
Contents

9 Classification: Advanced Methods 3
9.1 Bayesian Belief Networks . 3

9.1.1 Concept and Mechanisms 4
9.1.2 Training Bayesian Belief Networks 5

9.2 Classification by Backpropagation 7
9.2.1 A Multilayer Feed-Forward Neural Network 8
9.2.2 Defining a Network Topology 9
9.2.3 Backpropagation . 11
9.2.4 Inside the Black Box: Backpropagation and Interpretability 15

9.3 Support Vector Machines . 16
9.3.1 The Case When the Data Are Linearly Separable 18
9.3.2 The Case When the Data Are Linearly Inseparable 22

9.4 Classification Using Frequent Patterns 24
9.4.1 Associative Classification 25
9.4.2 Discriminative Frequent Pattern-Based Classification . . . 28

9.5 Lazy Learners (or Learning from Your Neighbors) 31

9.5.1 k -Nearest-Neighbor Classifiers 32
9.5.2 Case-Based Reasoning . 34

9.6 Other Classification Methods . 35
9.6.1 Genetic Algorithms . 35
9.6.2 Rough Set Approach . 35
9.6.3 Fuzzy Set Approaches . 36

9.7 Additional Topics Regarding Classification 39
9.7.1 Multiclass Classification 39
9.7.2 Semi-Supervised Classification 41
9.7.3 Active Learning . 42
9.7.4 Transfer Learning . 43

9.8 Summary . 46
9.9 Exercises . 47
9.10 Bibliographic Notes . 49

1

2 CONTENTS

Chapter 9

Classification: Advanced
Methods

In this chapter, you will learn advanced techniques for data classification. We
start with Bayesian belief networks (Section 9.1), which unlike näıve Bayesian
classifiers, do not assume class conditional independence. Backpropagation,
a neural network algorithm, is discussed in Section 9.2. In general terms, a neu-
ral network is a set of connected input/output units in which each connection
has a weight associated with it. The weights are adjusted during the learning
phase to help the network predict the correct class label of the input tuples. A
more recent approach to classification known as support vector machines is pre-
sented in Section 9.3. A support vector machine transforms training data
into a higher dimension, from where it finds a hyperplane that separates the
data by class using essential training tuples called support vectors. Section 9.4
describes classification using frequent patterns, exploring relationships be-
tween attribute-value pairs that occur frequently in data. This methodology
builds on research on frequent pattern mining (Chapters 6 and 7). Section 9.5
presents lazy learners or instance-based methods of classification, such as
nearest-neighbor classifiers and case-based reasoning classifiers, which store all
of the training tuples in pattern space and wait until presented with a test tu-
ple before performing generalization. Other approaches to classification, such
as genetic algorithms, rough sets, and fuzzy logic techniques, are introduced
in Section 9.6. Section 9.7 introduces additional topics in classification. These
include multiclass classification, semi-supervised classification, active learning,
and transfer learning.

9.1 Bayesian Belief Networks

Chapter 8 introduced Bayes’ theorem and naive Bayesian classification. In this
chapter, we describe Bayesian belief networks—probabilistic graphical models,
which unlike näıve Bayesian classifiers, allow the representation of dependencies

3

4 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

FamilyHistory

LungCancer

PositiveXRay

Smoker FH, S FH, ~S ~FH, S ~FH, ~S

0.8 0.5 0.7 0.1

0.2

LC

~LC 0.5 0.3 0.9

Emphysema

Dyspnea

(a) (b)

Figure 9.1: A simple Bayesian belief network: (a) A proposed causal model,
represented by a directed acyclic graph. (b) The conditional probability table for
the values of the variable LungCancer (LC) showing each possible combination
of the values of its parent nodes, FamilyHistory (FH) and Smoker (S). Figure
is adapted from [RBKK95].

among subsets of attributes. Bayesian belief networks can be used for classifi-
cation. Section 9.1.1 introduces the basic concepts of Bayesian belief networks.
In Section 9.1.2, you will learn how to train such models.

9.1.1 Concept and Mechanisms

The näıve Bayesian classifier makes the assumption of class conditional inde-
pendence, that is, given the class label of a tuple, the values of the attributes are
assumed to be conditionally independent of one another. This simplifies com-
putation. When the assumption holds true, then the näıve Bayesian classifier is
the most accurate in comparison with all other classifiers. In practice, however,
dependencies can exist between variables. Bayesian belief networks specify
joint conditional probability distributions. They allow class conditional inde-
pendencies to be defined between subsets of variables. They provide a graphical
model of causal relationships, on which learning can be performed. Trained
Bayesian belief networks can be used for classification. Bayesian belief networks
are also known as belief networks, Bayesian networks, and probabilistic
networks. For brevity, we will refer to them as belief networks.

A belief network is defined by two components—a directed acyclic graph and a
set of conditional probability tables (Figure 9.1). Each node in the directed acyclic
graph represents a random variable. The variables may be discrete or continuous-
valued. They may correspond to actual attributes given in the data or to “hidden
variables” believed to form a relationship (e.g., in the case of medical data, a hid-
den variable may indicate a syndrome, representing a number of symptoms that,
together, characterize a specific disease). Each arc represents a probabilistic de-
pendence. If an arc is drawn from a node Y to a node Z, then Y is a parent or
immediate predecessor of Z, and Z is a descendant of Y . Each variable is
conditionally independent of its nondescendants in the graph, given its parents.

9.1. BAYESIAN BELIEF NETWORKS 5

Figure 9.1 is a simple belief network, adapted from [RBKK95] for six Boolean
variables. The arcs in Figure 9.1(a) allow a representation of causal knowledge.
For example, having lung cancer is influenced by a person’s family history of
lung cancer, as well as whether or not the person is a smoker. Note that the
variable PositiveXRay is independent of whether the patient has a family history
of lung cancer or is a smoker, given that we know the patient has lung cancer.
In other words, once we know the outcome of the variable LungCancer, then the
variables FamilyHistory and Smoker do not provide any additional information
regarding PositiveXRay. The arcs also show that the variable LungCancer is
conditionally independent of Emphysema, given its parents, FamilyHistory and
Smoker.

A belief network has one conditional probability table (CPT) for each
variable. The CPT for a variable Y specifies the conditional distribution P (Y |Parents(Y)),
where Parents(Y) are the parents of Y . Figure 9.1(b) shows a CPT for the
variable LungCancer. The conditional probability for each known value of Lung-
Cancer is given for each possible combination of values of its parents. For in-
stance, from the upper leftmost and bottom rightmost entries, respectively, we
see that

P (LungCancer = yes | FamilyHistory = yes, Smoker = yes) = 0.8
P (LungCancer = no | FamilyHistory = no, Smoker = no) = 0.9

Let X = (x1, . . . , xn) be a data tuple described by the variables or attributes
Y1, . . . , Yn, respectively. Recall that each variable is conditionally independent
of its nondescendants in the network graph, given its parents. This allows the
network to provide a complete representation of the existing joint probability
distribution with the following equation:

P (x1, . . . , xn) =
n

∏

i=1

P (xi|Parents(Yi)), (9.1)

where P (x1, . . . , xn) is the probability of a particular combination of values of
X, and the values for P (xi|Parents(Yi)) correspond to the entries in the CPT
for Yi.

A node within the network can be selected as an “output” node, representing
a class label attribute. There may be more than one output node. Various
algorithms for learning can be applied to the network. Rather than returning a
single class label, the classification process can return a probability distribution
that gives the probability of each class.

9.1.2 Training Bayesian Belief Networks

“How does a Bayesian belief network learn?” In the learning or training of
a belief network, a number of scenarios are possible. The network topology
(or “layout” of nodes and arcs) may be given in advance or inferred from the
data. The network variables may be observable or hidden in all or some of the
training tuples. The case of hidden data is also referred to as missing values or
incomplete data.

6 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

Several algorithms exist for learning the network topology from the training
data given observable variables. The problem is one of discrete optimization.
For solutions, please see the bibliographic notes at the end of this chapter.
Human experts usually have a good grasp of the direct conditional dependencies
that hold in the domain under analysis, which helps in network design. Experts
must specify conditional probabilities for the nodes that participate in direct
dependencies. These probabilities can then be used to compute the remaining
probability values.

If the network topology is known and the variables are observable, then
training the network is straightforward. It consists of computing the CPT en-
tries, as is similarly done when computing the probabilities involved in naive
Bayesian classification.

When the network topology is given and some of the variables are hidden,
there are various methods to choose from for training the belief network. We
will describe a promising method of gradient descent. For those without an
advanced math background, the description may look rather intimidating with
its calculus-packed formulae. However, packaged software exists to solve these
equations, and the general idea is easy to follow.

Let D be a training set of data tuples, X1, X2, . . . , X|D|. Training the belief
network means that we must learn the values of the CPT entries. Let wijk

be a CPT entry for the variable Yi = yij having the parents Ui = uik, where
wijk ≡ P (Yi = yij |Ui = uik). For example, if wijk is the upper leftmost CPT
entry of Figure 9.1(b), then Yi is LungCancer ; yij is its value, “yes”; Ui lists the
parent nodes of Yi, namely, {FamilyHistory, Smoker}; and uik lists the values of
the parent nodes, namely, {“yes”, “yes”}. The wijk are viewed as weights, anal-
ogous to the weights in hidden units of neural networks (Section 9.2). The set
of weights is collectively referred to as W. The weights are initialized to random
probability values. A gradient descent strategy performs greedy hill-climbing.
At each iteration, the weights are updated and will eventually converge to a
local optimum solution.

A gradient descent strategy is used to search for the wijk values that best
model the data, based on the assumption that each possible setting of wijk

is equally likely. Such a strategy is iterative. It searches for a solution along
the negative of the gradient (i.e., steepest descent) of a criterion function. We
want to find the set of weights, W, that maximize this function. To start with,
the weights are initialized to random probability values. The gradient descent
method performs greedy hill-climbing in that, at each iteration or step along
the way, the algorithm moves toward what appears to be the best solution at
the moment, without backtracking. The weights are updated at each iteration.
Eventually, they converge to a local optimum solution.

For our problem, we maximize Pw(D) =
∏|D|

d=1 Pw(Xd). This can be done
by following the gradient of lnPw(S), which makes the problem simpler. Given
the network topology and initialized wijk, the algorithm proceeds as follows:

9.2. CLASSIFICATION BY BACKPROPAGATION 7

1. Compute the gradients: For each i, j, k, compute

∂lnPw(D)

∂wijk
=

|D|
∑

d=1

P (Yi = yij , Ui = uik|Xd)

wijk
. (9.2)

The probability in the right-hand side of Equation (9.2) is to be calculated
for each training tuple, Xd, in D. For brevity, let’s refer to this probability
simply as p. When the variables represented by Yi and Ui are hidden for
some Xd, then the corresponding probability p can be computed from the
observed variables of the tuple using standard algorithms for Bayesian net-
work inference such as those available in the commercial software package
HUGIN (http://www.hugin.dk).

2. Take a small step in the direction of the gradient: The weights are
updated by

wijk ← wijk + (l)
∂lnPw(D)

∂wijk
, (9.3)

where l is the learning rate representing the step size and ∂ln Pw(D)
∂wijk

is

computed from Equation (9.2). The learning rate is set to a small constant
and helps with convergence.

3. Renormalize the weights: Because the weights wijk are probability
values, they must be between 0.0 and 1.0, and

∑

j wijk must equal 1 for
all i, k. These criteria are achieved by renormalizing the weights after
they have been updated by Equation (9.3).

Algorithms that follow this form of learning are called Adaptive Probabilis-
tic Networks. Other methods for training belief networks are referenced in the
bibliographic notes at the end of this chapter. Belief networks are computa-
tionally intensive. Because belief networks provide explicit representations of
causal structure, a human expert can provide prior knowledge to the training
process in the form of network topology and/or conditional probability values.
This can significantly improve the learning rate.

9.2 Classification by Backpropagation

“What is backpropagation?” Backpropagation is a neural network learning algo-
rithm. The field of neural networks was originally kindled by psychologists and
neurobiologists who sought to develop and test computational analogues of neu-
rons. Roughly speaking, a neural network is a set of connected input/output
units in which each connection has a weight associated with it. During the learn-
ing phase, the network learns by adjusting the weights so as to be able to predict
the correct class label of the input tuples. Neural network learning is also referred
to as connectionist learning due to the connections between units.

