF-THEN rule is an
expression of the form

8.4. RULE-BASED CLASSIFICATION 31

IF condition THEN conclusion.

An example isrule R1,
R1: IF age = youth AND student = yes THEN buys_computer= yes.

The “IF”-part (or left-hand side) of a rule is known as the rule antecedent or pre-
condition. The “THEN”-part (or right-hand side) is the rule consequent. In
the rule antecedent, the condition consists of one or more attribute tests (such as
age = youth, and student = yes) that are logically ANDed. The rule’s consequent
contains a class prediction (in this case, we are predicting whether a customer will
buy a computer). R1 can also be written as

RI1: (age = youth) A (student = yes) = (buys_computer = yes).

If the condition (that is, all of the attribute tests) in a rule antecedent holds true
for a given tuple, we say that the rule antecedent is satisfied (or simply, that the
rule is satisfied) and that the rule covers the tuple.

A rule R can be assessed by its coverage and accuracy. Given a tuple, X, from a
class-labeled data set, D, let ncppers be the number of tuples covered by R; nicorrect
be the number of tuples correctly classified by R; and | D| be the number of tuples
in D. We can define the coverage and accuracy of R as

coverage(R) = nT(gTTS (8.16)
N correct

accuracy(R) = . (8.17)
nCUUeTS

That is, arule’s coverage is the percentage of tuples that are covered by therule (i.e.,
whose attribute values hold true for the rule’s antecedent). For a rule’s accuracy,
we look at the tuples that it covers and see what percentage of them the rule can
correctly classify.

Example 8.6 Rule accuracy and coverage. Let’s go back to our data of Table 8.1. These are
class-labeled tuples from the AllElectronics customer database. Our task is to pre-
dict whether a customer will buy a computer. Consider rule R1 above, which covers
2 of the 14 tuples. It can correctly classify both tuples. Therefore, coverage(R1) =
2/14 = 14.28% and accuracy(R1) = 2/2 = 100%.

Let’s see how we can use rule-based classification to predict the class label of a
given tuple, X. If aruleis satisfied by X, the rule is said to be triggered. For exam-
ple, suppose we have

X= (age = youth, income = medium, student = yes, credit_rating = fair).

We would like to classify X according to buys_computer. X satisfies R1, which trig-
gers the rule.

If R1 is the only rule satisfied, then the rule fires by returning the class predic-
tion for X. Note that triggering does not always mean firing because there may be

32 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

more than onerule that is satisfied! If more than one ruleis triggered, we have a po-
tential problem. What if they each specify a different class? Or what if no rule is
satisfied by X7

We tackle the first question. If more than one rule is triggered, we need a con-
flict resolution strategy to figure out which rule gets to fire and assign its class
prediction to X. There are many possible strategies. We look at two, namely size
ordering and rule ordering.

The size ordering scheme assigns the highest priority to the triggering rule
that has the “toughest” requirements, where toughness is measured by the rule an-
tecedent size. That is, the triggering rule with the most attribute tests is fired.

The rule ordering scheme prioritizes the rules beforehand. The ordering may
be class-based or rule-based. With class-based ordering, the classes are sorted in
order of decreasing “importance,” such as by decreasing order of prevalence. That
is, all of the rules for the most prevalent (or most frequent) class come first, the rules
for the next prevalent class come next, and so on. Alternatively, they may be sorted
based on the misclassification cost per class. Within each class, the rules are not
ordered—they don’t have to be because they all predict the same class (and so there
can be no class conflict!). With rule-based ordering, the rules are organized into
one long priority list, according to some measure of rule quality such as accuracy,
coverage, or size (number of attribute tests in the rule antecedent), or based on ad-
vice from domain experts. When rule ordering is used, the rule set is known as a de-
cision list. With rule ordering, the triggering rule that appears earliest in the list
has highest priority, and so it gets to fire its class prediction. Any other rule that
satisfies X is ignored. Most rule-based classification systems use a class-based rule-
ordering strategy.

Note that in the first strategy, overall the rules are unordered. They can be ap-
plied in any order when classifying a tuple. That s, a disjunction (logical OR) isim-
plied between each of the rules. Each rule represents a stand-alone nugget or piece
ofknowledge. Thisisin contrast to the rule-ordering (decision list) scheme for which
rules must be applied in the prescribed order so as to avoid conflicts. Each rulein a
decision list implies the negation of the rules that come before it in the list. Hence,
rules in a decision list are more difficult to interpret.

Now that we have seen how we can handle conflicts, let’s go back to the scenario
where there is no rule satisfied by X. How, then, can we determine the class label of
X? In this case, a fallback or default rule can be set up to specify a default class,
based on a training set. This may be the class in majority or the majority class of
the tuples that were not covered by any rule. The default rule is evaluated at the
end, if and only if no other rule covers X. The condition in the default rule is empty.
In this way, the rule fires when no other rule is satisfied.

In the following sections, we examine how to build a rule-based classifier.

8.4.2 RuleExtraction from a Decision Tree

In Section 8.2, we learned how to build a decision tree classifier from a set of train-
ing data. Decision tree classifiers are a popular method of classification—it is easy

8.4. RULE-BASED CLASSIFICATION 33

to understand how decision trees work and they are known for their accuracy. De-
cision trees can become large and difficult to interpret. In this subsection, we look
at how to build a rule-based classifier by extracting IF-THEN rules from a decision
tree. In comparison with a decision tree, the IF-THEN rules may be easier for hu-
mans to understand, particularly if the decision tree is very large.

To extract rules from a decision tree, one rule is created for each path from the
root to a leaf node. Each splitting criterion along a given path is logically ANDed
to form the rule antecedent (“IF” part). The leaf node holds the class prediction,
forming the rule consequent (“THEN” part).

Example 8.7 Extracting classificationrules from a decision tree. Thedecision tree of Fig-
ure 8.2 can be converted to classification IF-THEN rules by tracing the path from
the root node to each leaf node in the tree. The rules extracted from Figure 8.2 are

R1: IF age = youth ~ AND student = no THEN buys_computer= no
R2: TF age = youth ~ AND student = yes THEN buys_computer= yes
R3: IF age = middle_aged THEN buys_computer= yes

R4: TF age = senior AND credit_rating = excellent THEN buys_computer= yes
R5: IF age = senior AND credit_rating = fair THEN buys_computer = no

A disjunction (logical OR) is implied between each of the extracted rules. Be-
cause the rules are extracted directly from the tree, they are mutually exclusive
and exhaustive. By mutually exclusive, this means that we cannot have rule con-
flicts here because no two rules will be triggered for the same tuple. (We have one
rule per leaf, and any tuple can map to only one leaf.) By ezhaustive, there is one
rule for each possible attribute-value combination, so that this set of rules does not
require a default rule. Therefore, the order of the rules does not matter—they are
unordered.

Since we end up with one rule per leaf, the set of extracted rules is not much
simpler than the corresponding decision tree! The extracted rules may be even
more difficult to interpret than the original trees in some cases. As an example,
Figure 8.7 showed decision trees that suffer from subtree repetition and repli-
cation. The resulting set of rules extracted can be large and difficult to follow,
because some of the attribute tests may be irrelevant or redundant. So, the plot
thickens. Although it is easy to extract rules from a decision tree, we may need
to do some more work by pruning the resulting rule set.

“How can we prune the rule set?” For a given rule antecedent, any condition
that does not improve the estimated accuracy of the rule can be pruned (i.e., re-
moved), thereby generalizing the rule. C4.5 extracts rules from an unpruned tree,
and then prunes the rules using a pessimistic approach similar to its tree pruning
method. The training tuples and their associated class labels are used to estimate
rule accuracy. However, because this would result in an optimistic estimate, alter-
natively, the estimateis adjusted to compensate for the bias, resulting in a pessimistic
estimate. In addition, any rule that does not contribute to the overall accuracy of
the entire rule set can also be pruned.

Other problems arise during rule pruning, however, as the rules will no longer
be mutually exclusive and exhaustive. For conflict resolution, C4.5 adopts a class-

34 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

based ordering scheme. It groups all rules for a single class together, and then
determines a ranking of these class rule sets. Within a rule set, the rules are not or-
dered. C4.5 orders the class rule sets so as to minimize the number of false-positive
errors (i.e., where arule predicts a class, C, but the actual class is not C'). The class
rule set with the least number of false positives is examined first. Once pruning is
complete, a final check is done to remove any duplicates. When choosing a default
class, C4.5 does not choose the majority class, because this class will likely have
many rules for its tuples. Instead, it selects the class that contains the most training
tuples that were not covered by any rule.

8.4.3 Rulelnduction UsingaSequential Covering Algorithm

IF-THEN rules can be extracted directly from the training data (i.e., without hav-
ing to generate a decision tree first) using a sequential covering algorithm. The
name comes from the notion that the rules are learned sequentially (one at a time),
where each rule for a given class will ideally cover many of the tuples of that class
(and hopefully none of the tuples of other classes). Sequential covering algorithms
are the most widely used approach to mining disjunctive sets of classification rules,
and form the topic of this subsection.

There are many sequential covering algorithms. Popular variations include
AQ, CN2, and the more recent, RIPPER. The general strategy is as follows.
Rules are learned one at a time. Each time a rule is learned, the tuples covered
by the rule are removed, and the process repeats on the remaining tuples. This
sequential learning of rules is in contrast to decision tree induction. Because
the path to each leaf in a decision tree corresponds to a rule, we can consider
decision tree induction as learning a set of rules simultaneously.

A basic sequential covering algorithm is shown in Figure 8.10. Here, rules are
learned for one class at a time. Ideally, when learning a rule for a class, C, we would
like the rule to cover all (or many) of the training tuples of class C and none (or few)
of the tuples from other classes. In this way, the rules learned should be of high ac-
curacy. The rules need not necessarily be of high coverage. This is because we can
have more than one rule for a class, so that different rules may cover different tuples
within the same class. The process continues until the terminating condition is met,
such as when there are no more training tuples or the quality of a rule returned is
below a user-specified threshold. The Learn_-One_Rule procedure finds the “best”
rule for the current class, given the current set of training tuples.

“How areruleslearned?” Typically, rules are grown in a general-to-specificman-
ner (Figure 8.11). We can think of this as a beam search, where we start off with an
empty rule and then gradually keep appending attribute tests to it. We append
by adding the attribute test as a logical conjunct to the existing condition of the
rule antecedent. Suppose our training set, D, consists of loan application data. At-
tributes regarding each applicant include their age, income, education level, resi-
dence, credit rating, and the term of theloan. The classifying attributeis loan_decision,
which indicates whether aloan is accepted (considered safe) or rejected (considered
risky). Tolearn arule for the class “accept,” we start off with the most general rule
possible, that is, the condition of the rule antecedent is empty. The rule is:

8.4. RULE-BASED CLASSIFICATION 35

Algorithm: Sequential covering. Learn a set of IF-THEN rules for classifica-
tion.

Input:

e D, adataset class-labeled tuples;

o Att_vals, the set of all attributes and their possible values.

Output: A set of IF-THEN rules.

Method:
(1) Rule_set = {};// initial set of rules learned is empty
(2) foreach classcdo
(3) repeat
(4) Rule = Learn_One_Rule(D, Att_vals, c¢);
(5) remove tuples covered by Rule from D;
(6) Rule_set = Rule_set + Rule; // add new rule to rule set
(7) until terminating condition;
(8) endfor
(9) return Rule_Set;

Figure 8.10: Basic sequential covering algorithm.

IF THEN loan_decision = accept.

We then consider each possible attribute test that may be added to the rule.
These can be derived from the parameter Att_vals, which contains alist of attributes
with their associated values. For example, for an attribute-value pair (att, val), we
can consider attribute tests such as att = val, att < wal, att > wval, and so on.
Typically, the training data will contain many attributes, each of which may have
several possible values. Finding an optimal rule set becomes computationally ex-
plosive. Instead, Learn_One_Rule adopts a greedy depth-first strategy. Each time
it is faced with adding a new attribute test (conjunct) to the current rule, it picks
the one that most improves the rule quality, based on the training samples. We will
say more about rule quality measures in a minute. For the moment, let’s say we
use rule accuracy as our quality measure. Getting back to our example with Fig-
ure8.11, suppose Learn_One_Rule finds that the attribute test income = high best
improves the accuracy of our current (empty) rule. We append it to the condition,
so that the current rule becomes

IF income = high THEN loan_decision = accept.

Each time we add an attribute test to arule, the resulting rule should cover rela-
tively more of the “accept” tuples. During the next iteration, we again consider the
possible attribute tests and end up selecting credit_rating = excellent. Our current
rule grows to become

IF income = high AND credit_rating = excellent THEN loan_decision = accept.

36 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

IF
THEN loan_decision = accept

3

IF loan_term = short IF loan_term = long I;[l;;);ne = ZIg/T X IF income = medium
THEN loan_decision = accept THEN loan_decision = accept oan_decision = accept THEN loan_decision = accept
| \
IF income = high AND IF income = high AND IF income = high AND IF income = high AND
age = youth age = middle_aged credit_rating = excellent credit_rating = fair

THEN loan_decision = accept THEN loan_decision = accept THEN loan_decision = accept

THEN loan_decision = accept

Figure 8.11: A general-to-specific search through rule space.

The process repeats, where at each step, we continue to greedily grow rules until
the resulting rule meets an acceptable quality level.