8 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

Neural networks involve long training times and are therefore more suitable
for applications where this is feasible. They require a number of parameters
that are typically best determined empirically, such as the network topology or
“structure.” Neural networks have been criticized for their poor interpretability.
For example, it is difficult for humans to interpret the symbolic meaning behind
the learned weights and of “hidden units” in the network. These features initially
made neural networks less desirable for data mining.

Advantages of neural networks, however, include their high tolerance of noisy
data as well as their ability to classify patterns on which they have not been
trained. They can be used when you may have little knowledge of the rela-
tionships between attributes and classes. They are well-suited for continuous-
valued inputs and outputs, unlike most decision tree algorithms. They have
been successful on a wide array of real-world data, including handwritten char-
acter recognition, pathology and laboratory medicine, and training a computer
to pronounce English text. Neural network algorithms are inherently parallel;
parallelization techniques can be used to speed up the computation process. In
addition, several techniques have recently been developed for the extraction of
rules from trained neural networks. These factors contribute toward the useful-
ness of neural networks for classification and numeric prediction in data mining.

There are many different kinds of neural networks and neural network algo-
rithms. The most popular neural network algorithm is backpropagation, which
gained repute in the 1980s. In Section 9.2.1 you will learn about multilayer
feed-forward networks, the type of neural network on which the backpropaga-
tion algorithm performs. Section 9.2.2 discusses defining a network topology.
The backpropagation algorithm is described in Section 9.2.3. Rule extraction
from trained neural networks is discussed in Section 9.2.4.

9.2.1 A Multilayer Feed-Forward Neural Network

The backpropagation algorithm performs learning on a multilayer feed-forward
neural network. It iteratively learns a set of weights for prediction of the class
label of tuples. A multilayer feed-forward neural network consists of an
input layer, one or more hidden layers, and an output layer. An example of a
multilayer feed-forward network is shown in Figure 9.2.

Each layer is made up of units. The inputs to the network correspond to the
attributes measured for each training tuple. The inputs are fed simultaneously
into the units making up the input layer. These inputs pass through the input
layer and are then weighted and fed simultaneously to a second layer of “neuron-
like” units, known as a hidden layer. The outputs of the hidden layer units can
be input to another hidden layer, and so on. The number of hidden layers is arbi-
trary, although in practice, usually only one is used. The weighted outputs of the
last hidden layer are input to units making up the output layer, which emits the
network’s prediction for given tuples.

The units in the input layer are called input units. The units in the hidden
layers and output layer are sometimes referred to as neurodes, due to their
symbolic biological basis, or as output units. The multilayer neural network

9.2. CLASSIFICATION BY BACKPROPAGATION 9

Figure 9.2: A multilayer feed-forward neural network.

shown in Figure 9.2 has two layers of output units. Therefore, we say that it is
a two-layer neural network. (The input layer is not counted because it serves
only to pass the input values to the next layer.) Similarly, a network containing
two hidden layers is called a three-layer neural network, and so on. The network
is feed-forward in that none of the weights cycles back to an input unit or to
an output unit of a previous layer. It is fully connected in that each unit
provides input to each unit in the next forward layer.

Each output unit takes, as input, a weighted sum of the outputs from units in
the previous layer (see Figure 9.4). It applies a nonlinear (activation) function
to the weighted input. Multilayer feed-forward neural networks are able to
model the class prediction as a nonlinear combination of the inputs. From a
statistical point of view, they perform nonlinear regression. Multilayer feed-
forward networks, given enough hidden units and enough training samples, can
closely approximate any function.

9.2.2 Defining a Network Topology

“How can I design the topology of the neural network?” Before training can
begin, the user must decide on the network topology by specifying the number
of units in the input layer, the number of hidden layers (if more than one), the
number of units in each hidden layer, and the number of units in the output
layer.

Normalizing the input values for each attribute measured in the training tuples
will help speed up the learning phase. Typically, input values are normalized so as
to fall between 0.0 and 1.0. Discrete-valued attributes may be encoded such that
there is one input unit per domain value. For example, if an attribute A has three
possible or knownvalues, namely{a0, a1, a2}, thenwemayassign three inputunits
to represent A. That is, we may have, say, I0, I1, I2 as input units. Each unit is

10 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

Algorithm: Backpropagation. Neural network learning for classification or numeric
prediction, using the backpropagation algorithm.

Input:

• D, a data set consisting of the training tuples and their associated target values;

• l, the learning rate;

• network, a multilayer feed-forward network.

Output: A trained neural network.

Method:

(1) Initialize all weights and biases in network ;
(2) while terminating condition is not satisfied {
(3) for each training tuple X in D {
(4) // Propagate the inputs forward:
(5) for each input layer unit j {
(6) Oj = Ij ; // output of an input unit is its actual input value
(7) for each hidden or output layer unit j {
(8) Ij =

∑

i wijOi + θj ; //compute the net input of unit j with respect to the
previous layer, i

(9) Oj = 1

1+e
−Ij

; } // compute the output of each unit j

(10) // Backpropagate the errors:
(11) for each unit j in the output layer
(12) Errj = Oj(1 − Oj)(Tj − Oj); // compute the error
(13) for each unit j in the hidden layers, from the last to the first hidden layer
(14) Errj = Oj(1 − Oj)

∑

k Errkwjk; // compute the error with respect to the
next higher layer, k

(15) for each weight wij in network {
(16) ∆wij = (l)ErrjOi; // weight increment
(17) wij = wij + ∆wij ; } // weight update
(18) for each bias θj in network {
(19) ∆θj = (l)Errj ; // bias increment
(20) θj = θj + ∆θj ; } // bias update
(21) } }

Figure 9.3: Backpropagation algorithm.

initialized to 0. If A = a0, then I0 is set to 1 and the rest are 0. If A = a1, then
I1 is set to 1 and the rest are 0, and so on. Neural networks can be used for both
classification (to predict the class label of a given tuple) or numeric prediction (to
predict a continuous-valued output). For classification, one output unit may be
used to represent two classes (where the value 1 represents one class, and the value
0 represents the other). If there are more than two classes,then one output unit per
class is used. (See Section 9.7.1 for more strategies on multiclass classification.)

There are no clear rules as to the “best” number of hidden layer units. Net-
work design is a trial-and-error process and may affect the accuracy of the resulting
trainednetwork. The initial values of theweightsmayalso affect the resulting accu-
racy. Onceanetworkhasbeentrainedanditsaccuracy isnotconsideredacceptable,
it is common to repeat the training process with a different network topology or a
different set of initial weights. Cross-validation techniques for accuracy estimation
(described inChapter 8) canbeused tohelpdecidewhenanacceptablenetworkhas
been found. A number of automated techniques have been proposed that search
for a “good” network structure. These typically use a hill-climbing approach that
starts with an initial structure that is selectively modified.

9.2. CLASSIFICATION BY BACKPROPAGATION 11

9.2.3 Backpropagation

“How does backpropagation work?” Backpropagation learns by iteratively pro-
cessing a data set of training tuples, comparing the network’s prediction for each
tuple with the actual known target value. The target value may be the known
class label of the training tuple (for classification problems) or a continuous
value (for numeric prediction). For each training tuple, the weights are modi-
fied so as to minimize the mean squared error between the network’s prediction
and the actual target value. These modifications are made in the “backwards”
direction, that is, from the output layer, through each hidden layer down to
the first hidden layer (hence the name backpropagation). Although it is not
guaranteed, in general the weights will eventually converge, and the learning
process stops. The algorithm is summarized in Figure 9.3. The steps involved
are expressed in terms of inputs, outputs, and errors, and may seem awkward
if this is your first look at neural network learning. However, once you become
familiar with the process, you will see that each step is inherently simple. The
steps are described below.

Initialize the weights: The weights in the network are initialized to small
random numbers (e.g., ranging from −1.0 to 1.0, or −0.5 to 0.5). Each unit has
a bias associated with it, as explained below. The biases are similarly initialized
to small random numbers.

Each training tuple, X, is processed by the following steps.

Propagate the inputs forward: First, the training tuple is fed to the input layer
of the network. The inputs pass through the input units, unchanged. That is, for
an input unit, j, its output, Oj , is equal to its input value, Ij . Next, the net input
and output of each unit in the hidden and output layers are computed. The net
input to a unit in the hidden or output layers is computed as a linear combination
of its inputs. To help illustrate this point, a hidden layer or output layer unit is
shown in Figure 9.4. Each such unit has a number of inputs to it that are, in fact,
the outputs of the units connected to it in the previous layer. Each connection has
a weight. To compute the net input to the unit, each input connected to the unit
is multiplied by its corresponding weight, and this is summed. Given a unit j in a
hidden or output layer, the net input, Ij , to unit j is

Ij =
∑

i

wijOi + θj , (9.4)

where wij is the weight of the connection from unit i in the previous layer to
unit j; Oi is the output of unit i from the previous layer; and θj is the bias of
the unit. The bias acts as a threshold in that it serves to vary the activity of
the unit.

Each unit in the hidden and output layers takes its net input and then
applies an activation function to it, as illustrated in Figure 9.4. The function
symbolizes the activation of the neuron represented by the unit. The logistic,
or sigmoid, function is used. Given the net input Ij to unit j, then Oj , the

12 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

y1

y2

yn

∑

Weights

w1j

w2 j

wnj

Bias

Outputf

Inputs

(outputs from

previous layer)

Weighted

sum

Activation

function

.
.

.
j

Figure 9.4: A hidden or output layer unit j: The inputs to unit j are outputs
from the previous layer. These are multiplied by their corresponding weights
in order to form a weighted sum, which is added to the bias associated with
unit j. A nonlinear activation function is applied to the net input. (For ease
of explanation, the inputs to unit j are labeled y1, y2, . . . , yn. If unit j were in
the first hidden layer, then these inputs would correspond to the input tuple
(x1, x2, . . . , xn).)

output of unit j, is computed as

Oj =
1

1 + e−Ij
. (9.5)

This function is also referred to as a squashing function, because it maps a
large input domain onto the smaller range of 0 to 1. The logistic function is
nonlinear and differentiable, allowing the backpropagation algorithm to model
classification problems that are linearly inseparable.

We compute the output values, Oj , for each hidden layer, up to and including
the output layer, which gives the network’s prediction. In practice, it is a
good idea to cache (i.e., save) the intermediate output values at each unit as
they are required again later, when backpropagating the error. This trick can
substantially reduce the amount of computation required.

Backpropagate the error: The error is propagated backward by updating
the weights and biases to reflect the error of the network’s prediction. For a
unit j in the output layer, the error Errj is computed by

Errj = Oj(1−Oj)(Tj −Oj), (9.6)

9.2. CLASSIFICATION BY BACKPROPAGATION 13

where Oj is the actual output of unit j, and Tj is the known target value of
the given training tuple. Note that Oj(1 − Oj) is the derivative of the logistic
function.

To compute the error of a hidden layer unit j, the weighted sum of the errors
of the units connected to unit j in the next layer are considered. The error of a
hidden layer unit j is

Errj = Oj(1−Oj)
∑

k

Errkwjk, (9.7)

where wjk is the weight of the connection from unit j to a unit k in the next
higher layer, and Errk is the error of unit k.

The weights and biases are updated to reflect the propagated errors. Weights
are updated by the following equations, where ∆wij is the change in weight wij :

∆wij = (l)ErrjOi (9.8)

wij = wij + ∆wij (9.9)

“What is the ‘l’ in Equation (9.8)?” The variable l is the learning rate, a
constant typically having a value between 0.0 and 1.0. Backpropagation learns
using a method of gradient descent to search for a set of weights that fits the
training data so as to minimize the mean squared distance between the network’s
class prediction and the known target value of the tuples.1 The learning rate
helps avoid getting stuck at a local minimum in decision space (i.e., where the
weights appear to converge, but are not the optimum solution) and encourages
finding the global minimum. If the learning rate is too small, then learning
will occur at a very slow pace. If the learning rate is too large, then oscillation
between inadequate solutions may occur. A rule of thumb is to set the learning
rate to 1/t, where t is the number of iterations through the training set so far.