Greedy search does not allow for backtracking. At each step, we heuristically
add what appears to be the best choice at the moment. What if we unknowingly
made a poor choice along the way? To lessen the chance of this happening, instead
of selecting the best attribute test to append to the current rule, we can select the
best k attribute tests. In this way, we perform a beam search of width k wherein we
maintain the k best candidates overall at each step, rather than a single best candi-
date.

Rule Quality Measures

Learn_One_Rule needs a measure of rule quality. Every time it considers an at-
tribute test, it must check to see if appending such a test to the current rule’s con-
dition will result in an improved rule. Accuracy may seem like an obvious choice at
first, but consider the following example.

Example 8.8 Choosing between two rules based on accuracy. Consider the two rules as
illustrated in Figure 8.12. Both are for the class loan_decision = accept. We use “a”
torepresent the tuples of class “accept” and “r” for the tuples of class “reject.” Rule
R1 correctly classifies 38 of the 40 tuples it covers. Rule R2 covers only two tuples,
which it correctly classifies. Their respective accuracies are 95% and 100%. Thus,
R2 has greater accuracy than R1, but it is not the better rule because of its small
coverage.

From the above example, we see that accuracy on its own is not a reliable esti-
mate of rule quality. Coverage on its own is not useful either—for a given class we
could have a rule that covers many tuples, most of which belong to other classes!

8.4. RULE-BASED CLASSIFICATION 37

Thus, we seek other measures for evaluating rule quality, which may integrate as-
pects of accuracy and coverage. Here we will look at a few, namely entropy, an-
other based on information gain, and a statistical test that considers coverage. For
our discussion, suppose we are learning rules for the class c. Our current ruleis R:
IF condition THEN class = c¢. We want to see if logically ANDing a given at-
tribute test to condition would result in a better rule. We call the new condition,
condition’, where R': IF condition’ THEN class = cis our potential new rule. In
other words, we want to see if R’ is any better than R.

We have already seen entropy in our discussion of the information gain measure
used for attribute selection in decision tree induction (Section 8.2.2, Equation8.1).
Itis also known as the expected information needed to classify a tuplein dataset, D.
Here, D is the set of tuples covered by condition’ and p; is the probability of class
C;in D. Thelower the entropy, the better condition’ is. Entropy prefers conditions
that cover a large number of tuples of a single class and few tuples of other classes.

Another measure is based on information gain and was proposed in FOIL (First
Order Inductive Learner), a sequential covering algorithm that learns first-order
logic rules. Learning first-order rules is more complex because such rules contain
variables, whereas the rules we are concerned with in this section are propositional
(i.e., variable-free).> In machine learning, the tuples of the class for which we are
learning rules are called positive tuples, while the remaining tuples are negative.
Let pos (neg) be the number of positive (negative) tuples covered by R. Let pos’
(neg’) be the number of positive (negative) tuples covered by R'. FOIL assesses the
information gained by extending condition as

/
pos pos) (8.18)

FOIL_Gain = 'x(l —— —logg———
an = pos 082 pos' + neq 092 pos + neg

It favors rules that have high accuracy and cover many positive tuples.
We can also use a statistical test of significance to determine if the apparent ef-
fect of a rule is not attributed to chance but instead indicates a genuine correlation

5Incidentally, FOIL was also proposed by Quinlan, the father of ID3.

A r
R1 r r
|mmmmmmmmmmm
a]
1 a a
| a ° a a : r
[a
a r |
1 a a
I a a : r r
: a a a I
I
: a a a a | R2 r
I r a a I 1
! a a a aa | 1 g%
1
2 aa 4 a a | bemmme- !
UM S SRS S M S SR
r

Figure 8.12: Rules for the class loan_decision = accept, showing accept (a) and re-
ject (r) tuples.

38 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

between attribute values and classes. The test compares the observed distribution
among classes of tuples covered by arule with the expected distribution that would
result if the rule made predictions at random. We want to assess whether any ob-
served differences between these two distributions may be attributed to chance. We
can use the likelihood ratio statistic,

m
Likelihood_Ratio =2} f; 1og(ﬁ) , (8.19)
i=1 €i

where m is the number of classes. For tuples satisfying the rule, f; is the observed
frequency of each class i among the tuples. e; is what we would expect the frequency
of each class i to be if the rule made random predictions. The statistic has a x? dis-
tribution with m — 1 degrees of freedom. The higher the likelihood ratio is, the more
likely that thereis a significant difference in the number of correct predictions made
by our rule in comparison with a “random guessor.” That is, the performance of our
rule is not due to chance. The ratio helps identify rules with insignificant coverage.
CN2 uses entropy together with the likelihood ratio test, while FOIL’s informa-

tion gain is used by RIPPER.

Rule Pruning

Learn_One_Rule does not employ a test set when evaluating rules. Assess-
ments of rule quality as described above are made with tuples from the original
training data. Such assessment is optimistic because the rules will likely overfit
the data. That is, the rules may perform well on the training data, but less well
on subsequent data. To compensate for this, we can prune the rules. A rule is
pruned by removing a conjunct (attribute test). We choose to prune a rule, R,
if the pruned version of R has greater quality, as assessed on an independent
set of tuples. As in decision tree pruning, we refer to this set as a pruning
set. Various pruning strategies can be used, such as the pessimistic pruning
approach described in the previous section. FOIL uses a simple yet effective
method. Given a rule, R,

_ pos — neg

FOIL_Prune(R) ,
Ppos + neg

(8.20)
where pos and neg are the number of positive and negative tuples covered by R, re-
spectively. This value will increase with the accuracy of R on a pruning set. There-
fore, if the FOIL_Prune value is higher for the pruned version of R, then we prune
R. By convention, RIPPER starts with the most recently added conjunct when
considering pruning. Conjuncts are pruned one at a time as long as this results in
an improvement.

8.5 Model Evaluation and Selection

Now that you may have built a classification model, there may be many questions
going through your mind. For example, suppose you used data from previous sales

8.5. MODEL EVALUATION AND SELECTION 39

| Measure | Formula
accuracy, recognition rate TgiﬁN
error rate, misclassification rate %*FNN
- - TP

sensitivity, true positive rate, 5
recall
s ifici - TN

pecificity, true negative rate N
precision Tpﬂr%
r Fl F-score 2><pregl§mn><recall

’ ’ ’ precision+recall
harmonic mean of precision and recall
. . (147%) xprecisionxrecall

F3 where 3 is anon-negative real number % precisiontrecall

Figure 8.13: Evaluation measures. Note that some measures are know by more
than one name. TP, TN, FP, P, N refer to the number of true positive, true neg-
ative, false positive, positive, and negative samples, respectively (see text).

to build a classifier to predict customer purchasing behavior. You would like an es-
timate of how accurately the classifier can predict the purchasing behavior of fu-
ture customers, that is, future customer data on which the classifier has not been
trained. You may even have tried different methods to build more than one clas-
sifier and now wish to compare their accuracy. But what is accuracy? How can
we estimate it? Are some measures of a classifier’s “accuracy” more appropriate
than others? How can we obtain a reliable accuracy estimate? These questions are
addressed in the next several sections. Section 8.5.1 describes various evaluation
metrics for the predictive accuracy of a classier. Holdout and random subsampling
(Section 8.5.2), cross-validation (Section 8.5.3), and bootstrap methods (Section 8.5.4)
are common techniques for assessing accuracy, based on randomly sampled parti-
tions of the given data. What if we have more than one classifier and want to choose
the “best” one? Thisis referred to as model selection (i.e., choosing one classifier
over another). The last two sections address this issue. Section 8.5.5 discusses how
to use tests of statistical significance to assess whether the difference in accuracy be-
tween two classifiersis due to chance. Section 8.5.6 presents how to compare classi-
fiers based on cost-benefit and Receiver Operating Characteristic (ROC) curves.

8.5.1 Metricsfor Evaluationofthe Performance of Classifiers

This section presents measures for assessing how good or how “accurate” your clas-
sifier is at predicting the class label of tuples. We will consider the case of where
the class tuples are more or less evenly distributed, as well as the case where classes
are unbalanced (e.g., where an important class of interest is rare, such as in medical
tests). The classifier evaluation measures presented in this section are summarized
in Figure 8.13. They include accuracy (also known as recognition rate), sensitivity,
specificity, precision, recall, F', and Fjg. Note that although accuracy is a specific
measure, the word “accuracy” is also used as a general term to refer to a classifier’s
predictive abilities.

40 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

Predicted class

Yes | No Total
Actual class | Yes TP | FN | P

No FP | TN | N
Total || P’ N’ P+N

Figure8.14: A confusion matrix, shown with totals for positive and negative tuples.

Using training data to derive a classifier and then to estimate the accuracy of
the resulting learned model can result in misleading overoptimistic estimates due
to overspecialization of the learning algorithm to the data. (We’ll say more on this
in amoment!) Instead, it is better to measure the accuracy of the classifier on a test
set consisting of class-labeled tuples that were not used to train the model.

Before we discuss the various measures, we need to become comfortable with
some terminology. Recall that we can talk in terms of positive tuples (tuples
of the main class of interest) and negative tuples (all other tuples).® Given two
classes, for example, the positive tuples may be buys_computer = yes while the neg-
ative tuples are buys_computer = no. Suppose we use our classifier on a test set of
labeled tuples. P is the number of positive tuples and NN is the number of negative
tuples. For each tuple, we compare the classifier’s class-label prediction with the
tuple’s known class label. There are four additional terms we need to know. These
terms are the “building blocks” used in computing many evaluation measures. Un-
derstanding these terms will make it easy to grasp the meaning of the various mea-
sures. The terms are:

e True positives (T P): These refer to the positive tuples that were correctly
labeled by the classifier. Let T'P be the number of true positives.

e Truenegatives (T'N): These are the negative tuples that were correctly la-
beled by the classifier. Let T'N be the number of true negatives.

e False positives (F'P): These are the negative tuples that were incorrectly
labeled as positive (e.g., tuples of class buys_computer = no for which the clas-
sifier predicted buys_computer = yes). Let F'P be the number of false posi-
tives.

e False negatives (F'NV): These are the positive tuples that were mislabeled
as negative (e.g., tuples of class buys_computer = yes for which the classifier
predicted buys_computer = no). Let F'N be the number of false negatives.

These terms are summarized in the confusion matrix of Figure 8.14. The
confusion matrix is a useful tool for analyzing how well your classifier can recognize
tuples of different classes. TP and T'N tell us when the classifier is getting things
right, while F'P and F'N tell us when the classifier is getting things wrong (i.e. mis-
labeling). Givenm classes (wherem > 2), a confusion matrixisatable of at least

6In the machine learning and pattern recognition literature, these are referred to as positive
samples and negative samples, respectively.

8.5. MODEL EVALUATION AND SELECTION

41

Classes buys_computer = yes | buys_computer =no || Total | Recognition (%)
buys_computer = yes 6,954 46 7,000 99.34
buys_computer = no 412 2,588 3,000 86.27
Total 7,366 2,634 10,000 95.42
Figure 8.15: A confusion matrix for the classes buys_computer = yes and

buys_computer = no, where an entry in row ¢ and column j shows the number
of tuples of class ¢ that were labeled by the classifier as class j. Ideally, the
nondiagonal entries should be zero or close to zero.

sizem by m. Anentry, CM;, ;inthefirst mrowsandm columnsindicates the num-
ber of tuples of class i that were labeled by the classifier as class j. For a classifier to
have good accuracy, ideally most of the tuples would be represented along the di-
agonal of the confusion matrix, from entry C M 1 to entry C My, 1, with the rest
of the entries being zero or close to zero. That is, ideally, F'P and F'N are around
zero. The table may have additional rows or columns to provide totals. For exam-
ple, in the confusion matrix of Figure 8.14, P and N are shown. In addition, P’ is
the number of tuples that were labeled as positive (TP + F P) and N’ is the num-
ber of tuples that were labeled as negative (T'N + F'N). The total number of tuples
isTP+ TN + FP +TN,or P+ N,or P+ N’. Note that a confusion matrix
can be shown shown is for a binary classification problem, confusion matrices can
be drawn for

Now let’s look at the evaluation measures, starting with accuracy. The accu-
racy of a classifier on a given test set is the percentage of test set tuples that are
correctly classified by the classifier. That is,

TP+TN
P+N

In the pattern recognition literature, this is also referred to as the overall recogni-
tion rate of the classifier, that is, it reflects how well the classifier recognizes tu-
ples of the various classes. An example of a confusion matrix for the two classes
buys_computer = yes (positive) and buys_computer = no (negative) is given in Fig-
ure 8.15. Totals are shown, as well as the recognitions rates per class and overall. By
glancing at a confusion matrix, it is easy to see if the corresponding classifier is con-
fusing two classes. For example, we see that it mislabeled 412 “no” tuplesas “yes”.
Accuracy is most effective when the class distribution is relatively balanced.

We can also speak of the error rate or misclassification rate of a classifier,
M, which is simply 1 — accuracy(M), where accuracy(M) is the accuracy of M.
This can also be computed as

accuracy = (8.21)

FP+FN

error rate =
P+ N

(8.22)
(8.23)

If we were to use the training set (instead of a test set) to estimate the error rate of
amodel, this quantity is known as the resubstitution error. This error estimate

42 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

Classes || yes | no Total | Recognition (%)
yes 90| 210 300 30.00
no 1409,560 | 9,700 98.56
Total 230 | 9,770 || 10,000 96.40

Figure 8.16: A confusion matrix for the classes cancer = yes and cancer = no.

is optimistic of the true error rate (and similarly, the corresponding accuracy esti-
mate is optimistic) because the model is not tested on any samples that it has not
already seen.

We now consider the class imbalance problem, where the main class of in-
terest israre. That is, the data set distribution reflects a significant majority of the
negative class and a minority positive class. For example, in fraud detection appli-
cations, the class of interest (or positive class) is “fraud”, which occurs much less
frequency than the negative “nonfraudulant” class. In medical data, there may be
a rare class, such as “cancer”. Suppose that you have trained a classifier to clas-
sify medical data tuples, where the classlabel attributeis “cancer” and the possible
class values are “yes” and “no”. An accuracy rate of, say, 97% may make the clas-
sifier seem quite accurate, but what if only, say, 3% of the training tuples are actu-
ally cancer? Clearly, an accuracy rate of 97% may not be acceptable—the classifier
could be correctly labeling only the non-cancer tuples, for instance, and misclassi-
fying all of the cancer tuples. Instead, we need other measures, which access how
well the classifier can recognize the positive tuples (“cancer = yes”) and how well
it can recognize the negative tuples (“cancer = no”). The sensitivity and speci-
ficity measures can be used, respectively, for this purpose. Sensitivity is also re-
ferred to as the true positive (recognition) rate (that is, the proportion of positive
tuples that are correctly identified), while specificity is the true negative rate (that
is, the proportion of negative tuples that are correctly identified). These measures
are defined as

sensitivity = % (8.24)
TN
specificity = N (8.25)

It can be shown that accuracy is a function of sensitivity and specificity:

e P o
accuracy = sensitivity————— + specificity

) (8.26)

N
(P+N)’

Example 8.9 Sensitivity and specificity. Figure 8.16 shows a confusion matrix for medical
data where the class values are yes and no for a class label attribute, cancer. The

sensitivity of the classifier is 9% = 30.00%. The specificity is % = 98.56%. The

overall accuracy of the classifier is 196%5000 = 96.50%. Thus, we note that although

the classifier has a high accuracy, it’s ability to correctly label the positive (rare)

8.5. MODEL EVALUATION AND SELECTION 43

class is poor given its low sensitivity. It has high specificity, meaning that it can ac-
curately recognize negative tuples.

The precision and recall measures are also widely used in classification. Preci-
sion can be thought of as a measure of exactness (that is, what percentage of tuples
labeled as positive are actually such), whereas recall is a measure of completeness
(what percentage of positive tuples are labeled as such). If recall seems familiar,
that’s because it is the same as sensitivity (or the true positive rate). These mea-
sures can be computed as:

p TP
precision = oo (8.27)

TP TP
recall = m = ? (828)

Example 8.10 Precision and recall. The precision of the classifier in Figure 8.16 for the yes
class is % = 39.13%. The recall is % = 30.00%, which is the same calculation
for sensitivity in Example 8.9.

A perfect precision score of 1.0 for a class C' means that every tuple that the clas-
sifier labeled as belonging to class C' does indeed belong class C. However, it does
not tell us anything about the number of class C tuples that the classifier misla-
beled. A perfect recall score of 1.0 for C' means that every item from class C was la-
beled as such, but it does not tell as how many other tuples were incorrectly labeled
as belonging to class C. There tends to be an inverse relationship between preci-
sion and recall, where it is possible to increase one at the cost of reducing the other.
For example, our medical classifier may achieve high precision by labeling all cancer
tuples that present a certain way as cancer, but may have low recall if it mislabels
many other instances of cancer tuples. Precision and recall scores are typically used
together, where either values for one measure are compared for a fixed level at the
other measure. For example, we may compare precision values at a recall level of,
say, 0.75.

An alternative way to use precision and recall is to combine them into a single
measure. This is the approach of the F measure (also knows as the Fy score or F-
score) and the Fjg measure. They are defined as:

o 2 X precision X recall (8.29)

precision + recall

B, - (1+ (%) x precision x recall (8.30)

(3% x precision + recall

where (3 is a non-negative real number. The F' measure is the harmonic mean of
precision and recall (the proof of which is left as an exercise). It gives equal weight
to precision and recall. The Fj3 measure is a weighted measure of precision and re-
call. It assigns 3 times as much weight to recall as to precision. Commonly used Fjg
measures are F5 (which weights recall twice as much as precision) and Fy 5 (which
weights precision twice as much as recall).

44 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

“Are there other cases where accuracy may not be appropriate?” In classifica-
tion problems, it is commonly assumed that all tuples are uniquely classifiable, that
is, that each training tuple can belong to only one class. Yet, owing to the wide di-
versity of data in large databases, it is not always reasonable to assume that all tu-
ples are uniquely classifiable. Rather, it is more probable to assume that each tuple
may belong to more than one class. How then can the accuracy of classifiers on large
databases be measured? The accuracy measure is not appropriate, because it does
not take into account the possibility of tuples belonging to more than one class.

Rather than returning a class label, it is useful to return a probability class dis-
tribution. Accuracy measures may then use a second guess heuristic, whereby a
class prediction is judged as correct if it agrees with the first or second most proba-
ble class. Although thisdoes take into consideration, to some degree, the nonunique
classification of tuples, it is not a complete solution.

In addition to accuracy-based measures, classifiers can also be compared with
respect to the additional aspects:

e Speed: Thisrefers to the computational costs involved in generating and us-
ing the given classifier.

e Robustness: This is the ability of the classifier to make correct predictions
given noisy data or data with missing values. Robustness is typically as-
sessed with a series of synthetic datasets representing increasing degrees of
noise and missing values.

e Scalability: This refers to the ability to construct the classifier efficiently
given large amounts of data. Scalability is typically assessed with a series of
datasets of increasing size.

e Interpretability: This refers to the level of understanding and insight that
is provided by the classifier or predictor. Interpretability is subjective and
therefore more difficult to assess. Decision trees and classification rules can
beeasy tointerpret, yet their interpretability may diminish the more they be-
come complex. We discuss some work in this area, such as the extraction of
classification rules from a “black box” neural network classifier called back-
propagation in Chapter 9.

Insummary, we have presented several evaluation measures. The accuracy mea-
sure works best when the data classes are fairly evenly distributed. Other measures,
such as sensitivity (or recall), specificity, precision, F and Fj3 are better suited for
the classimbalance problem, where the main class of interest israre. The remaining
subsections focus on obtaining reliable classifier accuracy estimates.

8.5.2 Holdout Method and Random Subsampling

The holdout method is what we have alluded to so far in our discussions about ac-
curacy. In this method, the given data are randomly partitioned into two indepen-
dent sets, a training set and a test set. Typically, two-thirds of the data are allo-
cated to the training set, and the remaining one-third is allocated to the test set.

8.5. MODEL EVALUATION AND SELECTION 45

Derive i
Estimate
model accuracy

Training

.
.
.
.
.

Y
Test set

Figure 8.17: Estimating accuracy with the holdout method.

The training set is used to derive the model, whose accuracy is estimated with the
test set (Figure 8.17). The estimate is pessimistic because only a portion of the ini-
tial data is used to derive the model.

Random subsampling is a variation of the holdout method in which the hold-
out method is repeated k times. The overall accuracy estimate is taken as the aver-
age of the accuracies obtained from each iteration.

8.5.3 Cross-validation

In k-fold cross-validation, the initial data are randomly partitioned into kmutu-
ally exclusive subsets or “folds,” D1, Da, ..., Dy, each of approximately equal size.
Training and testing is performed k times. Initeration ¢, partition D; is reserved as
the test set, and the remaining partitions are collectively used to train the model.
That is, in the first iteration, subsets Da, ..., Dy collectively serve as the training
set in order to obtain a first model, which is tested on D7; the second iteration is
trained on subsets Dy, D3, ..., D and tested on Ds; and soon. Unlike the holdout
and random subsampling methods above, here, each sample is used the same num-
ber of times for training and once for testing. For classification, the accuracy esti-
mate is the overall number of correct classifications from the k iterations, divided
by the total number of tuples in the initial data.

Leave-one-out is a special case of k-fold cross-validation where k is set to the
number of initial tuples. That is, only one sample is “left out” at a time for the test
set. In stratified cross-validation, the folds are stratified so that the class dis-
tribution of the tuples in each fold is approximately the same as that in the initial
data.

In general, stratified 10-fold cross-validation is recommended for estimating ac-
curacy (even if computation power allows using more folds) due to its relatively low
bias and variance.

8.5.4 Bootstrap

Unlike the accuracy estimation methods mentioned above, the bootstrap method
samples the given training tuples uniformly with replacement. That is, each time a
tuple is selected, it is equally likely to be selected again and readded to the training

46 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

set. For instance, imagine a machine that randomly selects tuples for our training
set. In sampling with replacement, the machine is allowed to select the same tuple
more than once.

There are several bootstrap methods. A commonly used one is the .632 boot-
strap, which works as follows. Suppose we are given a data set of d tuples. The data
set is sampled d times, with replacement, resulting in a bootstrap sample or training
set of d samples. Itisvery likely that some of the original data tuples will occur more
than once in this sample. The data tuples that did not make it into the training set
end up forming the test set. Suppose we were to try this out several times. As it
turns out, on average, 63.2% of the original data tuples will end up in the bootstrap
sample, and the remaining 36.8% will form the test set (hence, the name, .632 boot-
strap).

“Where does the figure, 63.2%, come from?” Each tuple has a probability of 1/d
of being selected, so the probability of not being chosen is (1 — 1/d). We have to
select d times, so the probability that a tuple will not be chosen during this whole
time is (1 — 1/d)?. If d is large, the probability approaches e™* = 0.368.7 Thus,
36.8% of tuples will not be selected for training and thereby end up in the test set,
and the remaining 63.2% will form the training set.

We can repeat the sampling procedure k times, where in each iteration, we use
the current test set to obtain an accuracy estimate of the model obtained from the
current bootstrap sample. The overall accuracy of the model, M, is then estimated
as

k
Ace(M) = =3 (0.632 x Acc(M;)iest_set + 0.368 x Ace(M;)irain_set), (8.31)
=1

> =

where Acc(M;)iest_set is the accuracy of the model obtained with bootstrap sample
i when it is applied to test set i. Acc(M;)irain_set 1S the accuracy of the model ob-
tained with bootstrap sample ¢ when it is applied to the original set of data tuples.
Bootstrapping tends to be overly optimistic. It works best with small data sets.

8.5.5 Model Selection Using Statistical Tests of Significance

Suppose that we have generated two classification models, M; and Ms, from our
data. We have performed 10-fold cross-validation to obtain a mean error rate® for
each. How can we determine which model is best? It may seem intuitive to select
the model with the lowest error rate, however, the mean error rates are just esti-
mates of error on the true population of future data cases. There can be consider-
able variance between error rates within any given 10-fold cross-validation experi-
ment. Although the mean error rates obtained for M7 and Ms may appear different,
that difference may not be statistically significant. What if any difference between
the two may just be attributed to chance? This section addresses these questions.
To determine if there is any “real” difference in the mean error rates of two mod-
els, we need to employ a test of statistical significance. In addition, we would like to

e is the base of natural logarithms, that is, e = 2.718.
8Recall that the error rate of a model, M is 1 — accuracy(M).

8.5. MODEL EVALUATION AND SELECTION 47

obtain some confidence limits for our mean error rates so that we can make state-
ments like “any observed mean will not vary by +/— two standard errors 95% of the
time for future samples” or “one model is better than the other by a margin of error
of +/—4%.”

What do we need in order to perform the statistical test? Suppose that for each
model, we did 10-fold cross-validation, say, 10 times, each time using a different 10-
fold partitioning of the data. Each partitioning is independently drawn. We can
average the 10 error rates obtained each for M7 and Ms, respectively, to obtain the
mean error rate for each model. For a given model, the individual error rates cal-
culated in the cross-validations may be considered as different, independent sam-
ples from a probability distribution. In general, they follow a ¢ distribution with k-1
degrees of freedom where, here, k& = 10. (This distribution looks very similar to
anormal, or Gaussian, distribution even though the functions defining the two are
quite different. Both are unimodal, symmetric, and bell-shaped.) This allows us to
do hypothesis testing where the significance test used is the t-test, or Student’s t-
test. Our hypothesis is that the two models are the same, or in other words, that
the difference in mean error rate between the two is zero. If we can reject this hy-
pothesis (referred to as the null hypothesis), then we can conclude that the differ-
ence between the two models is statistically significant, in which case we can select
the model with the lower error rate.

In data mining practice, we may often employ a single test set, that is, the same
test set can be used for both M; and Ms. In such cases, we do a pairwise compar-
ison of the two models for each 10-fold cross-validation round. That is, for the ith
round of 10-fold cross-validation, the same cross-validation partitioning is used to
obtain an error rate for M; and an error rate for M. Let err(My); (or err(Mz);)
be the error rate of model M7 (or Ms) on round ¢. The error rates for M are aver-
aged to obtain a mean error rate for My, denoted err(M;). Similarly, we can ob-
tain e77F(Ms). The variance of the difference between the two models is denoted
var(My — Ms). The t-test computes the t-statistic with k — 1 degrees of freedom
for k samples. In our example we have k = 10 since, here, the k£ samples are our er-
ror rates obtained from ten 10-fold cross-validations for each model. The t-statistic
for pairwise comparison is computed as follows:

_err(My) —err(Ma)

B Vvar(My — M) /k’ (8.32)
where
1 b 2
var(My = Ma) = 3" [err(Ml)i — err(Ms); — (eF(My) — er(Ma))
! (8.33)

To determine whether M; and Ms are significantly different, we compute ¢t and
select a significance level, sig. In practice, a significance level of 5% or 1% is typi-
cally used. We then consult a table for the ¢ distribution, available in standard text-
books on statistics. This table is usually shown arranged by degrees of freedom as
rows and significance levels as columns. Suppose we want to ascertain whether the
difference between My and M is significantly different for 95% of the population,

48 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

that is, sig = 5% or 0.05. We need to find the ¢ distribution value corresponding to
k — 1 degrees of freedom (or 9 degrees of freedom for our example) from the table.
However, because the t distribution is symmetric, typically only the upper percent-
age points of the distribution are shown. Therefore, we look up the table value for
z = sig/2, which in this case is 0.025, where z is also referred to as a confidence
limit. Ift > zort < —z, then our value of ¢ lies in the rejection region, within
the tails of the distribution. This means that we can reject the null hypothesis that
the means of M7 and M> are the same and conclude that there is a statistically sig-
nificant difference between the two models. Otherwise, if we cannot reject the null
hypothesis, we then conclude that any difference between M; and Mz can be at-
tributed to chance.