Biases are updated by the following equations below, where ∆θj is the
change in bias θj :

∆θj = (l)Errj (9.10)

θj = θj + ∆θj (9.11)

Note that here we are updating the weights and biases after the presentation
of each tuple. This is referred to as case updating. Alternatively, the weight
and bias increments could be accumulated in variables, so that the weights
and biases are updated after all of the tuples in the training set have been
presented. This latter strategy is called epoch updating, where one iteration
through the training set is an epoch. In theory, the mathematical derivation
of backpropagation employs epoch updating, yet in practice, case updating is
more common because it tends to yield more accurate results.
Terminating condition: Training stops when

• All∆wij inthepreviousepochweresosmallastobebelowsomespecifiedthresh-
old, or

1A method of gradient descent was also used for training Bayesian belief networks, as
described in Section 9.1.2.

14 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

5

4

6

w46

w56

w35

w34

w25

w24

w15

w14
x1

x2

x3

1

2

3

Figure 9.5: An example of a multilayer feed-forward neural network.

Table 9.1: Initial input, weight, and bias values.
x1 x2 x3 w14 w15 w24 w25 w34 w35 w46 w56 θ4 θ5 θ6

1 0 1 0.2 −0.3 0.4 0.1 −0.5 0.2 −0.3 −0.2 −0.4 0.2 0.1

• The percentage of tuples misclassified in the previous epoch is below some
threshold, or

• A prespecified number of epochs has expired.

In practice, several hundreds of thousands of epochs may be required
before the weights will converge.

“How efficient is backpropagation?” The computational efficiency depends
on the time spent training the network. Given |D| tuples and w weights, each
epoch requires O(|D|×w) time. However, in the worst-case scenario, the number
of epochs can be exponential in n, the number of inputs. In practice, the time
required for the networks to converge is highly variable. A number of techniques
exist that help speed up the training time. For example, a technique known as
simulated annealing can be used, which also ensures convergence to a global
optimum.

Example 9.1 Sample calculations for learning by the backpropagation algorithm.
Figure 9.5 shows a multilayer feed-forward neural network. Let the learning rate
be 0.9. The initial weight and bias values of the network are given in Table 9.1,
along with the first training tuple, X = (1, 0, 1), whose class label is 1.

This example shows the calculations for backpropagation, given the first
training tuple, X. The tuple is fed into the network, and the net input and
output of each unit are computed. These values are shown in Table 9.2. The

9.2. CLASSIFICATION BY BACKPROPAGATION 15

Table 9.2: The net input and output calculations.
Unit j Net input, Ij Output, Oj

4 0.2 + 0 − 0.5 − 0.4 = −0.7 1/(1 + e0.7) = 0.332
5 −0.3 + 0 + 0.2 + 0.2 = 0.1 1/(1 + e−0.1) = 0.525
6 (−0.3)(0.332) − (0.2)(0.525) + 0.1 = −0.105 1/(1 + e0.105) = 0.474

Table 9.3: Calculation of the error at each node.
Unit j Err j

6 (0.474)(1 − 0.474)(1 − 0.474) = 0.1311
5 (0.525)(1 − 0.525)(0.1311)(−0.2) = −0.0065
4 (0.332)(1 − 0.332)(0.1311)(−0.3) = −0.0087

error of each unit is computed and propagated backward. The error values are
shown in Table 9.3. The weight and bias updates are shown in Table 9.4.

“How can we classify an unknown tuple using a trained network?” To classify
an unknown tuple, X, the tuple is input to the trained network, and the net
input and output of each unit are computed. (There is no need for computation
and or backpropagation of the error.) If there is one output node per class, then
the output node with the highest value determines the predicted class label for
X. If there is only one output node, then output values greater than or equal to
0.5 may be considered as belonging to the positive class, while values less than
0.5 my be considered negative.

Several variations and alternatives to the backpropagation algorithm have
been proposed for classification in neural networks. These may involve the
dynamic adjustment of the network topology and of the learning rate or other
parameters, or the use of different error functions.

9.2.4 Inside the Black Box: Backpropagation and Inter-
pretability

“Neural networks are like a black box. How can I ‘understand’ what the backpropa-
gation network has learned?” Amajor disadvantage of neural networks lies in their
knowledge representation. Acquired knowledge in the form of a network of units
connectedbyweighted links is difficult for humans to interpret. This factor hasmo-
tivated research in extracting the knowledge embedded in trained neural networks
and in representing thatknowledge symbolically. Methods include extracting rules
from networks and sensitivity analysis.

Various algorithms for the extraction of rules have been proposed. The
methods typically impose restrictions regarding procedures used in training the
given neural network, the network topology, and the discretization of input
values.

Fully connected networks are difficult to articulate. Hence, often the first
step toward extracting rules from neural networks is network pruning. This

16 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

Table 9.4: Calculations for weight and bias updating.
Weight or bias New value
w46 −0.3 + (0.9)(0.1311)(0.332) = −0.261
w56 −0.2 + (0.9)(0.1311)(0.525) = −0.138
w14 0.2 + (0.9)(−0.0087)(1) = 0.192
w15 −0.3 + (0.9)(−0.0065)(1) = −0.306
w24 0.4 + (0.9)(−0.0087)(0) = 0.4
w25 0.1 + (0.9)(−0.0065)(0) = 0.1
w34 −0.5 + (0.9)(−0.0087)(1) = −0.508
w35 0.2 + (0.9)(−0.0065)(1) = 0.194
θ6 0.1 + (0.9)(0.1311) = 0.218
θ5 0.2 + (0.9)(−0.0065) = 0.194
θ4 −0.4 + (0.9)(−0.0087) = −0.408

consists of simplifying the network structure by removing weighted links that
have the least effect on the trained network. For example, a weighted link may
be deleted if such removal does not result in a decrease in the classification
accuracy of the network.

Once the trained network has been pruned, some approaches will then per-
form link, unit, or activation value clustering. In one method, for example,
clustering is used to find the set of common activation values for each hidden
unit in a given trained two-layer neural network (Figure 9.6). The combina-
tions of these activation values for each hidden unit are analyzed. Rules are
derived relating combinations of activation values with corresponding output
unit values. Similarly, the sets of input values and activation values are stud-
ied to derive rules describing the relationship between the input and hidden
unit layers. Finally, the two sets of rules may be combined to form IF-THEN
rules. Other algorithms may derive rules of other forms, including M -of-N rules
(where M out of a given N conditions in the rule antecedent must be true in
order for the rule consequent to be applied), decision trees with M -of-N tests,
fuzzy rules, and finite automata.

Sensitivity analysis is used to assess the impact that a given input variable
has on a network output. The input to the variable is varied while the remaining
input variables are fixed at some value. Meanwhile, changes in the network
output are monitored. The knowledge gained from this form of analysis can be
represented in rules such as “IF X decreases 5% THEN Y increases 8%.”

9.3 Support Vector Machines

In this section, we study Support Vector Machines, a method for the classifi-
cation of both linear and nonlinear data. In a nutshell, a support vector machine
(or SVM) is an algorithm that works as follows. It uses a nonlinear mapping to
transform the original training data into a higher dimension. Within this new
dimension, it searches for the linear optimal separating hyperplane (that is, a
“decision boundary” separating the tuples of one class from another). With an

9.3. SUPPORT VECTOR MACHINES 17

H1 H2 H3

O1 O2

I1 I2 I3 I4 I5 I6 I7

Identify sets of common activation values for

each hidden node, Hi:

 for H1: (–1,0,1)

 for H2: (0.1)

 for H3: (–1,0.24,1)

Derive rules relating common activation values

with output nodes, Oj:

 IF (H2 = 0 AND H3 = –1) OR

 (H1 = –1 AND H2 = 1 AND H3 = –1) OR

 (H1 = –1 AND H2 = 0 AND H3 = 0.24)

 THEN O1 = 1, O2 = 0

 ELSE O1 = 0, O2 = 1

Derive rules relating input nodes, Ij, to

output nodes, Oj:

 IF (I2 = 0 AND I7 = 0) THEN H2 = 0

 IF (I4 = 1 AND I6 = 1) THEN H3 = –1

 IF (I5 = 0) THEN H3 = –1

Obtain rules relating inputs and output classes:

 IF (I2 = 0 AND I7 = 0 AND I4 = 1 AND

 I6 = 1) THEN class = 1

 IF (I2 = 0 AND I7 = 0 AND I5 = 0) THEN

 class = 1

Figure 9.6: Rules can be extracted from training neural networks. Adapted
from [LSL95].
[TO EDITOR Error in 4th line of table (for H2) - must change “0.1” to“0,1”.]

appropriate nonlinear mapping to a sufficiently high dimension, data from two
classes can always be separated by a hyperplane. The SVM finds this hyper-
plane using support vectors (“essential” training tuples) and margins (defined
by the support vectors). We will delve more into these new concepts further
below.

“I’ve heard that SVMs have attracted a great deal of attention lately. Why?”
The first paper on support vector machines was presented in 1992 by Vladimir
Vapnik and colleagues Bernhard Boser and Isabelle Guyon, although the ground-
work for SVMs has been around since the 1960s (including early work by Vapnik
and Alexei Chervonenkis on statistical learning theory). Although the training
time of even the fastest SVMs can be extremely slow, they are highly accurate,
owing to their ability to model complex nonlinear decision boundaries. They
are much less prone to overfitting than other methods. The support vectors
found also provide a compact description of the learned model. SVMs can be
used for numeric prediction as well as classification. They have been applied to

18 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

A1

A2

class 1, y = +1 (buys_computer = yes)

class 2, y = –1 (buys_computer = no)

Figure 9.7: The 2-D training data are linearly separable. There are an infi-
nite number of possible separating hyperplanes or “decision boundaries,” some
of which are shown here as dashed lines. Which one is best?

a number of areas, including handwritten digit recognition, object recognition,
and speaker identification, as well as benchmark time-series prediction tests.

9.3.1 The Case When the Data Are Linearly Separable

To explain the mystery of SVMs, let’s first look at the simplest case—a two-class
problemwhere the classes are linearly separable. Let thedata setD begivenas (X1,
y1), (X2, y2), . . . , (X|D|, y|D|), where Xi is the set of training tuples with associated
class labels, yi. Eachyi can takeoneof twovalues, either+1or−1 (i.e., yi ∈ {+1, −
1}), corresponding to the classes buys computer = yes and buys computer = no,
respectively. To aid in visualization, let’s consider an example based on two input
attributes, A1 and A2, as shown in Figure 9.7. From the graph, we see that the 2-D
data are linearly separable (or “linear,” for short) because a straight line can be
drawnto separateall of the tuplesof class+1fromall of the tuplesof class−1. There
are an infinite number of separating lines that could be drawn. We want to find the
“best” one, that is, one that (we hope) will have the minimum classification error
on previously unseen tuples. How can we find this best line? Note that if our data
were 3-D (i.e., with three attributes), we would want to find the best separating
plane. Generalizing to n dimensions, we want to find the best hyperplane. We will
use the term “hyperplane” to refer to the decision boundary that we are seeking,
regardless of the number of input attributes. So, in other words, how can we find
the best hyperplane?

An SVM approaches this problem by searching for the maximum marginal

9.3. SUPPORT VECTOR MACHINES 19

A1

A2

class 1, y = +1 (buys_computer = yes)

class 2, y = –1 (buys_computer = no)

A1

A2

class 1, y = +1 (buys_computer = yes)

class 2, y = –1 (buys_computer = no)

lar
ge

 m
ar

gin

small margin

Figure 9.8: Here we see just two possible separating hyperplanes and their
associated margins. Which one is better? The one with the larger margin (b)
should have greater generalization accuracy. NOTE TO EDITOR: Labels a)
and b) need to be added to the figure. Thanks.

hyperplane. Consider Figure 9.8, which shows two possible separating hyper-
planes and their associated margins. Before we get into the definition of margins,
let’s take an intuitive look at this figure. Both hyperplanes can correctly classify
all of the given data tuples. Intuitively, however, we expect the hyperplane with
the larger margin to be more accurate at classifying future data tuples than the
hyperplane with the smaller margin. This is why (during the learning or train-
ing phase), the SVM searches for the hyperplane with the largest margin, that
is, the maximum marginal hyperplane (MMH). The associated margin gives the
largest separation between classes. Getting to an informal definition of margin,
we can say that the shortest distance from a hyperplane to one side of its mar-
gin is equal to the shortest distance from the hyperplane to the other side of its
margin, where the “sides” of the margin are parallel to the hyperplane. When
dealing with the MMH, this distance is, in fact, the shortest distance from the
MMH to the closest training tuple of either class.