If two test sets are available instead of a single test set, then a nonpaired version
of the t-test is used, where the variance between the means of the two models is es-
timated as

var(Mi — My) = \/vark(i\/fl) n vow“lij\/fz)7 (8.34)

and k1 and k2 are the number of cross-validation samples (in our case, 10-fold cross-
validation rounds) used for M7 and Ma, respectively. This is also known as the two
sample t-test®. When consulting the table of ¢ distribution, the number of degrees
of freedom used is taken as the minimum number of degrees of the two models.

8.5.6 ComparingClassifiers Based on Cost-Benefitand ROC
Curves

The true positives, true negatives, false positives, and false negatives are also useful
in assessing the costs and benefits (or risks and gains) associated with a classifi-
cation model. The cost associated with a false negative (such as, incorrectly pre-
dicting that a cancerous patient is not cancerous) is far greater than that of a false
positive (incorrectly yet conservatively labeling a noncancerous patient as cancer-
ous). In such cases, we can outweigh one type of error over another by assigning a
different cost to each. These costs may consider the danger to the patient, financial
costs of resulting therapies, and other hospital costs. Similarly, the benefits asso-
ciated with a true positive decision may be different than that of a true negative.
Up to now, to compute classifier accuracy, we have assumed equal costs and essen-
tially divided the sum of true positives and true negatives by the total number of
test tuples. Alternatively, we can incorporate costs and benefits by instead com-
puting the average cost (or benefit) per decision. Other applications involving cost-
benefit analysis include loan application decisions and target marketing mailouts.
For example, the cost of loaning to a defaulter greatly exceeds that of the lost busi-
ness incurred by denying a loan to a nondefaulter. Similarly, in an application that
tries to identify households that are likely to respond to mailouts of certain promo-
tional material, the cost of mailouts to numerous households that do not respond
may outweigh the cost of lost business from not mailing to households that would

9This test was used in sampling cubes for OLAP-based mining in Chapter 5.

8.5. MODEL EVALUATION AND SELECTION 49

have responded. Other costs to consider in the overall analysis include the costs to
collect the data and to develop the classification tool.

ROC curves are a useful visual tool for comparing two classification models.
The name ROC stands for Receiver Operating Characteristic. ROC curves come
from signal detection theory that was developed during World War II for the anal-
ysis of radar images. An ROC curve for a given model shows the trade-off between
the true positive rate (T PR) and the false positive rate (FPR)'°. Given a test set
and a model, T PR is the proportion of positive (or ‘yes’) tuples that are correctly
labeled by the model; F'PR is the proportion of negative (or ‘no’) tuples that are
mislabeled as positive. Given that TP, FP, P, and N are the number of true pos-
itive, false positive, positive and negative tuples, respectively, from Section 8.5.1
we know that TPR = %, which is sensitivity. Furthermore, FPR = F—]\f, which
is 1 — specificity. For a two-class problem, an ROC curve allows us to visualize
the trade-off between the rate at which the model can accurately recognize positive
cases versus the rate at which it mistakenly identifies negative cases as positive for
different portions of the test set. Any increase in T'PR occurs at the cost of an in-
crease in F'PR. The area under the ROC curve is a measure of the accuracy of the
model.

In order to plot an ROC curve for a given classification model, M, the model
must be able to return a probability of the predicted class for each test tuple. With
this information, we rank and sort the tuples so that the tuple that is most likely to
belong to the positive or ‘yes’ class appears at the top of the list, and the tuple that
is least likely to belong to the positive class lands at the bottom of the list. Naive
Bayesian (Section 8.3) and backpropagation (Chapter 9) classifiers return a class
probability distribution for each prediction and therefore, are appropriate, although
other classifiers, such as decision tree classifiers (Section 8.2), can easily be modified
to return class probability predictions. Let the value that a probabilistic classifier
returns for a given tuple X be f(X) — [0, 1]. For a binary problem, a threshold ¢ is
typically selected so that tuples where f(X) > ¢ are considered positive and all the
other tuples are considered negative. Note that the number of true positives and
the number of false positives are both functions of ¢, so that we could write T P(t)
and F P(t). Both are monotonic descending functions.

We first describe the general idea behind plotting an ROC curve, and then fol-
low up with an example. The vertical axis of an ROC curve represents T'PR. The
horizontal axis represents F'PR. An ROC curve for M is plotted as follows. Start-
ing at the bottom left-hand corner (where TPR = FPR = 0), we check the actual
classlabel of the tuple at the top of the list. If we have a true positive (that is, a pos-
itive tuple that was correctly classified), then TP and thus T PR increase. On the
ROC curve, we move up and plot apoint. If, instead, the model classifies anegative
tuple as positive, we have a false positive, and so both F'P and F PR increase. On
the ROC curve, we move right and plot a point. This process is repeated for each of
the test tuples in ranked order, each time moving up on the curve for a true positive
or toward the right for a false positive.

10T PR and F PR are the two operating characteristics being compared.

50 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

| Tuple # | Class | Prob. || TP | FP | TN | FN || TPR | FPR |

1 p 0.9 1 0 5) 4 0.2 0

2 p 0.8 2 0 5) 3 0.4 0

3 n 0.7 2 1 4 3 0.4 0.2
4 p 0.6 3 1 4 2 0.6 0.2
5) p 0.55 4 1 4 1 0.8 0.2
6 n 0.54 4 2 3 1 0.8 0.4
7 n 0.53 4 3 2 1 0.8 0.6
8 n 0.51 4 4 1 1 0.8 0.8
9 p 0.50 5 4 0 1 1.0 0.8
10 n 0.4 5) 0 0 1.0 1.0

Figure8.18: Tuplessorted by decreasing score, where the scoreis the value returned
by a probabilistic classifier.

Example 8.11 Plotting an ROC curve. Figure 8.18 shows the probability value (column 3) re-
turned by a probabilistic classifier for each of the 10 tuples in a test set, sorted by
decreasing order of probability. Column 1 is merely a tuple identification number,
which aids in our explanation. Column 2 is the actual class label of the tuple. There
are b positive tuples and 5 negative tuples, thus P = 5 and N = 5. As we examine
the known class label of each tuple, we can determine the values of the remaining
columns, TP, FP,TN,FN,TPRand FFPR. We start with tuple # 1, which has
the highest probability score and take that score as our threshold, that ist = 0.9.
Thus, the classifier considers tuple # 1 to be positive, and all the other tuples are
considered to be negative. Since the actual class label of tuple #1 is positive, we
have a true positive, hence TP = 1 and FP = 0. Among the remaining nine tu-
ples, which are all classified as negative, 5 actually are negative (thus TN = 5).
The remaining four are all actually positive, thus F'IN = 4. We can therefore com-
pute TPR = L = 1 = 0.2, while FPR = 0. Thus, we have the point (0.2,0)
for the ROC curve. Next, threshold ¢ is set to 0.8, the probability value for tuple #
2, so this tuple is now also considered positive, while tuples 3 to 10 are considered
negative. The actual class label of tuple #2 is positive, thus now TP = 2. The rest
of the row can easily be computed, resulting in the point (0.4,0). Next, we exam-
ple the class label of tuple # 3 and let ¢ be 0.7, the probability value returned by the
classifier for that tuple. Thus, tuple #3 is considered positive, yet its actual label is
negative, and so it is a false positive. Thus, T' P stays the same and F'P increments
sothat F'P = 1. Therest of the values in the row can also be easily computed, yield-
ing the point (0.4, 0.2). Theresulting ROC curve, from examining each tuple, is the
jagged line shown in Figure 8.19. There are many methods to obtain a curve out of
these points, the most common of which is to use a convex hull. The plot also shows
a diagonal line where for every true positive of such a model, we are just as likely to
encounter a false positive. For comparison, this line represents random guessing.

Figure 8.20 shows the ROC curves of two classification models. The diagonal
line representing random guessing is also shown. Thus, the closer the ROC curve

8.6. TECHNIQUES TO IMPROVE CLASSIFICATION ACCURACY 51
LO B
7 I
\{\M\y\ o |
D 0T = ———a— =
K v/ t
3/ RoOC curve
g:: C‘f' | 4
Nt ESS(\J
¥ |
< ' {‘\({"
Bk e AP
$ i Al
\q fl
() 024
3
S

G grae | o4 | b | oF | fe

Falce Pative Rate (Fr)

Figure 8.19: ROC curve for the data of Figure 8.18.

of amodel is to the diagonal line, the less accurate the model. If the model is really
good, initially we are more likely to encounter true positives as we move down the
ranked list. Thus, the curve would move steeply up from zero. Later, as we start
to encounter fewer and fewer true positives, and more and more false positives, the
curve eases off and becomes more horizontal.

To assess the accuracy of amodel, we can measure the area under the curve. Sev-
eral software packages are able to perform such calculation. The closer the area is
t0 0.5, the less accurate the corresponding model is. A model with perfect accuracy
will have an area of 1.0.

8.6 TechniquestoImproveClassification Accuracy

In this section, you’ll learn some tricks for increasing classification accuracy. We
focus on ensemble methods. An ensemble for classification is a composite model,
made up of a combination of classifiers. The individual classifiers vote, and a class
label prediction is returned by the ensemble based on the collection of votes. En-
sembles tend to be more accurate than their component classifiers. We start off in
Section 8.6.1 by introducing ensemble methods in general. Bagging (Section 8.6.2),
boosting (Section 8.6.3), and random forests (Section 8.6.4) are popular ensemble
methods.

Traditional learning models assume that the data classes are well distributed.
In many real-world data domains, however, the data are class-imbalanced, where
the main class of interest is represented by only a few tuples. This is known as the
class imbalance problem. We also study techniques for improving the classification
accuracy of class-imbalanced data. These are presented in Section 8.6.5.

52 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

1.0 4

o ©
) 0
I I

true positive rate
o
SN
1

0.2

0.0 T T T T l
0.0 0.2 0.4 0.6 0.8 1.0

false positive rate

Figure 8.20: The ROC curves of two classification models, M; and Ms. The di-
agonal shows where, for every true positive, we are equally likely to encounter a
false positive. The closer an ROC curve is to the diagonal line, the less accurate the
model is. Thus, M1 is more accurate here.

8.6.1 Introducing Ensemble Methods

Bagging, boosting, and random forests are examples of ensemble methods (Fig-
ure 8.21). An ensemble combines a series of k learned models (or base classifiers),
My, My, ..., My, withtheaim of creating an improved composite classification model,
M. A given dataset, D isused to create k training sets, D1, Do, ..., Dy, where D;
is used to generate classifier M;. Given a new data tuple to classify, the base classi-
fiers each vote by returning a class prediction. The ensemble returns a class predic-
tion based on the votes of the base classifiers.

An ensemble tends to be more accurate than its base classifiers. For example,
consider an ensemble that performs majority voting. That is, given a tuple X to
classify, it collects the class label predictions returned from the base classifiers and
outputs the class in majority. The base classifiers may make mistakes but the en-
semble will misclassify X only if over half of the base classifiers are in error. En-
sembles yield better results when there is significant diversity among the models.
That is, ideally, there is little correlation among classifiers. The classifiers should
also perform better than random guessing. Each base classifier can be allocated to
a different CPU and so ensemble methods are parallelizable.

To help illustrate the power of an ensemble, consider a simple 2-class problem
described by two attributes, 1 and x2. The problem has a linear decision bound-
ary. Figure 8.22a) shows the decision boundary of a decision tree classifier on the
problem. Figure 8.22b) shows the decision boundary of an ensemble of decision tree
classifiers on the same problem. Although the ensemble’s decision boundary is still

8.6. TECHNIQUES TO IMPROVE CLASSIFICATION ACCURACY 53

New data
sample

Y

- —
. | Combine -
——>»
“ * votes e

Figure 8.21: Increasing classifier accuracy: Ensemble methods generate a set of
classification models, My, Ms, ..., M. Given a new data tuple to classify, each
classifier “votes” for the class label of that tuple. The ensemble combines the votes
to return a class prediction.

[To EDITOR Changes to be made: Change “New data sample” to ‘New data tuple”
infigure. Addlabel D to “Data”. Will beredrawn to show datasets D1, Do, ..., Dy
coming out of “Data” and going into My, Mo, ..., My.]

piece-wise constant, it has a finer resolution and is better than that of a single tree.

8.6.2 Bagging

We now take an intuitive look at how bagging works as a method of increasing accu-
racy. Suppose that youare a patient and would like to have a diagnosis made based
on your symptoms. Instead of asking one doctor, you may choose to ask several. If
a certain diagnosis occurs more than any of the others, you may choose this as the
final or best diagnosis. That is, the final diagnosis is made based on a majority vote,
where each doctor gets an equal vote. Now replace each doctor by a classifier, and
you have the basicidea behind bagging. Intuitively, amajority vote made by alarge
group of doctors may be more reliable than a majority vote made by a small group.
Given a set, D, of d tuples, bagging works as follows. For iteration i (i =
1,2,..., k), a training set, D;, of d tuples is sampled with replacement from the
original set of tuples, D. Note that the term bagging stands for bootstrap aggrega-
tion. Each training set is a bootstrap sample, as described in Section 8.5.4. Because
sampling with replacement is used, some of the original tuples of D may not be in-
cluded in D;, whereas others may occur more than once. A classifier model, M;, is
learned for each training set, D;. To classify an unknown tuple, X, each classifier,
M, returns its class prediction, which counts as one vote. The bagged classifier,
M, counts the votes and assigns the class with the most votes to X. Bagging can
be applied to the prediction of continuous values by taking the average value of each
prediction for a given test tuple. The algorithm is summarized in Figure 8.23.
The bagged classifier often has significantly greater accuracy than a single clas-
sifier derived from D, the original training data. It will not be considerably worse

o
g Y . N . s . - = - .
2 i el B v . . » s =%
-
ol = e < o] T S il
= = =N . T ° o w il - RN .
b e Ve A
. .
b BN L P b S 5 o L@ s % %
g_ "...‘ s it L Z .. g_ - ‘.,. o o B . :
& . - \{ L T & = e, it
3 1L Sl S \\‘ & = x & L > =
3 % % - .\.g S Ay = g o 53 % . GH A
£ 4 @ 3 - - - X B ot e s ~ -
o - e i N e = < - -* * s e
. b .5
i - g o . - 2% . v SR N .
> . -
s . . 8 * e % s s
ad . T pic 2 B .
S 8o L4 B o e -
: pis ol se Prbeas * S . ¥y &
e = - * L »”» N - B »
s v e - . . ‘.,.‘ . \\. 2 . it T . 0;,'- * e
o o 1
T T T T T T T T T T 1 T
0.0 0.2 04 0.6 03 10 0.0 02 04 0.6 03 10
x1 2 x1
\
(a) {b)

Figure 8.22: Decision boundary by a) a single decision tree and b) an ensemble of
decision trees for a linearly separable problem (that is, where the actual decision
boundary is a straight line). The decision tree struggles with approximating a lin-
ear boundary. The decision boundary of the ensemble is closer to the true bound-
ary. From Seni and Elder [SE10].

and is more robust to the effects of noisy data and overfitting. The increased ac-
curacy occurs because the composite model reduces the variance of the individual
classifiers.

8.6.3 Boostingand AdaBoost

We now look at the ensemble method of boosting. As in the previous section, sup-
pose that as a patient, you have certain symptoms. Instead of consulting one doc-
tor, you choose to consult several. Suppose you assign weights to the value or worth
of each doctor’s diagnosis, based on the accuracies of previous diagnoses they have
made. The final diagnosis is then a combination of the weighted diagnoses. This is
the essence behind boosting.

In boosting, weights are also assigned to each training tuple. A series of k clas-
sifiersisiteratively learned. After a classifier M islearned, the weights are updated
to allow the subsequent classifier, M, 1, to “pay more attention” to the training tu-
ples that were misclassified by M;. The final boosted classifier, M*, combines the
votes of each individual classifier, where the weight of each classifier’s vote is a func-
tion of its accuracy.

Adaboost (short for Adaptive Boosting) isa popular boosting algorithm. Sup-
pose we would like to boost the accuracy of some learning method. Wearegiven D, a
dataset of d class-labeled tuples, (X1, y1), (X2, 92), - - -, (Xd, ya), where y; is the class
label of tuple X;. Initially, Adaboost assigns each training tuple an equal weight of
1/d. Generating k classifiers for the ensemble requires k rounds through the rest of

8.6. TECHNIQUES TO IMPROVE CLASSIFICATION ACCURACY 95

Algorithm: Bagging. The bagging algorithm—create an ensemble of classification
models for a learning scheme where each model gives an equally-weighted predic-
tion.

Input:
e D, aset of d training tuples;
e k, the number of models in the ensemble;

e a classification learning scheme (e.g., decision tree algorithm, Naive
Bayesian, etc.)

Output: The ensemble — a composite model, M .

Method:
(1) fori=1tokdo // create k models:

(2) create bootstrap sample, D;, by sampling D with replacement;
(3) use D; and the learning scheme to derive a model, M;;
(4) endfor

To use the ensemble to classify a tuple, X:

let each of the k models classify X and return the majority vote;
Figure 8.23: Bagging.

the algorithm. Inround 7, the tuples from D are sampled to form a training set, D;,
of size d. Sampling with replacement is used—the same tuple may be selected more
than once. Each tuple’s chance of being selected is based on its weight. A classifier
model, M;, is derived from the training tuples of D;. Its error is then calculated us-
ing D, as a test set. The weights of the training tuples are then adjusted according
to how they were classified. If a tuple was incorrectly classified, its weight is in-
creased. If a tuple was correctly classified, its weight is decreased. A tuple’s weight
reflects how hard it is to classify—the higher the weight, the more often it has been
misclassified. These weights will be used to generate the training samples for the
classifier of the next round. The basicideaisthat when we build a classifier, we want
it to focus more on the misclassified tuples of the previous round. Some classifiers
may be better at classifying some “hard” tuples than others. In this way, we build
a series of classifiers that complement each other. The algorithm is summarized in
Figure 8.24.

Now, let’s look at some of the math that’s involved in the algorithm. To com-
pute the error rate of model M;, we sum the weights of each of the tuples in D; that
M; misclassified. That is,

d
error(M;) = ij x err(X;), (8.35)
j=1

where err(X) is the misclassification error of tuple X;: If the tuple was misclassified,
thenerr(Xj)is1. Otherwise, itis0. If the performance of classifier M; is so poor that
its error exceeds 0.5, then we abandon it. Instead, we try again by generating a new

56 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

Algorithm: Adaboost. A boosting algorithm—create an ensemble of classifiers. Each one
gives a weighted vote.

Input:
e D, aset of d class-labeled training tuples;
e k, the number of rounds (one classifier is generated per round);
e a classification learning scheme.
Output: A composite model.
Method:
(1) initialize the weight of each tuple in D to 1/d;

(2) fori=1tokdo //foreach round:

(3) sample D with replacement according to the tuple weights to obtain D;;
(4) use training set D; to derive a model, M;;

(5) compute error(M;), the error rate of M; (Equation 8.35)

(6) if error(M;) > 0.5 then

(7) reinitialize the weights to 1/d

(8) go back to step 3 and try again;

9) endif

(10 for each tuple in D; that was correctly classified do

(11 multiply the weight of the tuple by error(M;)/(1 — error(M;)); // update weights
(

(

)
)

12) normalize the weight of each tuple;
)

13) endfor

To use the ensemble to classify tuple, X:

(1) initialize weight of each class to 0;

(2) fori=1tokdo // for each classifier:

(3) w; = log%‘w; // weight of the classifier’s vote
(4) ¢ = M;(X); // get class prediction for X from M;

(5) add w; to weight for class ¢

(6) endfor

(7) return the class with the largest weight;

Figure 8.24: Adaboost, a boosting algorithm.

D; training set, from which we derive a new M;.

Theerrorrate of M; affects how the weights of the training tuples are updated. If
atupleinround ¢ was correctly classified, its weight is multiplied by error(M;)/(1—
error(M;)). Once the weights of all of the correctly classified tuples are updated,
the weights for all tuples (including the misclassified ones) are normalized so that
their sum remains the same as it was before. To normalize a weight, we multiply it
by the sum of the old weights, divided by the sum of the new weights. Asaresult, the
weights of misclassified tuples are increased and the weights of correctly classified
tuples are decreased, as described above.

“Once boosting is complete, how is the ensemble of classifiers used to predict the
classlabel of atuple, X ?” Unlike bagging, where each classifier was assigned an equal
vote, boosting assigns a weight to each classifier’s vote, based on how well the classi-
fier performed. The lower a classifier’s error rate, the more accurate it is, and there-

8.6. TECHNIQUES TO IMPROVE CLASSIFICATION ACCURACY o7

fore, the higher its weight for voting should be. The weight of classifier M;’s vote is

1 — error(M;)

error(M;) (8.36)

For each class, ¢, we sum the weights of each classifier that assigned class cto X. The
class with the highest sum is the “winner” and is returned as the class prediction
for tuple X.

“How does boosting compare with bagging?” Because of the way boosting fo-
cuses on the misclassified tuples, it risks overfitting the resulting composite model
to such data. Therefore, sometimes the resulting “boosted” model may be less ac-
curate than a single model derived from the same data. Bagging is less susceptible
to model overfitting. While both can significantly improve accuracy in comparison
to a single model, boosting tends to achieve greater accuracy.

8.6.4 Random Forests

We now present another ensemble method called random forests. Imagine that
each of the classifiersin the ensembleis a decision tree classifier so that the collection
of classifiersis a “forest”. The individual decision trees are generated using a ran-
dom selection of attributes at each node to determine the split. More formally, each
tree depends on the values of a random vector sampled independently and with the
same distribution for all trees in the forest. During classification, each tree votes
and the most popular class is returned.

Random forests can be built using bagging (Section 8.6.2) in tandem with ran-
dom attribute selection. Given is a training set, D, of d tuples. The general proce-
dure to generate k decision trees for the ensemble is as follows. For each iteration,
i(i=1,2,...,k),atraining set, D;, of d tuples is sampled with replacement from
D. That is, each D; is a bootstrap sample of D (Section 8.5.4), so that some tuples
may occur more than once in D;, while others may be excluded. Let F' be the num-
ber of attributes to be used to determine the split at each node, where F' is much
smaller than the number of available attributes. To construct decision tree classi-
fier, M;, randomly select, at each node, F' attributes as candidates for the split at
thenode. The CART methodology is used to grow the trees. The trees are grown to
maximum size and are not pruned. Random forests formed this way, with random
input selection, are called Forest-RI.

Another form of random forest, called Forest-RC, uses random linear combina-
tions of theinput attributes. Instead of randomly selecting a subset of the attributes,
it creates new attributes (or features) that are a linear combination of the existing
attributes. That is, an attribute is generated by specifying L, the number of origi-
nal attributes to be combined. At a given node, L attributes are randomly selected
and added together with coefficients that are uniform random numbers on [—1, 1].
F linear combinations are generated, and a search is made over these for the best
split. This form of random forest is useful when there are only a few attributes avail-
able, so as to reduce the correlation between individual classifiers.

Random forests are comparable in accuracy to Adaboost, yet are more robust
to errors and outliers. The generalization error for a forest converges as long as the

58 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

number of trees in the forest is large. Thus, overfitting is not a problem. The accu-
racy of arandom forests depends on the strength of the individual classifiers and a
measure of the dependence between them. The ideal is to maintain the strength of
individual classifiers without increasing their correlation. Random forests are in-
sensitive to the number of attributes selected for consideration at each split. Typi-
cally, up tologad+ 1 are chosen. (An interesting empirical observation was that us-
ing a single random input attribute may result in good accuracy that is often higher
than when using several attributes.) Because random forests consider much fewer
attributes for each split, they are efficient on very large databases. They can be
faster than either bagging or boosting. Random forests give internal estimates of
variable importance.

8.6.5 ImprovingClassification Accuracy of Class-Imbalanced
Data

In this section, we revisit the class imbalance problem. In particular, we study ap-
proaches to improving the classification accuracy of class-imbalanced data.

Given two-class data, the data are class imbalanced if the main class of interest
(the positive class) is represented by only a few tuples, while the majority of tuples
represent the negative class. For multiclass imbalanced data, the data distribution
of each class differs substantially where, again, the main class or classes of interest
arerare. The class-imbalance problem is closely related to cost-sensitive learning
wherein the costs of errors, per class, are not equal. In medical diagnosis, for exam-
ple, it is much more costly to falsely diagnose a cancerous patient as healthy (a false
negative) than to misdiagnose a healthy patient as having cancer (a false positive).
A false negative error could lead to the loss of life and therefore is much more expen-
sive than a false positive error. Other applications involving class-imbalanced data
include fraud detection, the detection of oil spills from satellite radar images, and
fault monitoring.

Traditional classification algorithms aim to minimize the number of errors made
during classification. They assume that the cost of false positive and false nega-
tive errors are equal. By assuming a balanced distribution of classes and equal er-
ror costs, they are therefore not suitable for class-imbalanced data. Earlier parts of
this chapter presented ways of addressing the class-imbalance problem. Although
the accuracy measure assumes that the cost of classes are equal, alternative evalu-
ation metrics can be used that consider the different types of classifications. Sec-
tion 8.5.1, for example, presented sensitivity or recall (the true positive rate) and
specificity (the true negative rate), which help to asses how well a classifier can pre-
dict the class label of imbalanced data. Additional relevant measures discussed in-
clude F; and Fjg. Section 8.5.6 showed how ROC curves plot sensitivity versus 1 —
speci ficity (that is, the false positive rate). Such curves can provide insight when
studying the performance of classifiers on class-imbalanced data.