A separating hyperplane can be written as

W · X + b = 0, (9.12)

where W is a weight vector, namely, W = {w1, w2, . . . , wn}; n is the number of
attributes; and b is a scalar, often referred to as a bias. To aid in visualization,
let’s consider two input attributes, A1 and A2, as in Figure 9.8(b). Training
tuples are 2-D, e.g., X = (x1, x2), where x1 and x2 are the values of attributes

20 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

A1

A2

class 1, y = +1 (buys_computer = yes)

class 2, y = –1 (buys_computer = no)

lar
ge

 m
ar

gin

Figure 9.9: Support vectors. The SVM finds the maximum separating hyper-
plane, that is, the one with maximum distance between the nearest training
tuples. The support vectors are shown with a thicker border.

A1 and A2, respectively, for X. If we think of b as an additional weight, w0, we
can rewrite the above separating hyperplane as

w0 + w1x1 + w2x2 = 0. (9.13)

Thus, any point that lies above the separating hyperplane satisfies

w0 + w1x1 + w2x2 > 0. (9.14)

Similarly, any point that lies below the separating hyperplane satisfies

w0 + w1x1 + w2x2 < 0. (9.15)

The weights can be adjusted so that the hyperplanes defining the “sides” of the
margin can be written as

H1 : w0 + w1x1 + w2x2 ≥ 1 for yi = +1, and (9.16)

H2 : w0 + w1x1 + w2x2 ≤ −1 for yi = −1. (9.17)

That is, any tuple that falls on or above H1 belongs to class +1, and any tuple
that falls on or below H2 belongs to class −1. Combining the two inequalities
of Equations (9.16) and (9.17), we get

yi(w0 + w1x1 + w2x2) ≥ 1, ∀i. (9.18)

Any training tuples that fall on hyperplanes H1 or H2 (i.e., the “sides”
defining the margin) satisfy Equation (9.18) and are called support vectors.
That is, they are equally close to the (separating) MMH. In Figure 9.9, the sup-
port vectors are shown encircled with a thicker border. Essentially, the support
vectors are the most difficult tuples to classify and give the most information
regarding classification.

From the above, we can obtain a formula for the size of the maximal margin.
The distance from the separating hyperplane to any point on H1 is 1

||W|| , where

9.3. SUPPORT VECTOR MACHINES 21

||W || is the Euclidean norm of W, that is
√

W ·W.2 By definition, this is equal
to the distance from any point on H2 to the separating hyperplane. Therefore,
the maximal margin is 2

||W|| .

“So, how does an SVM find the MMH and the support vectors?” Using
some “fancy math tricks,” we can rewrite Equation (9.18) so that it becomes
what is known as a constrained (convex) quadratic optimization problem. Such
fancy math tricks are beyond the scope of this book. Advanced readers may
be interested to note that the tricks involve rewriting Equation (9.18) using a
Lagrangian formulation and then solving for the solution using Karush-Kuhn-
Tucker (KKT) conditions. Details can be found in references at the end of this
chapter. If the data are small (say, less than 2,000 training tuples), any op-
timization software package for solving constrained convex quadratic problems
can then be used to find the support vectors and MMH. For larger data, spe-
cial and more efficient algorithms for training SVMs can be used instead, the
details of which exceed the scope of this book. Once we’ve found the support
vectors and MMH (note that the support vectors define the MMH!), we have
a trained support vector machine. The MMH is a linear class boundary, and
so the corresponding SVM can be used to classify linearly separable data. We
refer to such a trained SVM as a linear SVM.

“Once I’ve got a trained support vector machine, how do I use it to classify
test (i.e., new) tuples?” Based on the Lagrangian formulation mentioned above,
the MMH can be rewritten as the decision boundary

d(XT) =
l

∑

i=1

yiαiXiXT + b0, (9.19)

where yi is the class label of support vector Xi; XT is a test tuple; αi and b0 are
numeric parameters that were determined automatically by the optimization or
SVM algorithm above; and l is the number of support vectors.

Interested readers may note that the αi are Lagrangian multipliers. For
linearly separable data, the support vectors are a subset of the actual training
tuples (although there will be a slight twist regarding this when dealing with
nonlinearly separable data, as we shall see below).

Given a test tuple, XT , we plug it into Equation (9.19), and then check to see the
sign of the result. This tells us onwhich side of the hyperplane the test tuple falls. If
the sign is positive, thenXT falls onor above theMMH,and so theSVMpredicts that
XT belongs to class+1 (representing buys computer=yes, in our case). If the sign is
negative, then XT falls on or below the MMH and the class prediction is−1 (repre-
senting buys computer = no).

Notice that the Lagrangian formulation of our problem (Equation (9.19))
contains a dot product between support vector Xi and test tuple XT . This will
prove very useful for finding the MMH and support vectors for the case when
the given data are nonlinearly separable, as described further below.

Before we move on to the nonlinear case, there are two more important things
to note. The complexity of the learned classifier is characterized by the number

2If W = {w1, w2, . . . , wn} then
√

W · W =
√

w2
1

+ w2
2

+ · · · + w2
n.

22 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

A1

A2

class 1, y = +1 (buys_computer = yes)

class 2, y = –1 (buys_computer = no)

Figure 9.10: A simple 2-D case showing linearly inseparable data. Unlike the
linear separable data of Figure 9.7, here it is not possible to draw a straight line
to separate the classes. Instead, the decision boundary is nonlinear.

of support vectors rather than the dimensionality of the data. Hence, SVMs tend
to be less prone to overfitting than some other methods. The support vectors are
the essential or critical training tuples—they lie closest to the decision boundary
(MMH). If all other training tuples were removed and training were repeated,
the same separating hyperplane would be found. Furthermore, the number of
support vectors found can be used to compute an (upper) bound on the expected
error rate of the SVM classifier, which is independent of the data dimensionality.
An SVM with a small number of support vectors can have good generalization,
even when the dimensionality of the data is high.

9.3.2 The Case When the Data Are Linearly Inseparable

In Section 9.3.1 we learned about linear SVMs for classifying linearly separable
data, but what if the data are not linearly separable, as in Figure 9.10? In such
cases, no straight line can be found that would separate the classes. The linear
SVMs we studied would not be able to find a feasible solution here. Now what?

The good news is that the approach described for linear SVMs can be ex-
tended to create nonlinear SVMs for the classification of linearly inseparable
data (also called nonlinearly separable data, or nonlinear data, for short). Such
SVMs are capable of finding nonlinear decision boundaries (i.e., nonlinear hy-
persurfaces) in input space.

“So,” you may ask, “how can we extend the linear approach?” We obtain
a nonlinear SVM by extending the approach for linear SVMs as follows. There
are two main steps. In the first step, we transform the original input data
into a higher dimensional space using a nonlinear mapping. Several common
nonlinear mappings can be used in this step, as we will describe further below.
Once the data have been transformed into the new higher space, the second
step searches for a linear separating hyperplane in the new space. We again end

9.3. SUPPORT VECTOR MACHINES 23

up with a quadratic optimization problem that can be solved using the linear
SVM formulation. The maximal marginal hyperplane found in the new space
corresponds to a nonlinear separating hypersurface in the original space.

Example 9.2 Nonlinear transformation of original input data into a higher di-
mensional space. Consider the following example. A 3D input vector X
= (x1, x2, x3) is mapped into a 6D space, Z, using the mappings φ1(X) =
x1, φ2(X) = x2, φ3(X) = x3, φ4(X) = (x1)

2, φ5(X) = x1x2, and φ6(X) = x1x3.
A decision hyperplane in the new space is d(Z) = WZ + b, where W and Z are
vectors. This is linear. We solve for W and b and then substitute back so that
the linear decision hyperplane in the new (Z) space corresponds to a nonlinear
second-order polynomial in the original 3-D input space,

d(Z) = w1x1 + w2x2 + w3x3 + w4(x1)
2 + w5x1x2 + w6x1x3 + b

= w1z1 + w2z2 + w3z3 + w4z4 + w5z5 + w6z6 + b

But there are some problems. First, how do we choose the nonlinear mapping
to a higher dimensional space? Second, the computation involved will be costly.
Refer back to Equation (9.19) for the classification of a test tuple, XT . Given
the test tuple, we have to compute its dot product with every one of the support
vectors.3 In training, we have to compute a similar dot product several times
in order to find the MMH. This is especially expensive. Hence, the dot product
computation required is very heavy and costly. We need another trick!

Luckily, we can use another math trick. It so happens that in solving the
quadratic optimization problem of the linear SVM (i.e., when searching for a
linear SVM in the new higher dimensional space), the training tuples appear
only in the form of dot products, φ(Xi) · φ(Xj), where φ(X) is simply the non-
linear mapping function applied to transform the training tuples. Instead of
computing the dot product on the transformed data tuples, it turns out that it
is mathematically equivalent to instead apply a kernel function, K(Xi, Xj), to
the original input data. That is,

K(Xi, Xj) = φ(Xi) · φ(Xj). (9.20)

In other words, everywhere that φ(Xi) ·φ(Xj) appears in the training algorithm,
we can replace it with K(Xi, Xj). In this way, all calculations are made in the
original input space, which is of potentially much lower dimensionality! We can
safely avoid the mapping—it turns out that we don’t even have to know what
the mapping is! We will talk more later about what kinds of functions can be
used as kernel functions for this problem.

After applying this trick, we can then proceed to find a maximal separating
hyperplane. The procedure is similar to that described in Section 9.3.1, although
it involves placing a user-specified upper bound, C, on the Lagrange multipliers,
αi. This upper bound is best determined experimentally.

3The dot product of two vectors, XT = (xT
1 , xT

2 , . . . , xT
n) and Xi = (xi1, xi2, . . . , xin) is

xT
1 xi1 + xT

2 xi2 + · · ·+ xT
nxin. Note that this involves one multiplication and one addition for

each of the n dimensions.

24 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

“What are some of the kernel functions that could be used?” Properties
of the kinds of kernel functions that could be used to replace the dot product
scenario described above have been studied. Three admissible kernel functions
include:

Polynomial kernel of degree h : K(Xi, Xj) = (Xi · Xj + 1)h

Gaussian radial basis function kernel : K(Xi, Xj) = e−‖Xi−Xj‖
2/2σ2

Sigmoid kernel : K(Xi, Xj) = tanh(κXi · Xj − δ)

Each of these results in a different nonlinear classifier in (the original) input
space. Neural network aficionados will be interested to note that the resulting
decision hyperplanes found for nonlinear SVMs are the same type as those found
by other well-known neural network classifiers. For instance, an SVM with a
Gaussian radial basis function (RBF) gives the same decision hyperplane as a
type of neural network known as a radial basis function (RBF) network. An
SVM with a sigmoid kernel is equivalent to a simple two-layer neural network
known as a multilayer perceptron (with no hidden layers). There are no golden
rules for determining which admissible kernel will result in the most accurate
SVM. In practice, the kernel chosen does not generally make a large difference
in resulting accuracy. SVM training always finds a global solution, unlike neu-
ral networks such as backpropagation, where many local minima usually exist
(Section 9.2.3).

So far, we have described linear and nonlinear SVMs for binary (i.e., two-
class) classification. SVM classifiers can be combined for the multiclass case.
See Section 9.7.1 for some strategies, such as training one classifier per class,
and the use of error-correcting codes.

A major research goal regarding SVMs is to improve the speed in training
and testing so that SVMs may become a more feasible option for very large
data sets (e.g., of millions of support vectors). Other issues include determining
the best kernel for a given data set and finding more efficient methods for the
multiclass case.

9.4 Classification Using Frequent Patterns

Frequent patterns show interesting relationships between attribute-value pairs
that occur frequently in a given data set. For example, we may find that the
attribute-value pairs age = youth and credit = OK occur in 20% of data tuples
describing AllElectronics customers who buy a computer. We can think of each
attribute-value pair as an item, so the search for such frequent patterns is known
as frequent pattern mining or frequent itemset mining. In Chapters 6 and 7 on
such mining, we saw how association rules are derived from frequent patterns,
where the associations are commonly used to analyze the purchasing patterns of
customers in a store. Such analysis is useful in many decision-making processes,
such as product placement, catalog design, and cross-marketing.

9.4. CLASSIFICATION USING FREQUENT PATTERNS 25

In this section, we examine how frequent patterns can be used for classifica-
tion. Section 9.4.1 explores associative classification, where association rules
are generated from frequent patterns and used for classification. The general
idea is that we can search for strong associations between frequent patterns
(conjunctions of attribute-value pairs) and class labels. Section 9.4.2 explore
discriminative frequent pattern-based classification, where frequent pat-
terns serve as combined features, which are considered in addition to single
features when building a classification model. Because frequent patterns ex-
plore highly confident associations among multiple attributes, frequent pattern-
based classification may overcome some constraints introduced by decision-tree
induction, which considers only one attribute at a time. Studies have shown
many frequent pattern-based classification methods to have greater accuracy
and scalability than some traditional classification methods, such as C4.5.

9.4.1 Associative Classification

In this section, you’ll learn about associative classification. The methods dis-
cussed are CBA, CMAR, and CPAR.

Before we begin, however, let’s look at association rule mining in general.
Association rules are mined in a two-step process consisting of frequent item-
set mining, followed by rule generation. The first step searches for patterns of
attribute-value pairs that occur repeatedly in a data set, where each attribute-
value pair is considered an item. The resulting attribute-value pairs form fre-
quent itemsets (also referred to as frequent patterns). The second step analyzes
the frequent itemsets in order to generate association rules. All association rules
must satisfy certain criteria regarding their “accuracy” (or confidence) and the
proportion of the data set that they actually represent (referred to as support).
For example, the following is an association rule mined from a data set, D,
shown with its confidence and support.

age = youth∧credit = OK ⇒ buys computer = yes [support = 20%, confidence = 93%]
(9.21)

where “∧” represents a logical “AND.” We will say more about confidence and
support in a minute.

More formally, let D be a data set of tuples. Each tuple in D is described by
n attributes, A1, A2, . . . , An, and a class label attribute, Aclass. All continuous
attributes are discretized and treated as categorical (or nominal) attributes. An
item, p, is an attribute-value pair of the form (Ai, v), where Ai is an attribute
taking a value, v. A data tuple X = (x1, x2, . . . , xn) satisfies an item, p =
(Ai, v), if and only if xi = v, where xi is the value of the ith attribute of X.
Association rules can have any number of items in the rule antecedent (left-
hand side) and any number of items in the rule consequent (right-hand side).
However, when mining association rules for use in classification, we are only
interested in association rules of the form p1 ∧ p2 ∧ . . . pl ⇒ Aclass = C where
the rule antecedent is a conjunction of items, p1, p2, . . . , pl (l ≤ n), associated

26 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

with a class label, C. For a given rule, R, the percentage of tuples in D satisfying
the rule antecedent that also have the class label C is called the confidence
of R. From a classification point of view, this is akin to rule accuracy. For
example, a confidence of 93% for Association Rule (9.21) means that 93% of
the customers in D who are young and have an OK credit rating belong to the
class buys computer = yes. The percentage of tuples in D satisfying the rule
antecedent and having class label C is called the support of R. A support
of 20% for Association Rule (9.21) means that 20% of the customers in D are
young, have an OK credit rating, and belong to the class buys computer = yes.

In general, associative classification consists of the following steps:

1. Mine the data for frequent itemsets, that is, find commonly occurring
attribute-value pairs in the data.

2. Analyze the frequent itemsets to generate association rules per class, which
satisfy confidence and support criteria.

3. Organize the rules to form a rule-based classifier.

Methods of associative classification differ primarily in the approach used for
frequent itemset mining and in how the derived rules are analyzed and used
for classification. We now look at some of the various methods for associative
classification.

One of the earliest and simplest algorithms for associative classification is
CBA (Classification Based on Associations). CBA uses an iterative approach
to frequent itemset mining, similar to that described for Apriori in Section 6.2.1,
where multiple passes are made over the data and the derived frequent itemsets
are used to generate and test longer itemsets. In general, the number of passes
made is equal to the length of the longest rule found. The complete set of rules
satisfying minimum confidence and minimum support thresholds are found and
then analyzed for inclusion in the classifier. CBA uses a heuristic method to
construct the classifier, where the rules are ordered according to decreasing
precedence based on their confidence and support. If a set of rules has the same
antecedent, then the rule with the highest confidence is selected to represent the
set. When classifying a new tuple, the first rule satisfying the tuple is used to
classify it. The classifier also contains a default rule, having lowest precedence,
which specifies a default class for any new tuple that is not satisfied by any
other rule in the classifier. In this way, the set of rules making up the classifier
form a decision list. In general, CBA was empirically found to be more accurate
than C4.5 on a good number of data sets.

CMAR (Classification based on Multiple Association Rules) differs from
CBA in its strategy for frequent itemset mining and its construction of the clas-
sifier. It also employs several rule pruning strategies with the help of a tree
structure for efficient storage and retrieval of rules. CMAR adopts a variant of
the FP-growth algorithm to find the complete set of rules satisfying the min-
imum confidence and minimum support thresholds. FP-growth was described
in Section 6.2.4. FP-growth uses a tree structure, called an FP-tree, to register

9.4. CLASSIFICATION USING FREQUENT PATTERNS 27

all of the frequent itemset information contained in the given data set, D. This
requires only two scans of D. The frequent itemsets are then mined from the
FP-tree. CMAR uses an enhanced FP-tree that maintains the distribution of
class labels among tuples satisfying each frequent itemset. In this way, it is able
to combine rule generation together with frequent itemset mining in a single
step.

CMAR employs another tree structure to store and retrieve rules efficiently
and to prune rules based on confidence, correlation, and database coverage.
Rule pruning strategies are triggered whenever a rule is inserted into the tree.
For example, given two rules, R1 and R2, if the antecedent of R1 is more general
than that of R2 and conf(R1) ≥ conf(R2), then R2 is pruned. The rationale
is that highly specialized rules with low confidence can be pruned if a more
generalized version with higher confidence exists. CMAR also prunes rules for
which the rule antecedent and class are not positively correlated, based on a χ2

test of statistical significance.

“If more than one rule applies, which one do we use?” As a classifier, CMAR
operates differently than CBA. Suppose that we are given a tuple X to classify
and that only one rule satisfies or matches X.4 This case is trivial—we simply
assign the class label of the rule. Suppose, instead, that more than one rule
satisfies X. These rules form a set, S. Which rule would we use to determine
the class label of X? CBA would assign the class label of the most confident rule
among the rule set, S. CMAR instead considers multiple rules when making its
class prediction. It divides the rules into groups according to class labels. All
rules within a group share the same class label and each group has a distinct
class label. CMAR uses a weighted χ2 measure to find the “strongest” group of
rules, based on the statistical correlation of rules within a group. It then assigns
X the class label of the strongest group. In this way it considers multiple rules,
rather than a single rule with highest confidence, when predicting the class label
of a new tuple. On experiments, CMAR had slightly higher average accuracy in
comparison with CBA. Its runtime, scalability, and use of memory were found
to be more efficient.

“Is there a way to cut down on the number of rules generated?” CBA and
CMAR adopt methods of frequent itemset mining to generate candidate as-
sociation rules, which include all conjunctions of attribute-value pairs (items)
satisfying minimum support. These rules are then examined, and a subset is
chosen to represent the classifier. However, such methods generate quite a large
number of rules. CPAR takes a different approach to rule generation, based
on a rule generation algorithm for classification known as FOIL (Section 8.4.3).
FOIL builds rules to distinguish positive tuples (say, having class buys computer
= yes) from negative tuples (such as buys computer = no). For multiclass prob-
lems, FOIL is applied to each class. That is, for a class, C, all tuples of class
C are considered positive tuples, while the rest are considered negative tuples.
Rules are generated to distinguish C tuples from all others. Each time a rule is
generated, the positive samples it satisfies (or covers) are removed until all the

4If the antecedent of a rule satisfies or matches X, then we say that the rule satisfies X.

28 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

Figure 9.11: Single feature vs. frequent pattern: Information gain is plotted
for single features (patterns of length one, indicated by arrows) and frequent
patterns (combined features) for three UCI data sets.

positive tuples in the data set are covered. In this way, fewer rules are gener-
ated. CPAR relaxes this step by allowing the covered tuples to remain under
consideration, but reducing their weight. The process is repeated for each class.
The resulting rules are merged to form the classifier rule set.

During classification, CPAR employs a somewhat different multiple rule
strategy than CMAR. If more than one rule satisfies a new tuple, X, the rules
are divided into groups according to class, similar to CMAR. However, CPAR
uses the best k rules of each group to predict the class label of X, based on
expected accuracy. By considering the best k rules rather than all of the rules
of a group, it avoids the influence of lower ranked rules. The accuracy of CPAR
on numerous data sets was shown to be close to that of CMAR. However, since
CPAR generates far fewer rules than CMAR, it shows much better efficiency
with large sets of training data.

In summary, associative classificationoffers analternative classification scheme
by building rules based on conjunctions of attribute-value pairs that occur fre-
quently in data.

9.4.2 Discriminative Frequent Pattern-Based Classification

From work on associative classification, we see that frequent patterns reflect
strong associations between attribute-value pairs (or items) in data and are
useful for classification.

“But just how discriminative are frequent patterns for classification?”
Frequent patterns represent feature combinations. Let’s compare the dis-

criminative power of frequent patterns and single features. Figure 9.11 plots
the information gain of frequent patterns and single features (that is, of pattern
length one) for three UCI data sets.5 The discrimination power of some frequent

5The University of California at Irvine (UCI) archives several large data sets at
http://kdd.ics.uci.edu/. These are commonly used by researchers for the testing and com-

9.4. CLASSIFICATION USING FREQUENT PATTERNS 29

Figure 9.12: Information gain versus pattern frequency (support) for three UCI
data sets. A theoretical upper bound on information gain (IGUpperBound) is
also shown.

patterns is higher than that of single features. Frequent patterns map data to a
higher dimensional space. They capture more underlying semantics of the data,
and thus can hold greater expressive power than single features.

“Why not consider frequent patterns as combined features, in addition to
single features when building a classification model?” This notion is the basis
of frequent pattern-based classification – the learning of a classification
model in the feature space of single attributes as well as frequent patterns. In
this way, we transfer the original feature space to a larger space. This will likely
increase the chance of including important features.

Let’s get back to our earlier question – how discriminative are frequent pat-
terns? Many of the frequent patterns generated in frequent itemset mining are
indiscriminative because they are based solely on support, without considering
predictive power. That is, by definition, a pattern must satisfy a user-specified
minimum support threshold, min sup, in order to be considered frequent. For
example, if min sup, is, say, 5%, a pattern is frequent if it occurs in 5% of the
data tuples. Consider Figure 9.12, which plots information gain versus pattern
frequency (support) for three UCI data sets. A theoretical upper bound on
information gain, which was derived analytically, is also plotted. The figure
shows that the discriminative power (assessed here as information gain) of low-
frequency patterns is bounded by a small value. This is due to the patterns’
limited coverage of the data set. Similarly, the discriminative power of very
high-frequency patterns is also bounded by a small value, which is due to their
commonness in the data. The upper bound of information gain is a function of
pattern frequency. The information gain upper bound increases monotonically
with pattern frequency. These observations can be confirmed analytically. Pat-
terns at a medium large supports (e.g., support = 300 in Figure 9.12(a)) may
be discriminative or not. Thus, not every frequent pattern is useful.

If we were to add all of the frequent patterns to the feature space, the result-

parison of machine learning and data mining algorithms.

30 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

Figure 9.13: A framework for frequent pattern-based classification: (a) A two-
step general approach vs. (b) the direct approach of DDPMine.

ing feature space would be huge. This slows down the model learning process
and may also lead to decreased accuracy due to a form of overfitting in that there
are too many features. Many of the patterns may be redundant. Therefore, it’s
a good idea to apply feature selection to eliminate the less discriminative and
redundant frequent patterns as features. The general framework for discrimi-
native frequent pattern-based classification is as follows.

1. Feature generation: The data, D, are partitioned according to class
label. Use frequent itemset mining to discover frequent patterns in each
partition, satisfying minimum support. The collection of frequent pat-
terns, F , make up the feature candidates.

2. Feature selection: Apply feature section to F , resulting in FS , the set of
selected (more discriminating) frequent patterns. Information gain, Fisher
score, or other evaluation measures can be used for this step. Relevancy
checking can also be incorporated into this step to weed out redundant
patterns. The data set D is transformed to D′, where the feature space
now includes the single features as well as the selected frequent patterns,
FS .