Inthissection, we look at general approaches for improving the classification ac-
curacy of class-imbalanced data. These approachesinclude i) oversampling, ii) un-
dersampling, 7i) threshold-moving, and iv) ensemble techniques. The first three
do not involve any changes to the construction of the classification model. That is,

8.6. TECHNIQUES TO IMPROVE CLASSIFICATION ACCURACY 99

oversampling and undersampling change the distribution of tuples in the training
set; threshold-moving affects how the model makes decisions when classifying new
data. Ensemble methods follow the techniques described in Sections 8.6.2 to 8.6.4.
For ease of explanation, we describe these general approaches with respect to the
two-class imbalanced data problem, where the higher cost classes are rarer than the
lower-cost classes.

Both oversampling and undersampling change the training data distribution so
that the rare (positive) class is well represented. Oversampling works by resam-
pling the positive tuples so that the resulting training set contains an equal number
of positive and negative tuples. Undersampling works by decreasing the number
ofnegative tuples. It randomly eliminates tuples from the majority (negative) class
until there are an equal number of positive and negative tuples.

Example 8.12 Oversampling and undersampling. Suppose the original training set contains
100 positive and 1000 negative tuples. In oversampling, we replicate tuples of the
rarer class to form a new training set containing 1000 positive tuples and 1000 neg-
ative tuples. In undersampling, we randomly eliminate negative tuples so that the
new training set contains 100 positive tuples and 100 negative tuples.

Several variations to oversampling and undersampling exist. They may vary,
for instance, in how tuples are added or eliminated. For example, the SMOTE al-
gorithm using oversampling where synthetic tuples are added, which are “close to”
the given positive tuples in tuple space.

The threshold-moving approach to the class imbalance problem does not in-
volve any sampling. It applies to classifiers that, given an input tuple, return a con-
tinuous output value (just like in Section 8.5.6, where we discussed how to con-
struct ROC curves). That is, for an input tuple, X, such a classifier returns as out-
put a mapping, f(X) — [0, 1]. Rather than manipulating the training tuples, this
method returns classification decision based on the output values. In the simplest
approach, tuples for which f(X) > ¢, for some threshold, f, are considered posi-
tive, while all other tuples are considered negative. Other approaches may involve
manipulating the outputs by weighting. In general, threshold-moving moves the
threshold, ¢, so that the rare class tuples are easier to classify (and hence, there is
less chance of costly false negative errors). Examples of such classifiers include Naive
Bayesian classifiers (Section 8.3) and neural network classifiers like backpropaga-
tion (Chapter 9). Threshold-moving method, although not as popular as over- and
undersampling, is simple and has shown some success for the two-class imbalanced
data.

Ensemble methods (Section 8.6.2 to 8.6.4) have also been applied to the class
imbalance problem. The individual classifiers making up the ensemble may include
versions of the approaches described above, such as oversampling and threshold-
moving.

The methods described above work relatively well for the class imbalance prob-
lem on two-class tasks. Threshold-moving and ensemble methods were empirically
observed to outperform oversampling and undersampling. Threshold-moving works
well even on data sets that are extremely imbalanced. The class imbalance prob-

60 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

lem on multiclass tasks is much more difficult, where oversampling and threshold-
moving are less effective. Although threshold-moving and ensemble methods show
promise, finding a solution for the multiclass imbalance problem remains an area of
future work.

8.7 Summary

e Classification is a form of data analysis that extracts models describing im-
portant data classes. A classifier, or classification model, predicts categorical
labels (classes). Numeric prediction models continuous-valued functions.
Classification and numeric prediction are the two major types of prediction
problems.

e ID3, C4.5, and CART are greedy algorithms for the induction of decision
trees. Each algorithm uses an attribute selection measure to select the at-
tribute tested for each nonleaf node in the tree. Pruning algorithms attempt
to improve accuracy by removing tree branches reflecting noise in the data.
Early decision tree algorithms typically assume that the data are memory resident—
a limitation to data mining on large databases. Several scalable algorithms,
such as SLIQ, SPRINT, and RainForest, have been proposed to address
this issue.

e Naive Bayesian classification is based on Bayes’ theorem of posterior prob-
ability. It assumes class conditional independence — that the effect of an at-
tribute value on a given class isindependent of the values of the other attributes.

e Arule-based classifier uses aset of [F-THEN rules for classification. Rules
can be extracted from a decision tree. Rules may also be generated directly
from training data using sequential covering algorithms and associative clas-
sification algorithms.

e A confusion matrix is a visualization tool that makes it easy to see if a clas-
sifier is confusing two classes (i.e., commonly mislabeling one as another). For
a 2-class problem, it shows the true positives, true negatives, false positives,
and false negatives. Measures that asses a classifier’s predictive ability include
accuracy, sensitivity (alsoknown asrecall), specificity, precision, F'and
F3. Reliance on the accuracy measure can be deceiving when the main class
of interest is in the minority. Stratified k-fold cross-validationis arecom-
mended method for accuracy estimation.

e Significance tests and ROC curves are useful tools for model selection. Sig-
nificance tests can be used to assess whether the difference in accuracy be-
tween two classifiersis due to chance. ROC curves plot the true positive rate
(or sensitivity) versus the false positive rate (or 1 — speci ficity of one or more
classifiers.

8.8. EXERCISES 61

e Ensemble methodscanbeused toincrease overall accuracy by learning and
combining a series of individual (base) classifier models. Bagging, boost-
ing, and random forests are popular ensemble methods.

e Theclassimbalance problem occurs when the main class of interest is rep-
resented by only a few tuples. Strategies to address this problem include over-
sampling, undersampling, threshold-moving, and ensemble techniques.

e Therehave been numerous comparisons of the different classification and pre-
diction methods, and the matter remains a research topic. No single method
has been found to be superior over all others for all data sets. Issues such as
accuracy, training time, robustness, interpretability, and scalability must be
considered and can involve trade-offs, further complicating the quest for an
overall superior method. Empirical studies show that the accuracies of many
algorithms are sufficiently similar that their differences are statistically in-
significant, while training times may differ substantially. For classification,
most neural network and statistical methodsinvolving splines tend to be more
computationally intensive than most decision tree methods.

8.8 Exercises
1. Briefly outline the major steps of decision tree classification.

2. Why is tree pruning useful in decision tree induction? What is a drawback of
using a separate set of tuples to evaluate pruning?

3. Given a decision tree, you have the option of (a) converting the decision tree
to rules and then pruning the resulting rules, or (b) pruning the decision tree
and then converting the pruned tree to rules. What advantage does (a) have
over (b)?

4. Tt is important to calculate the worst-case computational complexity of the
decision tree algorithm. Given data set D, the number of attributes n, and
the number of training tuples | D|, show that the computational cost of grow-
ing a treeis at most n x |D| x log(|D]).

5. Givenab GB dataset with 50 attributes (each containing 100 distinct values)
and 512 MB of main memory in your laptop, outline an efficient method that
constructs decision trees in such large datasets. Justify your answer by rough
calculation of your main memory usage.

6. RainForest is an interesting scalable algorithm for decision-tree induction.
Develop ascalable naive Bayesian classification algorithm that requires just a
single scan of the entire data set for most databases. Discuss whether such an
algorithm can be refined to incorporate boosting to further enhance its clas-
sification accuracy.

62

CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

7. Why is naive Bayesian classification called “naive”? Briefly outline the ma-

jor ideas of naive Bayesian classification.

. Design an efficient method that performs effective naive Bayesian classifica-

tion over an infinite data stream (i.e., you can scan the data stream only once).
If we wanted to discover the evolution of such classification schemes (e.g., com-
paring the classification scheme at this moment with earlier schemes, such as
one from a week ago), what modified design would you suggest?

. The following table consists of training data from an employee database. The

data have been generalized. For example, “31 ... 35” for age represents the
age range of 31 to 35. For a given row entry, count represents the number of
data tuples having the values for department, status, age, and salary given in
that row.

department status age salary count
sales senior 31...35 46K...50K 30
sales junior 26...30 26K...30K 40
sales junior 31...35 31K...35K 40
systems junior 21...25 46K...50K 20
systems senior 31...35 66K...70K 5
systems junior 26...30 46K...50K 3
systems senior 41...45 66K...70K 3
marketing senior 36...40 46K...50K 10
marketing junior 31...35 41K...45K 4
secretary senior 46...50 36K...40K 4
secretary junior 26...30 26K...30K 6

Let status be the class label attribute.

(a) How would youmodify the basic decision tree algorithm to take into con-
sideration the count of each generalized data tuple (i.e., of each row en-
try)?

(b) Use your algorithm to construct a decision tree from the given data.

(¢) Given a data tuple having the values “systems”, “26...30”, and “}6-
50K for the attributes department, age, and salary, respectively, what
would a naive Bayesian classification of the status for the tuple be?

10. What is boosting? State why it may improve the accuracy of decision tree in-

duction.

11. Show that accuracy is a function of sensitivity and specificity, that is, prove

Equation (8.26).

12. [FROM MK: NEW] The harmonic mean is one of several kinds of averages.

Chapter 2 discussed how to compute the arithmetic mean, which is what most

8.8. EXERCISES 63

Tuple # | Class | Prob. |

= © 00 O Utk Wi

0

0.95
0.85
0.78
0.66
0.60
0.55
0.53
0.52
0.51
0.4

T BB BT BETT BT

Figure 8.25: Tuplessorted by decreasing score, where the scoreis the value returned
by a probabilistic classifier.

13.

14.

15.

16.

people typically think of when they compute an average. The harmonic mean,

H, of the positive real numbers, x1, x2, . . ., T, is defined as
n
o = 11 + L
Tttt
n

Y&
i=1 xz;
The F measure is the harmonic mean of precision and recall. Use this fact to

derive Equation (8.30) for F. In addition, write F'_beta as a function of true
positives, false negatives, and false positives.

It is difficult to assess classification accuracy when individual data objects
may belong to more than one class at a time. In such cases, comment on what
criteria you would use to compare different classifiers modeled after the same
data.

Suppose that we would like to select between two prediction models, M; and
Ms. We have performed 10 rounds of 10-fold cross validation on each model,
where the same data partitioning in round 7 is used for both M7 and Ms. The
error rates obtained for My are 30.5, 32.2, 20.7, 20.6, 31.0, 41.0, 27.7, 26.0,
21.5, 26.0. The error rates for My are 22.4, 14.5, 22.4, 19.6, 20.7, 20.4, 22.1,
19.4,16.2, 35.0. Comment on whether one model is significantly better than
the other considering a significance level of 1%.

Outline methods for addressing the class imbalance problem. [FROM MK: Can
someone propose some programming assignment for this?]

The data tuples of Figure 8.25 are sorted by decreasing probability value, as
returned by a classifier. For each tuple, compute the values for the number of
true positives (TP), false positives (FP), true negatives (TN), and false nega-
tives (FN). Compute the true positiverate (TPR) and false positiverate (FPR).
Plot the ROC curve for the data.

64 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

8.9 Bibliographic Notes

Classification from machine learning, statistics, and pattern recognition perspec-
tives has been described in many books, such as Weiss and Kulikowski [WK91], Michie,
Spiegelhalter, and Taylor [MST94], Russel and Norvig [RN95], Langley [Lan96],
Mitchell [Mit97], Hastie, Tibshirani, and Friedman [HTFO01], Duda, Hart, and Stork
[DHSO01], Alpaydin [Alp04], Tan, Steinbach, and Kumar [TSK05], and Witten and
Frank [WF05]. Many of these books describe each of the basic methods of classifi-
cation discussed in this chapter, as well as practical techniques for the evaluation of
classifier performance. Edited collections containing seminal articles on machine
learning can be found in Michalski, Carbonell, and Mitchell [MCM83, MCMS6],
Kodratoff and Michalski [KM90], Shavlik and Dietterich [SD90], and Michalski and
Tecuci [MT94]. For a presentation of machine learning with respect to data mining
applications, see Michalski, Bratko, and Kubat [MBK98].

The C4.5 algorithm is described in a book by Quinlan [Qui93]. The CART sys-
tem is detailed in Classification and Regression Trees by Breiman, Friedman, Ol-
shen, and Stone [BFOS84]. Both books give an excellent presentation of many of
theissuesregarding decision treeinduction. C4.5hasacommercial successor, known
as C5.0, which can be found at www.rulequest.com. ID3, a predecessor of C4.5, is
detailed in Quinlan [Qui86]. It expands on pioneering work on concept learning sys-
tems, described by Hunt, Marin, and Stone [HMS66]. Other algorithms for decision
tree induction include FACT (Loh and Vanichsetakul [LV88]), QUEST (Loh and
Shih [LS97]), PUBLIC (Rastogi and Shim [RS98]), and CHAID (Kass [Kas80] and
Magidson [Mag94]). INFERULE (Uthurusamy, Fayyad, and Spangler [UFS91])
learns decision trees from inconclusive data, where probabilistic rather than cate-
gorical classification rules are obtained. KATE (Manago and Kodratoff [MK91])
learns decision trees from complex structured data. Incremental versions of ID3
include ID4 (Schlimmer and Fisher [SF86]) and ID5 (Utgoff [Utg88]), the latter of
which is extended in Utgoff, Berkman, and Clouse [UBC97]. An incremental ver-
sion of CART is described in Crawford [Cra89]. BOAT (Gehrke, Ganti, Ramakr-
ishnan, and Loh [GGRL99]), a decision tree algorithm that addresses the scalabilty
issue in data mining, is also incremental. Other decision tree algorithms that ad-
dress scalability include SLIQ (Mehta, Agrawal, and Rissanen [MAR96]), SPRINT
(Shafer, Agrawal, and Mehta [SAM96]), RainForest (Gehrke, Ramakrishnan, and
Ganti[GRG98]), and earlier approaches, such as Catlet [Cat91] and Chan and Stolfo
[CS93a, CS93b]. The integration of attribution-oriented induction with decision
tree induction is proposed in Kamber, Winstone, Gong, et al. [KWG197]. For a
comprehensive survey of many salient issues relating to decision tree induction, such
as attribute selection and pruning, see Murthy [Mur98]. Perception Based Classi-
fication (PBC), a visual and interactive approach to decision tree construction, is
presented in Ankerst, Elsen, Ester, and Kriegel [AEEK99].