3. Learning of classification model: A classifier is built on the data set
D′. Any learning algorithm can be used as the classification model.

The general framework is summarized in Figure 9.13(a), where the dis-
criminative patterns are represented by dark circles. Although the approach
is straightforward, we can encounter a computational bottleneck by having to

9.5. LAZY LEARNERS (OR LEARNING FROM YOUR NEIGHBORS) 31

first find all of the frequent patterns, and then analyze each one for selection.
The amount of frequent patterns found can be huge due to the explosive number
of pattern combinations between items.

To improve the efficiency of the general framework, consider condensing steps
1 and 2 into just one step. That is, rather than generating the complete set
of frequent patterns, it’s possible to mine only the highly discriminative ones.
This more direct approach is referred to as direct discriminative pattern mining.
The DDPMine algorithm follows this approach, as illustrated in Figure 9.13(b).
It first transforms the training data into a compact tree structure known as a
frequent-pattern tree or FP-tree (Section 6.2.4), which holds all of the attribute-
value (itemset) association information. It then searches for discriminative pat-
terns on the tree. The approach is direct in that it avoids generating a large
number of indiscriminative patterns. It incrementally reduces the problem by
eliminating training tuples, thereby progressively shrinking the FP-tree. This
further speeds up the mining process. By choosing to transform the original
data to an FP-tree, DDPMine avoids generating redundant patterns because
an FP-tree stores only the closed frequent patterns. By definition, any subpat-
tern, β, of a closed pattern, α, is redundant with respect to α (Section 6.1.2).
DDPMine directly mines the discriminative patterns and integrates feature se-
lection into the mining framework. The theoretical upper bound on information
gain is used to facilitate a branch-and-bound search, which prunes the search
space significantly. Experimental results show that DDPMine achieves orders of
magnitude speedup over the two-step approach without decline in classification
accuracy. DDPMine also outperforms state-of-the-art associative classification
methods in terms of both accuracy and efficiency.

9.5 Lazy Learners (or Learning from Your Neigh-
bors)

The classification methods discussed so far in this book—decision tree induc-
tion, Bayesian classification, rule-based classification, classification by backprop-
agation, support vector machines, and classification based on association rule
mining—are all examples of eager learners. Eager learners, when given a set
of training tuples, will construct a generalization (i.e., classification) model be-
fore receiving new (e.g., test) tuples to classify. We can think of the learned
model as being ready and eager to classify previously unseen tuples.

Imagine a contrasting lazy approach, in which the learner instead waits until
the last minute before doing any model construction in order to classify a given
test tuple. That is, when given a training tuple, a lazy learner simply stores
it (or does only a little minor processing) and waits until it is given a test
tuple. Only when it sees the test tuple does it perform generalization in order
to classify the tuple based on its similarity to the stored training tuples. Unlike
eager learning methods, lazy learners do less work when a training tuple is
presented and more work when making a classification or numeric prediction.

32 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

Because lazy learners store the training tuples or “instances,” they are also
referred to as instance-based learners, even though all learning is essentially
based on instances.

When making a classification or numeric prediction, lazy learners can be
computationally expensive. They require efficient storage techniques and are
well-suited to implementation on parallel hardware. They offer little explana-
tion or insight into the structure of the data. Lazy learners, however, natu-
rally support incremental learning. They are able to model complex decision
spaces having hyperpolygonal shapes that may not be as easily describable by
other learning algorithms (such as hyper-rectangular shapes modeled by de-
cision trees). In this section, we look at two examples of lazy learners: k-
nearest-neighbor classifiers (Section 9.5.1) and case-based reasoning classifiers
(Section 9.5.2).

9.5.1 k -Nearest-Neighbor Classifiers

The k-nearest-neighbor method was first described in the early 1950s. The
method is labor intensive when given large training sets, and did not gain pop-
ularity until the 1960s when increased computing power became available. It
has since been widely used in the area of pattern recognition.

Nearest-neighbor classifiers are based on learning by analogy, that is, by
comparing a given test tuple with training tuples that are similar to it. The
training tuples are described by n attributes. Each tuple represents a point in
an n-dimensional space. In this way, all of the training tuples are stored in
an n-dimensional pattern space. When given an unknown tuple, a k-nearest-
neighbor classifier searches the pattern space for the k training tuples that
are closest to the unknown tuple. These k training tuples are the k “nearest
neighbors” of the unknown tuple.

“Closeness” is defined in terms of a distance metric, such as Euclidean
distance. The Euclidean distance between two points or tuples, say, X1 =
(x11, x12, . . . , x1n) and X2 = (x21, x22, . . . , x2n), is

dist(X1, X2) =

√

√

√

√

n
∑

i=1

(x1i − x2i)2. (9.22)

In other words, for each numeric attribute, we take the difference between the
corresponding values of that attribute in tuple X1 and in tuple X2, square this
difference, and accumulate it. The square root is taken of the total accumulated
distance count. Typically, we normalize the values of each attribute before using
Equation (9.22). This helps prevent attributes with initially large ranges (such
as income) from outweighing attributes with initially smaller ranges (such as
binary attributes). Min-max normalization, for example, can be used to trans-
form a value v of a numeric attribute A to v′ in the range [0, 1] by computing

v′ =
v −minA

maxA −minA
, (9.23)

9.5. LAZY LEARNERS (OR LEARNING FROM YOUR NEIGHBORS) 33

where minA and maxA are the minimum and maximum values of attribute A.
Chapter 2 describes other methods for data normalization as a form of data
transformation.

For k-nearest-neighbor classification, the unknown tuple is assigned the most
common class among its k nearest neighbors. When k = 1, the unknown tuple
is assigned the class of the training tuple that is closest to it in pattern space.
Nearest-neighbor classifiers can also be used for numeric prediction, that is, to
return a real-valued prediction for a given unknown tuple. In this case, the
classifier returns the average value of the real-valued labels associated with the
k nearest neighbors of the unknown tuple.

“But how can distance be computed for attributes that are not numeric, but
nominal (or categorical), such as color?” The above discussion assumes that the
attributes used to describe the tuples are all numeric. For nominal attributes, a
simple method is to compare the corresponding value of the attribute in tuple
X1 with that in tuple X2. If the two are identical (e.g., tuples X1 and X2 both
have the color blue), then the difference between the two is taken as 0. If the
two are different (e.g., tuple X1 is blue but tuple X2 is red), then the difference is
considered to be 1. Other methods may incorporate more sophisticated schemes
for differential grading (e.g., where a larger difference score is assigned, say, for
blue and white than for blue and black).

“What about missing values?” In general, if the value of a given attribute
A is missing in tuple X1 and/or in tuple X2, we assume the maximum possible
difference. Suppose that each of the attributes have been mapped to the range
[0, 1]. For nominal attributes, we take the difference value to be 1 if either
one or both of the corresponding values of A are missing. If A is numeric and
missing from both tuples X1 and X2, then the difference is also taken to be 1.
If only one value is missing and the other (which we’ll call v′) is present and
normalized, then we can take the difference to be either |1− v′| or |0− v′| (i.e.,
1− v′ or v′), whichever is greater.

“How can I determine a good value for k, the number of neighbors?” This
can be determined experimentally. Starting with k = 1, we use a test set to
estimate the error rate of the classifier. This process can be repeated each
time by incrementing k to allow for one more neighbor. The k value that gives
the minimum error rate may be selected. In general, the larger the number of
training tuples is, the larger the value of k will be (so that classification and
numeric prediction decisions can be based on a larger portion of the stored
tuples). As the number of training tuples approaches infinity and k = 1, the
error rate can be no worse than twice the Bayes error rate (the latter being the
theoretical minimum). If k also approaches infinity, the error rate approaches
the Bayes error rate.

Nearest-neighbor classifiers use distance-based comparisons that intrinsically
assign equal weight to each attribute. They therefore can suffer from poor
accuracy when given noisy or irrelevant attributes. The method, however, has
been modified to incorporate attribute weighting and the pruning of noisy data
tuples. The choice of a distance metric can be critical. The Manhattan (city
block) distance (Section 2.4.4), or other distance measurements, may also be

34 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

used.
Nearest-neighbor classifiers can be extremely slow when classifying test tu-

ples. If D is a training database of |D| tuples and k = 1, then O(|D|) com-
parisons are required in order to classify a given test tuple. By presorting and
arranging the stored tuples into search trees, the number of comparisons can
be reduced to O(log(|D|). Parallel implementation can reduce the running time
to a constant, that is O(1), which is independent of |D|. Other techniques to
speed up classification time include the use of partial distance calculations and
editing the stored tuples. In the partial distance method, we compute the dis-
tance based on a subset of the n attributes. If this distance exceeds a threshold,
then further computation for the given stored tuple is halted, and the process
moves on to the next stored tuple. The editing method removes training tuples
that prove useless. This method is also referred to as pruning or condensing
because it reduces the total number of tuples stored.

9.5.2 Case-Based Reasoning

Case-based reasoning (CBR) classifiers use a database of problem solutions
to solve new problems. Unlike nearest-neighbor classifiers, which store training
tuples as points in Euclidean space, CBR stores the tuples or “cases” for prob-
lem solving as complex symbolic descriptions. Business applications of CBR
include problem resolution for customer service help desks, where cases describe
product-related diagnostic problems. CBR has also been applied to areas such
as engineering and law, where cases are either technical designs or legal rulings,
respectively. Medical education is another area for CBR, where patient case
histories and treatments are used to help diagnose and treat new patients.

When given a new case to classify, a case-based reasoner will first check if
an identical training case exists. If one is found, then the accompanying solu-
tion to that case is returned. If no identical case is found, then the case-based
reasoner will search for training cases having components that are similar to
those of the new case. Conceptually, these training cases may be considered
as neighbors of the new case. If cases are represented as graphs, this involves
searching for subgraphs that are similar to subgraphs within the new case. The
case-based reasoner tries to combine the solutions of the neighboring training
cases in order to propose a solution for the new case. If incompatibilities arise
with the individual solutions, then backtracking to search for other solutions may
be necessary. The case-based reasoner may employ background knowledge and
problem-solving strategies in order to propose a feasible combined solution.

Challenges in case-based reasoning include finding a good similarity metric
(e.g., for matching subgraphs) and suitable methods for combining solutions.
Other challenges include the selection of salient features for indexing training
cases and the development of efficient indexing techniques. A trade-off between
accuracy and efficiency evolves as the number of stored cases becomes very large.
As this number increases, the case-based reasoner becomes more intelligent.
After a certain point, however, the efficiency of the system will suffer as the
time required to search for and process relevant cases increases. As with nearest-
neighbor classifiers, one solution is to edit the training database. Cases that are

9.6. OTHER CLASSIFICATION METHODS 35

redundant or that have not proved useful may be discarded for the sake of
improved performance. These decisions, however, are not clear-cut and their
automation remains an active area of research.

9.6 Other Classification Methods

In this section, we give a brief description of several other classification methods,
including genetic algorithms (Section 9.6.1), rough set approach (Section 9.6.2),
and fuzzy set approaches (Section 9.6.3). In general, these methods are less
commonly used for classification in commercial data mining systems than the
methods described earlier in this book. However, these methods do show their
strength in certain applications, and hence it is worthwhile to include them here.

9.6.1 Genetic Algorithms

Genetic algorithms attempt to incorporate ideas of natural evolution. In
general, genetic learning starts as follows. An initial population is created
consisting of randomly generated rules. Each rule can be represented by a string
of bits. As a simple example, suppose that samples in a given training set are
described by two Boolean attributes, A1 and A2, and that there are two classes,
C1 and C2. The rule “IF A1 AND NOT A2 THEN C2” can be encoded as the
bit string “100,” where the two leftmost bits represent attributes A1 and A2,
respectively, and the rightmost bit represents the class. Similarly, the rule “IF
NOT A1 AND NOT A2 THEN C1” can be encoded as “001.” If an attribute
has k values, where k > 2, then k bits may be used to encode the attribute’s
values. Classes can be encoded in a similar fashion.

Based on the notion of survival of the fittest, a new population is formed to
consist of the fittest rules in the current population, as well as offspring of these
rules. Typically, the fitness of a rule is assessed by its classification accuracy
on a set of training samples.

Offspring are created by applying genetic operators such as crossover and
mutation. In crossover, substrings from pairs of rules are swapped to form
new pairs of rules. In mutation, randomly selected bits in a rule’s string are
inverted.

The process of generating new populations based on prior populations of
rules continues until a population, P , evolves where each rule in P satisfies a
prespecified fitness threshold.

Genetic algorithms are easily parallelizable and have been used for classi-
fication as well as other optimization problems. In data mining, they may be
used to evaluate the fitness of other algorithms.

9.6.2 Rough Set Approach

Rough set theory can be used for classification to discover structural relation-
ships within imprecise or noisy data. It applies to discrete-valued attributes.
Continuous-valued attributes must therefore be discretized before its use.

36 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

C

Upper approximation of C

Lower approximation of C

Figure 9.14: A rough set approximation of the set of tuples of the class C using
lower and upper approximation sets of C. The rectangular regions represent
equivalence classes.

Rough set theory is based on the establishment of equivalence classeswithin
the given training data. All of the data tuples forming an equivalence class are
indiscernible, that is, the samples are identical with respect to the attributes de-
scribing the data. Given real-world data, it is common that some classes cannot be
distinguished intermsoftheavailableattributes. Roughsetscanbeusedtoapprox-
imately or “roughly” define such classes. A rough set definition for a given class,
C, is approximatedby two sets—a lower approximation of C and anupper ap-
proximation ofC. The lower approximation of C consists of all of the data tuples
that, based on the knowledge of the attributes, are certain to belong to C without
ambiguity. The upper approximation of C consists of all of the tuples that, based
on the knowledge of the attributes, cannot be described as not belonging to C. The
lower and upper approximations for a class C are shown in Figure 9.14, where each
rectangular region represents an equivalence class. Decision rules canbe generated
for each class. Typically, a decision table is used to represent the rules.

Rough sets can also be used for attribute subset selection (or feature re-
duction, where attributes that do not contribute toward the classification of the
given training data can be identified and removed) and relevance analysis (where
the contribution or significance of each attribute is assessed with respect to the
classification task). The problem of finding the minimal subsets (reducts) of
attributes that can describe all of the concepts in the given data set is NP-hard.
However, algorithms to reduce the computation intensity have been proposed.
In one method, for example, a discernibility matrix is used that stores the
differences between attribute values for each pair of data tuples. Rather than
searching on the entire training set, the matrix is instead searched to detect
redundant attributes.

9.6.3 Fuzzy Set Approaches

Rule-based systems for classificationhave thedisadvantage that they involve sharp
cutoffs for continuous attributes. For example, consider the following rule for cus-

9.6. OTHER CLASSIFICATION METHODS 37

1.0

10K 20K 30K 40K 50K 60K 70K

income

0.5

0
0

highmediumlow

fu
zz

y
m

em
be

rs
hi

p

Figure 9.15: Fuzzy truth values for income, representing the degree of mem-
bership of income values with respect to the categories {low, medium, high}.
Each category represents a fuzzy set. Note that a given income value, x, can
have membership in more than one fuzzy set. The membership values of x in
each fuzzy set do not have to total to 1.

tomer credit application approval. The rule essentially says that applications for
customers who have had a job for two or more years and who have a high income
(i.e., of at least $50,000) are approved:

IF (years employed ≥ 2) AND (income ≥ 50K) THEN credit = approved.(9.24)

By Rule (9.24), a customer who has had a job for at least two years will receive
credit if her income is, say, $50,000, but not if it is $49,000. Such harsh thresh-
olding may seem unfair. Instead, we can discretize income into categories such
as {low income, medium income, high income}, and then apply fuzzy logic to al-
low “fuzzy” thresholds or boundaries to be defined for each category (Figure 9.15).
Rather thanhavingaprecise cutoffbetweencategories, fuzzy logicuses truthvalues
between 0.0 and 1.0 to represent the degree of membership that a certain value has
in a given category. Each category then represents a fuzzy set. Hence, with fuzzy
logic, we can capture the notion that an income of $49,000 is, more or less, high,
althoughnot as high as an income of $50,000. Fuzzy logic systems typically provide
graphical tools to assist users in converting attribute values to fuzzy truth values.

Fuzzy set theory is also known as possibility theory. It was proposed
by Lotfi Zadeh in 1965 as an alternative to traditional two-value logic and
probability theory. It lets us work at a high level of abstraction and offers
a means for dealing with imprecise measurement of data. Most important,
fuzzy set theory allows us to deal with vague or inexact facts. For example,
being a member of a set of high incomes is inexact (e.g., if $50,000 is high, then
what about $49,000? Or $48,000?) Unlike the notion of traditional “crisp”
sets where an element either belongs to a set S or its complement, in fuzzy
set theory, elements can belong to more than one fuzzy set. For example, the
income value $49,000 belongs to both the medium and high fuzzy sets, but to
differing degrees. Using fuzzy set notation and following Figure 9.15, this can
be shown as

mmedium income($49K) = 0.15 and mhigh income($49K) = 0.96,

38 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

where m denotes the membership function, operating on the fuzzy sets of
medium income and high income, respectively. In fuzzy set theory, member-
ship values for a given element, x, (e.g., such as for $49,000) do not have to
sum to 1. This is unlike traditional probability theory, which is constrained by
a summation axiom.

Fuzzy set theory is useful for data mining systems performing rule-based
classification. It provides operations for combining fuzzy measurements. Sup-
pose that in addition to the fuzzy sets for income, we defined the fuzzy sets
junior employee and senior employee for the attribute years employed. Sup-
pose also that we have a rule that, say, tests high income and senior employee
in the rule antecedent (IF part) for a given employee, x. If these two fuzzy
measures are ANDed together, the minimum of their measure is taken as the
measure of the rule. In other words,

m(high income AND senior employee)(x) = min(mhigh income(x), msenior employee(x)).

This is akin to saying that a chain is as strong as its weakest link. If the two
measures are ORed, the maximum of their measure is taken as the measure of
the rule. In other words,

m(high income OR senior employee)(x) = max(mhigh income(x), msenior employee(x)).

Intuitively, this is like saying that a rope is as strong as its strongest strand.
Given a tuple to classify, more than one fuzzy rule may apply. Each ap-

plicable rule contributes a vote for membership in the categories. Typically,
the truth values for each predicted category are summed, and these sums are
combined. Several procedures exist for translating the resulting fuzzy output
into a defuzzified or crisp value that is returned by the system.

Fuzzy logic systems have been used in numerous areas for classification,
including market research, finance, health care, and environmental engineering.

9.7. ADDITIONAL TOPICS REGARDING CLASSIFICATION 39

9.7 Additional Topics Regarding Classification

Most of the classification algorithms we have studied handle multiple classes
but some, such as support vector machines, assume only two classes exist in the
data. What adaptations can be made to allow for when there are more than two
classes? This question is addressed in Section 9.7.1 on multiclass classification.

What can we do if we would like to build a classifier for data where, only
some of the data are class-labeled, but most of it are not? Document classifica-
tion, speech recognition, and information extraction are just a few examples of
applications in which unlabeled data are abundant. Consider document classi-
fication, for example. Suppose we would like to build a model to automatically
classify text documents like articles or Web pages. In particular, we would like
the model to distinguish between hockey and football documents. We have a
vast amount of documents available, yet the documents are not class-labeled.
Recall that supervised learning requires a training set, that is, a set of class-
labeled data. To have a human examine and assign a class label to individual
documents (in order to form a training set) is time-consuming and expensive.
Speech recognition requires the accurate labeling of speech utterances by trained
linguists. It was reported that one minute of speech takes 10 minutes to label,
and annotating phonemes (basic units of sound) can take 400 times as long. In-
formation extraction systems are trained using labeled documents with detailed
annotations. These are obtained by having human experts highlight items or
relations of interest in text, such as the names of companies or individuals.
High-level expertise may be required for certain knowledge domains, such as
gene and disease mentions in biomedical information extraction. Clearly, the
manual assignment of class labels in order to prepare a training set can be
extremely costly, time-consuming, and tedious.

We study three approaches to classification that are suitable for situations
where there is an abundance of unlabeled data. Section 9.7.2 introduces semi-
supervised classification, which builds a classifier using both labeled and unla-
beled data. Section 9.7.3 presents active learning, where the learning algorithm
carefully selects a few of the unlabeled data tuples and asks a human to label
only those tuples. Section 9.7.4 presents transfer learning, which aims to extract
the knowledge from one or more source tasks (like classifying camera reviews)
and apply the knowledge to a target task (like TV reviews). Each of these
strategies can reduce the need to annotate large amounts of data, resulting in
cost and time savings.

9.7.1 Multiclass Classification

Some classification algorithms, such as Support Vector Machines, are designed
for binary classification. How can we extend such algorithms to allow for mul-
ticlass classification (i.e., classification involving more than two classes)?

A simple approach is one-versus-all (OVA). Given m classes, we train m
binary classifiers, one for each class. Classifier j is trained using tuples of class j
as the positive class, and the remaining tuples as the negative class. It learns to

40 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

Class Error-correcting codeword
C1 1 1 1 1 1 1 1
C2 0 0 0 0 1 1 1
C3 0 0 1 1 0 0 1
C4 0 1 0 1 0 1 0

Figure 9.16: Error-correcting codes for a multiclass classification problem in-
volving four classes.

return a positive value for class j and a negative value for the rest. To classify
an unknown tuple, X, the set of classifiers vote as an ensemble. For example,
if classifier j predicts the positive class for X, then class j gets one vote. If it
predicts the negative class for X, then each of the classes except j gets one vote.
The class with the most votes is assigned to X.

All-versus-all (AVA) is an alternative approach that learns a classifier for

each pair of classes. Given m classes, we construct m(m−1)
2 binary classifiers.

A classifier is trained using tuples of the two classes it should discriminate.
To classify an unknown tuple, each classifier votes. The tuple is assigned the
class with the maximum number of votes. All-versus-all tends to be superior to
one-versus-all.

A problem with the above schemes is that binary classifiers are sensitive to
errors. If any classifier makes an error, it can affect the vote count.

Error-correcting codes can be used to improve the accuracy of multiclass
classification, not just in the above situations, but for classification in general.
Error-correcting codes were originally designed to correct errors during data
transmission for communication tasks. For such tasks, the codes are used to
add redundancy to the data being transmitted so that, even if some errors
occur due to noise in the channel, the data can be correctly received at the
other end. For multiclass classification, even if some of the individual binary
classifiers make a prediction error for a given unknown tuple, we may still be
able to correctly label the tuple.

An error-correcting code is assigned to each class, where each code is a bit
vector. Figure 9.16 show an example of 7-bit codewords assigned to classes
C1, C2, C3, and C4. We train one classifier for each bit position. Therefore, in
our example we train seven classifiers. If a classifier makes an error, there is
a better chance that we may still be able to predict the right class for a given
unknown tuple because of the redundancy gained by having additional bits. The
technique uses a distance measurement called the Hamming distance to guess
the “closest” class in case of errors, and is illustrated in the following example.

Example 9.3 Multiclass classification with error-correcting codes. Consider the 7-bit
codewords associated with classes C1 to C4 in Figure 9.16. Suppose that, given
an unknown tuple to label, the seven trained binary classifiers collectively output
the codeword 0001010, which does not match a codeword for any of the four
classes. A classification error has obviously occurred, but can we figure out what

9.7. ADDITIONAL TOPICS REGARDING CLASSIFICATION 41

the classification most likely should be? We can try by using the Hamming
distance, which is the number of different bits between two codewords. The
Hamming distance between the output codeword and the codeword for C1 is
5 because five bits—namely, the 1st, 2nd, 3rd, 5th, and 7th—differ. Similarly,
the Hamming distance between the output code and the codewords for C2 to
C4 are 3, 3, and 1, respectively. Note that the output codeword is closest to the
codeword for C4. That is, the smallest Hamming distance between the output
and a class codeword is for class C4. Therefore, we assign C4 as the class label
of the given tuple.

Error-correcting codes can correct up to h−1
h 1-bit errors, where h is the

minimum Hamming distance between any two codewords. If we use one bit per
class (such as for 4-bit codewords for classes C1 to C4, then this is equivalent
to the one-versus-all approach, and the codes are not sufficient to self-correct.
(Try it as an exercise.) When selecting error-correcting codes for multiclass
classification, there must be good row-wise and column-wise separation between
the codewords. The greater the distance is, the more likely that errors will be
corrected.