For a detailed discussion on attribute selection measures, see Kononenko and
Hong [KH97]. Information gain was proposed by Quinlan [Qui86] and is based on
pioneering work on information theory by Shannon and Weaver [SW49]. The gain
ratio, proposed as an extension to information gain, is described as part of C4.5 [Qui93].
The Giniindex was proposed for CART [BFOS84]. The G-statistic, based on infor-

8.9. BIBLIOGRAPHICNOTES 65

mation theory, is given in Sokal and Rohlf [SR81]. Comparisons of attribute selec-
tion measures include Buntine and Niblett [BN92], Fayyad and Irani [F192], Kononenko
[Kon95], Loh and Shih [L.S97], and Shih [Shi99]. Fayyad and Irani [F192] show limi-
tations of impurity-based measures such as information gain and Gini index. They
propose a class of attribute selection measures called C-SEP (Class SEParation),
which outperform impurity-based measures in certain cases. Kononenko [Kon95|
notes that attribute selection measures based on the minimum description length
principle have the least bias toward multivalued attributes. Martin and Hirschberg
[MH95] proved that the time complexity of decision tree induction increases expo-
nentially with respect to tree height in the worst case, and under fairly general con-
ditionsin the average case. Fayad and Irani [F190] found that shallow decision trees
tend to have many leaves and higher error rates for a large variety of domains. At-
tribute (or feature) construction is described in Liu and Motoda [LM98, Le98]. Ex-
amples of systems with attribute construction include BACON by Langley, Simon,
Bradshaw, and Zytkow [LSBZ87], Stagger by Schlimmer [Sch86], FRINGE by Pa-
gallo [Pag89], and AQ17-DCI by Bloedorn and Michalski [BM98].

There are numerous algorithms for decision tree pruning, including cost com-
plexity pruning (Breiman, Friedman, Olshen, and Stone [BFOS84]), reduced error
pruning (Quinlan [Qui87]), and pessimistic pruning (Quinlan [Qui86]). PUBLIC
(Rastogi and Shim [RS98]) integrates decision tree construction with tree pruning.
MDL-based pruning methods can be found in Quinlan and Rivest [QR89], Mehta,
Agrawal, and Rissanen [MRA95], and Rastogi and Shim [RS98]. Other methodsin-
clude Niblett and Bratko [NB86], and Hosking, Pednault, and Sudan [HPS97]. For
an empirical comparison of pruning methods, see Mingers [Min89] and Malerba,
Floriana, and Semeraro [MFS95]. For a survey on simplifying decision trees, see
Breslow and Aha [BA97].

Thorough presentations of Bayesian classification can be found in Duda, Hart,
and Stork [DHSO01], Weiss and Kulikowski [WK91], and Mitchell [Mit97]. For an
analysis of the predictive power of naive Bayesian classifiers when the class condi-
tional independence assumption is violated, see Domingos and Pazzani [DP96]. Ex-
periments with kernel density estimation for continuous-valued attributes, rather
than Gaussian estimation, have been reported for naive Bayesian classifiersin John
[Joh97].

There are several examples of rule-based classifiers. These include AQ15 (Hong,
Mozetic, and Michalski [HMMS86]), CN2 (Clark and Niblett [CN89]), ITRULE (Smyth
and Goodman [SG92]), RISE (Domingos [Dom94]), IREP (Furnkranz and Wid-
mer [FW94]), RIPPER (Cohen [Coh95]), FOIL (Quinlan and Cameron-Jones [Qui90,
QCJ93]), Swap-1 (Weiss and Indurkhya [WI98]). [FRoM MK: Added some rule-
based classifiers based on frequent pattern mining here, OK? (Add more?):]
Rule-based classifiers that are based on frequent-pattern mining are described in
Chapter9. Theseinclude HARMONY (Wang and Karypis [WKO05]) and DDPMine
(Cheng, Yan, Han, and Yu [CYHYO08]). For the extraction of rules from decision
trees, see Quinlan [Qui87, Qui93]. Rulerefinement strategies that identify the most
interesting rules among a given rule set can be found in Major and Mangano [MM95].

Issues involved in estimating classifier accuracy are described in Weiss and Ku-
likowski [WK91] and Witten and Frank [WF05]. Sensitivity, specificity, and preci-

66 CHAPTERS8. CLASSIFICATION: BASIC CONCEPTS

sion are discussed in Frakes and Baeza-Yates [FBY92]. [FRoM MK: Does anyone
have access to van Rijsbergen book called Information Retrieval? Does
it also describe sensitivity, specificity, and precision? Ifso, we should add
it as a refce here. Can somebody please check it?] For the F' and F3 mea-
sures, see van Rijsbergen [vR90]. The use of stratified 10-fold cross-validation for
estimating classifier accuracy is recommended over the holdout, cross-validation,
leave-one-out (Stone [Sto74]) and bootstrapping (Efron and Tibshirani [ET93]) meth-
ods, based on a theoretical and empirical study by Kohavi [Koh95]. See Freedman,
Pisani, and Purves [FPPO07] for the confidence limits and statistical tests of signifi-
cance. For ROC analysis, see Egan [Ega75], Swets [Swe88], and Vuk and Curk [VCO06].
Bagging is proposed in Breiman [Bre96]. The boosting technique of Freund and
Schapire [FS97] has been applied to several different classifiers, including decision
tree induction (Quinlan [Qui96]) and naive Bayesian classification (Elkan [E1k97]).
Friedman [Fri01] proposed the gradient boosting machine for regression. The en-
semble technique of random forests is described by Breiman [Bre01]. Seni and El-
der [SE10] proposed the Importance Sampling Learning Ensembles (ISLE) frame-
work, which views bagging, Adaboost, random forests, and gradient boosting as
special cases of a generic ensemble generation procedure. Friedman and Popescu
[FB08, FP05] present Rule Ensembles, an ISLE-based model where the classifiers
combined are composed of simple readable rules. Such ensembles were observed to
have comparable or greater accuracy and greater interpretability. Software pack-
ages for ensemble routines can be found athttp://cran.r-project.org/web/packages/
ipred/ for bagging, http://cran.r-project.org/web/packages/gbm/ for ex-
tensions to AdaBoost and gradient boosting, and http://cran.r-project.org/
web/packages/randomForest/index for random forests. Studies on the class im-
balance problem and/or cost-sensitive learning include Weiss [Wei04], Zhou and
Liu [ZL06], Zapkowicz and Stephen [ZS02], Elkan [E1k01], and Domingos [Dom99).

The University of California at Irvine (UCI) maintains a Machine Learning Repos-
itory of data sets for the development and testing of classification algorithms. It
also maintains a Knowledge Discovery in Databases (KDD) Archive, an online repos-
itory of large data sets that encompasses a wide variety of data types, analysis tasks,
and application areas. For information on these two repositories, seewww.ics.uci.
edu/~mlearn/MLRepository.html and http://kdd.ics.uci.edu.

No classification method is superior over all others for all data types and do-
mains. Empirical comparisons of classification methods include [Qui88, SMT91,
BCP93, CM94, MST94, BU95], and [LLS00].

Bibliography

[AEEK99]

[Alp04]

[BA9T7]

[BCP93)

[BFOS84]

[BMOS]

[BN92]

[Bre96]
[Bre01]

[BU9S)

[Cat91]

[CMO94]

M. Ankerst, C. Elsen, M. Ester, and H.-P. Kriegel. Visual classifica-
tion: An interactive approach to decision tree construction. In Proc.
1999 Int. Conf. Knowledge Discovery and Data Mining (KDD’99),
pages 392-396, San Diego, CA, Aug. 1999.

E. Alpaydin. Introduction to Machine Learning. MIT Press, 2004.

L. A. Breslow and D. W. Aha. Simplifying decision trees: A survey.
Knowledge Engineering Review, 12:1-40,1997.

D. E. Brown, V. Corruble, and C. L. Pittard. A comparison of decision
tree classifiers with backpropagation neural networks for multimodal
classification problems. Pattern Recognition, 26:953-961,1993.

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and
Regression Trees. Wadsworth International Group, 1984.

A. Blum and T. Mitchell. Combining labeled and unlabeled data with
co-training. In Proc. 11th Conf. on Computational Learning Theory
(COLT’ 98), pages 92-100, Madison, W1, 1998.

W. L. Buntine and T. Niblett. A further comparison of splitting rules
for decision-tree induction. Machine Learning, 8:75-85,1992.

L. Breiman. Bagging predictors. Machine Learning, 24:123-140, 1996.
L. Breiman. Random forests. Machine Learning, 45:5-32, 2001.

C. E. Brodley and P. E. Utgoff. Multivariate decision trees. Machine
Learning, 19:45-77,1995.

J. Catlett. Megainduction: Machine Learning on Very large
Databases. Ph.D. Thesis, University of Sydney, 1991.

S.P. Curram and J. Mingers. Neural networks, decision tree induction
and discriminant analysis: An empirical comparison. J. Operational
Research Society, 45:440-450, 1994.

67

68

[CN8Y]

[Coh95]

[Crag9]

[CS93a]

[CS93D)

[CYHY0S]

[DHSO1]

[Dom94]

[Dom99]

[DP96]

[Ega75]

[E1k97]

[EIk01]

BIBLIOGRAPHY

P. Clark and T. Niblett. The CN2 induction algorithm. Machine
Learning, 3:261-283, 1989.

W. Cohen. Fast effective rule induction. In Proc. 1995 Int. Conf. Ma-
chine Learning (ICML’95), pages 115-123, Tahoe City, CA, July 1995.

S. L. Crawford. Extensions to the cart algorithm. Int. J. Man-Machine
Studies, 31:197-217, Aug. 1989.

P. K. Chan and S. J. Stolfo. Experiments on multistrategy learning
by metalearning. In Proc. 2nd. Int. Conf. Information and Knowl-
edge Management (CIKM’93), pages 314-323, Washington, DC, Nov.
1993.

P. K. Chan and S. J. Stolfo. = Toward multi-strategy parallel &
distributed learning in sequence analysis. In Proc. 1st Int. Conf.
Intelligent Systems for Molecular Biology (ISMB’93), pages 65-73,
Bethesda, MD, July 1993.

H. Cheng, X. Yan, J. Han, and P. S. Yu. Direct discriminative pattern
mining for effective classification. In Proc. 2008 Int. Conf. Data Engi-
neering (ICDE’08), Cancun, Mexico, April 2008.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd
ed.). John Wiley & Sons, 2001.

P. Domingos. The RISE system: Conquering without separating. In
Proc. 1994 IEEE Int. Conf. Tools with Artificial Intelligence (TAI’94),
pages 704-707, New Orleans, LA, 1994.

P. Domingos. Metacost: a general method for making classifiers cost-
sensitive. In Proc. 5th Intl. Conf. on Knowledge Discovery and Data
Mining (KDD’99), pages 155-164, 1999.

P. Domingos and M. Pazzani. Beyond independence: Conditions for
the optimality of the simple Bayesian classifier. In Proc. 1996 Int.
Conf. Machine Learning (ML’96), pages 105-112, Bari, Italy, July
1996.

J.P.Egan. Signal detection theory and ROC analysis. Academic Press,
1975.

C. Elkan. Boosting and naive Bayesian learning. In Technical Report
CS97-557, Dept. Computer Science and Engineering, Univ. Calif. at
San Diego, Sept. 1997.

C. Elkan. The foundations of cost-sensitive learning. In Proc. 17th
Intl. Joint Conf. on Artificial Intelligence (IJCAI’01), pages 973-978,
2001.

BIBLIOGRAPHY 69

[ET93)]

[FBOS]

[FBY92]

[FI90]

[F192]

[FPO5]

[FPPO7]

[Fri01]

[FS97]

[FWO4]

[GGRLYY]

[GRGOS]

[HMMS6]

B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chap-
man & Hall, 1993.

J. Friedman and E. P. Bogdan. Predictive learning via rule ensembles.
Annals of Applied Statistics, 2:916-954, 2008.

W. Frakes and R. Baeza-Yates. Information Retrieval: Data Struc-
tures and Algorithms. Prentice Hall, 1992.

U. M. Fayyad and K. B. Irani. What should be minimized in a deci-
sion tree? In Proc. 1990 Nat. Conf. Artificial Intelligence (AAAI’90),
pages 749-754, AAAT/MIT Press, 1990.

U. M. Fayyad and K. B. Irani. The attribute selection problem in de-
cision tree generation. In Proc. 1992 Nat. Conf. Artificial Intelligence
(AAAT’92), pages 104-110, AAAT/MIT Press, 1992.

J.Friedman and B. E. Popescu. Predictive learning via rule ensembles.
In Technical Report, Department of Statistics, Standford University,
2005.

D. Freedman, R. Pisani, and R. Purves. Statistics (4th ed.). W. W.
Norton & Co., 2007.

J. H. Friedman. Greedy function approximation: A gradient boosting
machine. Annals of Statistics, 29:1189-1232,2001.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. J. Computer and Sys-
tem Sciences, 55:119-139, 1997.

J. Furnkranz and G. Widmer. Incremental reduced error pruning. In
Proc. 1994 Int. Conf. Machine Learning (ICML’94), pages 70-77, New
Brunswick, NJ, 1994.

J. Gehrke, V. Ganti, R. Ramakrishnan, and W.-Y. Loh. BOAT—
optimistic decision tree construction. In Proc. 1999 ACM-SIGMOD
Int. Conf. Management of Data (SIGMOD’99), pages 169-180,
Philadelphia, PA, June 1999.

J. Gehrke, R. Ramakrishnan, and V. Ganti. RainForest: A framework
for fast decision tree construction of large datasets. In Proc. 1998 Int.
Conf. Very Large Data Bases (VLDB’98), pages 416-427, New York,
NY, Aug. 1998.

J. Hong, I. Mozetic, and R. S. Michalski. AQ15: Incremental learning
of attribute-based descriptions from examples, the method and user’s
guide. In Report ISG 85-5, UIUCDCS-F-86-949,, Dept. Comp. Sci-
ence, University of Illinois at Urbana-Champaign, 1986.

70

[HMSG66]

[HPS97]

[HTFO1]

[Joh97]

[Kas80]

[KHO7]

[KM90)

[Koh95]

[Kon95]

[KWG+97]

[Lan96]
[Le98]

[LLS00]

[LMOYS]

[LS97)

BIBLIOGRAPHY

E.B. Hunt, J. Marin, and P. T. Stone. Experiments in Induction. Aca-
demic Press, 1966.

J. Hosking, E. Pednault, and M. Sudan. A statistical perspective
on data mining. Future Generation Computer Systems, 13:117-134,
1997.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer-Verlag,
2001.

G. H. John. Enhancements to the Data Mining Process. Ph.D. Thesis,
Computer Science Dept., Stanford University, 1997.

G. V. Kass. An exploratory technique for investigating large quanti-
ties of categorical data. Applied Statistics, 29:119-127,1980.

I. Kononenko and S. J. Hong. Attribute selection for modeling. Future
Generation Computer Systems, 13:181-195,1997.

Y. Kodratoffand R. S. Michalski. Machine Learning, An Artificial In-
telligence Approach, Vol. 8. Morgan Kaufmann, 1990.

R. Kohavi. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Proc. 14th Joint Int. Conf. Arti-
ficial Intelligence (IJCAI’95), volume 2, pages 1137-1143, Montreal,
Canada, Aug. 1995.

I. Kononenko. On biases in estimating multi-valued attributes. In
Proc. 14th Joint Int. Conf. Artificial Intelligence (IJCAI’95), vol-
ume 2, pages 1034-1040, Montreal, Canada, Aug. 1995.

M. Kamber, L. Winstone, W. Gong, S. Cheng, and J. Han. Generaliza-
tion and decision tree induction: Efficient classification in data min-
ing. In Proc. 1997 Int. Workshop Research Issues on Data Engineering
(RIDE’97), pages 111-120, Birmingham, England, April 1997.

P. Langley. Elements of Machine Learning. Morgan Kaufmann, 1996.

H. Liu and H. Motoda (eds.). Feature Eztraction, Construction, and
Selection: A Data Mining Perspective. Kluwer Academic, 1998.

T.-S.Lim, W.-Y. Loh, and Y.-S. Shih. A comparison of prediction ac-
curacy, complexity, and training time of thirty-three old and new clas-
sification algorithms. Machine Learning, 40:203-228,2000.

H. Liuand H. Motoda. Feature Selection for Knowledge Discovery and
Data Mining. Kluwer Academic, 1998.

W. Y. Lohand Y. S. Shih. Split selection methods for classification
trees. Statistica Sinica, 7:815-840,1997.

BIBLIOGRAPHY 71

[LSBZS7]

[LVSS]

[Mag94|

[MARY6]

[MBK98)

[MCMS3]

[MCMS6]

[MFS95]

[MH95]

[Min89]

[Mit97]

[MKO1]

[MMO95]

P. Langley, H. A. Simon, G. L. Bradshaw, and J. M. Zytkow. Scien-
tific Discovery: Computational Explorations of the Creative Processes.
MIT Press, 1987.

W. Y. Loh and N. Vanichsetakul. Tree-structured classificaiton via
generalized discriminant analysis. J. American Statistical Associa-
tion, 83:715-728,1988.

J. Magidson. The CHAID approach to segmentation modeling: CHI-
squared automatic interaction detection. In R. P. Bagozzi, editor,
Advanced Methods of Marketing Research, pages 118-159. Blackwell
Business, 1994.

M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classi-
fier for data mining. In Proc. 1996 Int. Conf. Extending Database Tech-
nology (EDBT’96), pages 18-32, Avignon, France, Mar. 1996.

R. S. Michalski, I. Brakto, and M. Kubat. Machine Learning and Data
Mining: Methods and Applications. John Wiley & Sons, 1998.

R. S. Michalski, J. G. Carbonell, and T. M. Mitchell. Machine Learn-
ing, An Artificial Intelligence Approach, Vol. 1. Morgan Kaufmann,
1983.

R. S. Michalski, J. G. Carbonell, and T. M. Mitchell. Machine Learn-
ing, An Artificial Intelligence Approach, Vol. 2. Morgan Kaufmann,
1986.

D. Malerba, E. Floriana, and G. Semeraro. A further comparison
of simplification methods for decision tree induction. In D. Fisher
and H. Lenz, editors, Learning from Data: Al and Statistics. Springer-
Verlag, 1995.

J. K. Martin and D. S. Hirschberg. The time complexity of decision
tree induction. In Technical Report ICS-TR 95-27, Dept. Information
and Computer Science, Univ. California, Irvine, Aug. 1995.

J. Mingers. An empirical comparison of pruning methods for decision-
tree induction. Machine Learning, 4:227-243, 1989.

T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

M. Manago and Y. Kodratoff. Induction of decision trees from com-
plex structured data. In G. Piatetsky-Shapiro and W. J. Frawley, ed-
itors, Knowledge Discovery in Databases, pages 289-306. AAAI/MIT
Press, 1991.

J. Major and J. Mangano. Selecting among rules induced from a hur-
ricane database. J. Intelligent Information Systems, 4:39-52,1995.

72

[MRAO5]

[MSTY4]

[MT94]

[Mur98]

INBS6]

[Pag89]

[QCJ93]

[QR89)]

[QuiS6)

[Quil7)

[Quiss]

[Qui9o]

[Qui93]

[Quie]

BIBLIOGRAPHY

M. Metha, J. Rissanen, and R. Agrawal. MDL-based decision tree
pruning. In Proc. 1995 Int. Conf. Knowledge Discovery and Data Min-
ing (KDD’95), pages 216-221, Montreal, Canada, Aug. 1995.

D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine Learning,
Neural and Statistical Classification. Ellis Horwood, 1994.

R. S. Michalski and G. Tecuci. Machine Learning, A Multistrategy Ap-
proach, Vol. 4. Morgan Kaufmann, 1994.

S. K. Murthy. Automatic construction of decision trees from data:
A multi-disciplinary survey. Data Mining and Knowledge Discovery,
2:345-389,1998.

T. Niblett and I. Bratko. Learning decision rules in noisy domains. In
M. A. Bramer, editor, Expert Systems '86: Research and Development
in Expert Systems I11, pages 25—34. British Computer Society Special-
ist Group on Expert Systems, Dec. 1986.

G. Pagallo. Learning DNF by decision trees. In Proc. 1989 Int.
Joint Conf. Artificial Intelligence (IJCAT’89), pages 639-644, Morgan
Kaufmann, 1989.

J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report.
In Proc. 1993 European Conf. Machine Learning (ECML’93), pages 3—
20, Vienna, Austria, 1993.

J. R. Quinlan and R. L. Rivest. Inferring decision trees using the min-
imum description length principle. Information and Computation,

80:227-248, Mar. 1989.

J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81—
106, 1986.

J. R. Quinlan. Simplifying decision trees. Int. J. Man-Machine Stud-
ies, 27:221-234,1987.

J. R. Quinlan. An empirical comparison of genetic and decision-tree
classifiers. In Proc. 1988 Int. Conf. Machine Learning (ICML’88),
pages 135-141, Ann Arbor, M1, June 1988.

J. R. Quinlan. Learning logic definitions from relations. Machine
Learning, 5:139-166, 1990.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-
mann, 1993.

J. R. Quinlan. Bagging, boosting, and C4.5. In Proc. 1996 Nat. Conf.
Artificial Intelligence (AAAI’96), volume 1, pages 725-730, Portland,
OR, Aug. 1996.

BIBLIOGRAPHY 73

[RN95]

[RS8

[SAM96]

[Sch86]

[SD90]

[SE10]

[SFS6]

[SG92]

[Shi99]

[SMT91]

[SRS1]

[Sto74]

[SW49)

[Swes8]

[TSKO05]

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, 1995.

R. Rastogi and K. Shim. Public: A decision tree classifer that inte-
grates building and pruning. In Proc. 1998 Int. Conf. Very Large Data
Bases (VLDB’98), pages 404-415, New York, NY, Aug. 1998.

J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel
classifier for data mining. In Proc. 1996 Int. Conf. Very Large Data
Bases (VLDB’96), pages 544-555, Bombay, India, Sept. 1996.

J. C. Schlimmer. Learning and representation change. In Proc. 1986
Nat. Conf. Artificial Intelligence (AAAI'86), pages 511-515, Philadel-
phia, PA 1986.

J. W. Shavlik and T. G. Dietterich. Readings in Machine Learning.
Morgan Kaufmann, 1990.

G. Seni and J. F. Elder. Ensemble methods in data mining: Improv-
ing accuracy through combining predictions. In R. Grossman, editor,
Synthesis Lecture on Data Mining and Knowledge Discovery, pages 1—
126. Morgan and Claypool, 2010.

J. C. Schlimmer and D. Fisher. A case study of incremental concept
induction. In Proc. 1986 Nat. Conf. Artificial Intelligence (AAAI’86),
pages 496-501, Philadelphia, PA, 1986.

P. Smyth and R. M. Goodman. An information theoretic approach to
ruleinduction. IEEE Trans. Knowledge and Data Engineering, 4:301—
316, 1992.

Y .-S. Shih. Families of splitting criteria for classification trees. Statis-
tics and Computing, 9:309-315,1999.

J. W. Shavlik, R. J. Mooney, and G. G. Towell. Symbolic and neural
learning algorithms: An experimental comparison. Machine Learn-

ing, 6:111-144,1991.
R. Sokal and F. Rohlf. Biometry. Freeman, 1981.

M. Stone. Cross-validatory choice and assessment of statistical pre-
dictions. J. Royal Statistical Society, 36:111-147,1974.

C. E. Shannon and W. Weaver. The mathematical theory of communi-
cation. University of Illinois Press, Urbana, 11, 1949.

J. Swets. Measuring the accuracy of diagnostic systems. Science,
240:1285-1293,1988.

P. N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.
Addison Wesley, 2005.

74

[UBCO7]

[UFSO1]

[Utg8S]

[VCo6]

[vR90]
[Wei04]

[WF05]

[WI98]

[WKO1]

[WKO5]

[ZL06]

Z802]

BIBLIOGRAPHY

P. E. Utgoff, N. C. Berkman, and J. A. Clouse. Decision tree induc-
tion based on efficient tree restructuring. Machine Learning, 29:5-44,
1997.

R. Uthurusamy, U. M. Fayyad, and S. Spangler. Learning useful
rules from inconclusive data. In G. Piatetsky-Shapiro and W. J.
Frawley, editors, Knowledge Discovery in Databases, pages 141-157.
AAAI/MIT Press, 1991.

P. E. Utgoff. Anincremental ID3. In Proc. Fifth Int. Conf. Machine
Learning (ICML’88), pages 107120, San Mateo, CA, 1988.

M. Vuk and T. Curk. ROC curve, lift chart and calibration plot.
Metodoloski zvezki, 3:89—-108,, 2006.

C. J.van Rijsbergen. Information Retrieval. Butterworth, 1990.

G. M. Weiss. Mining with rarity - problems and solutions: a unifying
framework. SIGKDD Ezxplorations, 6:7-19, 2004.

I. H. Witten and E. Frank. Data Mining: Practical Machine Learning
Tools and Techniques (2nd ed.). Morgan Kaufmann, 2005.

S. M. Weiss and N. Indurkhya. Predictive Data Mining. Morgan Kauf-
mann, 1998.

S. M. Weiss and C. A. Kulikowski. Computer Systems that Learn:
Classification and Prediction Methods from Statistics, Neural Nets,
Machine Learning, and FExpert Systems. Morgan Kaufman, 1991.

J. Wang and G. Karypis. HARMONY: Efficiently mining the best
rules for classification. In Proc. 2005 SIAM Conf. Data Mining
(SDM’05), pages 205-216, Newport Beach, CA, April 2005.

Z.-H. Zhou and X.-Y. Liu. Training cost-sensitive neural networks
with methods addressing the class imbalance problem. IEEFE Trans.
on Knowledge and Data Engineering, 18:63-77,2006.

N. Zapkowicz and S. Stephen. The class imbalance program: asystem-
atic study. Intelligence Data Analysis, 6:429-450,2002.