9.7.2 Semi-Supervised Classification

Semi-supervised classification uses labeled data and unlabeled data to build
a classifier. Let Xl = {(x1, y1), . . . , xl, yl)} be the set of labeled data and Xu =
{xl+1, . . . , xn} be the set of unlabeled data. Here we describe a few examples
of this approach for learning.

Self-training is the simplest form of semi-supervised classification. It first
builds a classifier using the labeled data. The classifier then tries to label the
unlabeled data. The tuple with the most confident label prediction is added to
the set of labeled data, and the process repeats (Figure 9.17). Although the
method is easy to understand, a disadvantage is that it may reinforce errors.

Co-training is another form of semi-supervised classification, where two
or more classifiers teach each other. Each learner uses a different and ideally
independent set of features for each tuple. Consider Web page data, for example,
where attributes relating to the images on the page may be used as one set of
features, while attributes relating to the corresponding text constitute another
set of features for the same data. Each set of features should be sufficient to
train a good classifier. Suppose we split the feature set into two sets and train
two classifiers, f1 and f2, where each classifier is trained on a different set. Then,
f1 and f2 are used to predict the class labels for the unlabeled data, Xu. Each
classifier then teaches the other in that, the tuple having the most confident
prediction from f1 is added to the set of labeled data for f2 (along with its
label). Similarly, the tuple having the most confident prediction from f2 is added
to the set of labeled data for f1. The method is summarized in Figure 9.17.
Co-training is less-sensitive to errors than self-training. A difficulty is that the
assumptions for its usage may not hold true, that is, it may not be possible to
split the features into mutually exclusive and class-conditionally independent

42 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

Self-training.

1. Select a learning method such as, say, Bayesian classification. Build the classifier using
the labeled data, Xl.

2. Use the classifier to label the unlabeled data, Xu.

3. Select the tuple x ∈ Xu having the highest confidence (most confident prediction). Add
it and its predicted label to Xl.

4. Repeat (that is, retrain the classifier using the augmented set of labeled data.)

Co-training.

1. Define two separate non-overlapping feature sets for the labeled data, Xl.

2. Train two classifiers, f1 and f2 on the labeled data, where f1 is trained using one of
the feature sets and f2 is trained using the other.

3. Classify Xu with f1 and f2 separately.

4. Add the most confident (x, f1(x)) to the set of labeled data used by f2, where x ∈ Xu.
Similarly, add the most confident (x, f2(x)) to the set of labeled data used by f1.

5. Repeat.

Figure 9.17: Self-training and co-training methods of semi-supervised classifica-
tion.

sets.

Alternate approaches to semi-supervised learning exist. For example, we
can model the joint probability distribution of the features and the labels. For
the unlabeled data, the labels can then be treated as missing data. The EM
algorithm (Chapter 10) can be used to maximize the likelihood of the model.
Methods using support vector machines have also been proposed.

9.7.3 Active Learning

Active learning is an iterative type of supervised learning that is suitable for
situations where data are abundant, yet the class-labels are scarce or expensive
to obtain. The learning algorithm is active in that in can purposefully query a
user (e.g., a human oracle) for labels. The number of tuples used to learn a con-
cept this way is often much less than the number required in typical supervised
learning.

“How does active learning work to overcome the labeling bottleneck?” To
keep costs down, the active learner aims to achieve high accuracy using as few
labeled instances as possible. Let D be the entire data under consideration.
Various strategies exist for active learning on D. Figure 9.18 illustrates a pool-
based approach to active learning. Suppose that a small subset of D is class-
labeled. This set is denoted L. U is the set of unlabeled data in D. It is also
referred to as a pool of unlabeled data. An active learner begins with L as the

9.7. ADDITIONAL TOPICS REGARDING CLASSIFICATION 43

Figure 9.18: The pool-based active learning cycle (from Settles 2010, Burr Set-
tles Computer Sciences Technical Report 1648, University of WisconsinMadison;
permission to be requested).

initial training set. It then uses a querying function to carefully select one or
more data samples from U and requests labels for them from an oracle (e.g.,
a human annotator). The newly labeled samples are added to L, which the
learner than uses in a standard supervised way. The process repeats. The goal
of the active learning is to achieve high accuracy using as few labeled tuples
as possible. Active learning algorithms are typically evaluated with the use of
learning curves, which plot accuracy as a function of the number of instances
queried.

Most of the research in active learning focusses on how to choose the data
tuples to be queried. Several frameworks have been proposed. Uncertainty sam-
pling is the most common, where the active learner chooses to query the tuples
for which it is the least certain how to label. Other strategies work to reduce the
version space, that is the subset of all hypotheses that are consistent with the
observed training tuples. Alternatively, we may follow a decision-theoretic ap-
proach that estimates expected error reduction. This selects tuples that would
result in the greatest reduction in the total number of incorrect predictions,
such as by reducing the expected entropy over U . This latter approach tends
to be more computationally expensive.

9.7.4 Transfer Learning

Suppose that AllElectronics has collected a number of customer reviews on a
product, such as a brand of camera. The classification task is to automatically
label the reviews as either positive or negative. This task is known as sentiment
classification. We could examine each review and annotate them by adding a
positive or negative class label. The labeled reviews can then be used to train
and test a classifier to label future reviews of the product as either positive
or negative. The manual effort involved in annotating the review data can be
expensive and time-consuming.

Suppose that AllElectronics has customer reviews for other products as well,

44 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

(a)
Learning System
 Learning System
 Learning System

Different Tasks

(b)
Knowledge
 Learning System

Source Tasks
 Target Task

Figure 9.19: Transfer Learning vs. traditional learning: (a) Traditional learning
methods build a new classifier from scratch for each classification task, and
(b) Transfer learning applies knowledge from a source classifier to simplify the
construction of a classifier for a new, target task. (From Pan and Yang 2010
[PY10]; permission to be requested).

such as TVs. The distribution of review data for different types of products
can vary greatly. We cannot assume that the TV-review data will have the
same distribution as the camera-review data, thus we must build a separate
classification model for the TV-review data. Examining and labeling the TV-
review data in order to form a training set will require a lot of effort. In fact,
we would need to label a large amount of the data in order to train the review-
classification models for each product. It would be nice if we could adapt an
existing classification model (such as the one we built for cameras) to help learn
a classification model for TV’s. Such knowledge transfer would reduce the need
to annotate a large amount of data, resulting in cost and time savings. This is
the essence behind transfer learning.

Transfer learning aims to extract the knowledge from one or more source
tasks and apply the knowledge to a target task. In our example above, the source
task is the classification of camera reviews, and the target task is the classifi-
cation of TV reviews. Figure 9.19 illustrates a comparison between traditional
learning methods and transfer learning. Traditional learning methods build a
new classifier for each new classification task, based on available class-labeled
training and test data. Transfer learning algorithms apply knowledge about
source tasks when building a classifier for a new (target) task. Construction
of the resulting classifier requires fewer training data and less training time.
Traditional learning algorithms assume that the training data and test data are
drawn from the same distribution and the same feature space. Thus, if the
distribution changes, such methods need to rebuild the models from scratch.
Transfer learning allows the distributions, tasks, and even the data domains
used in training and testing to be different. Transfer learning is analogous to
the way humans may apply their knowledge of a task to facilitate the learning of
another task. For example, if we know how to play the recorder, we may apply
our knowledge of note reading and music to simplify the task of learning to play
the piano. Similarly, knowing Spanish may make it easier to learn Italian.

Transfer learning is useful for common applications where the data become

9.7. ADDITIONAL TOPICS REGARDING CLASSIFICATION 45

outdated or the distribution changes. Here we give two more examples. Consider
Web-document classification, where we may have trained a classifier to label, say,
articles from various newsgroups according to predefined categories. The Web-
data that were used to train the classifier can easily become outdated because
the topics on the Web change frequently. Another application area for transfer
learning is email spam-filtering. We could train a classifier to label email as
either “spam” or “not spam”, using email from a group of users. If new users
come along, the distribution of their email can be different from the original
group, hence the need to adapt the learned model to incorporate the new data.

There are various approaches to transfer learning, the most common of which
is the instance-based transfer learning approach. This approach re-weights some
of the data from the source task and uses it to learn the target task. The TRAd-
aBoost (Transfer AdaBoost) algorithm exemplifies this approach. Consider our
example of Web-document classification above, where the distribution of the old
data on which the classifier was trained (the source data) is different from the
newer data (the target data). TrAdaBoost assumes that the source and target
domain data are each described by the same set of attributes (that is, they
have the same “feature space”) and the same set of class labels, but that the
distribution of the data in the two domains are very different. It extends the
AdaBoost ensemble method described in Section 8.6.3. TrAdaBoost requires
the labeling of only a small amount of the target data. Rather than throwing
out all of the old source data, TrAdaBoost assumes that a large amount of
it can be useful in training the new classification model. The idea is to filter
out the influence of any old data that are very different from the new data by
automatically adjusting weights assigned to the training tuples. Recall that in
boosting, an ensemble is created by learning a series of classifiers. To begin,
each tuple is assigned a weight. After a classifier Mi is learned, the weights
are updated to allow the subsequent classifier, Mi+1, to “pay more attention”
to the training tuples that were misclassified by Mi. TRAdaBoost follows this
strategy for the target data. However, if a source data tuple is misclassified,
TrAdaBoost reasons that the tuple is probably very different from the target
data. It therefore reduces the weight of such tuples so that they will have less
effect on the subsequent classifier. As a result, TrAdaBoost can learn an ac-
curate classification model using only a small amount of new data and a large
amount of old data, even when the new data alone are insufficient to train the
model. Hence, in this way TrAdaBoost allows knowledge to be transferred from
the old classifier to the new one.

A challenge with transfer learning is negative transfer, which occurs when
the new classifier performs worse than if there had been no transfer at all. Work
on how to avoid negative transfer is an area of future research. Heterogeneous
transfer learning, which involves transferring knowledge from different feature
spaces and multiple source domains, is another venue for further work. Much
of the research on transfer learning to date has been on small scale applica-
tions. The use of transfer learning on larger applications, such as social network
analysis and video classification, is an area for further investigation.

46 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

9.8 Summary

• Unlike näıve Bayesian classification (which assumes class conditional inde-
pendence), Bayesian belief networks allow class conditional indepen-
dencies to be defined between subsets of variables. They provide a graph-
ical model of causal relationships, on which learning can be performed.
Trained Bayesian belief networks can be used for classification.

• Backpropagation is a neural network algorithm for classification that
employs a method of gradient descent. It searches for a set of weights
that can model the data so as to minimize the mean squared distance
between the network’s class prediction and the actual class label of data
tuples. Rules may be extracted from trained neural networks in order to
help improve the interpretability of the learned network.

• A Support Vector Machine (SVM) is an algorithm for the classifica-
tion of both linear and nonlinear data. It transforms the original data into
a higher dimension, from where it can find a hyperplane for separation of
the data using essential training tuples called support vectors.

• Frequent patterns reflect strong associations between attribute-value pairs
(or items) in data and are used in classification based on frequent pat-
terns. Approaches to this methodology include associative classification
and discriminant frequent pattern-based classification. In associative
classification, a classifier is built from association rules generated from
frequent patterns. In discriminative frequent pattern-based classifi-
cation, frequent patterns serve as combined features, which are considered
in addition to single features when building a classification model.

• Decision tree classifiers, Bayesian classifiers, classification by backprop-
agation, support vector machines, and classification based on frequent
patterns are all examples of eager learners in that they use training
tuples to construct a generalization model and in this way are ready for
classifying new tuples. This contrasts with lazy learners or instance-
based methods of classification, such as nearest-neighbor classifiers and
case-based reasoning classifiers, which store all of the training tuples in
pattern space and wait until presented with a test tuple before performing
generalization. Hence, lazy learners require efficient indexing techniques.

• In genetic algorithms, populations of rules “evolve” via operations of
crossover and mutation until all rules within a population satisfy a spec-
ified threshold. Rough set theory can be used to approximately de-
fine classes that are not distinguishable based on the available attributes.
Fuzzy set approaches replace “brittle” threshold cutoffs for continuous-
valued attributes with degree of membership functions.

• Binary classification schemes, such as support vector machines, can be
adapted to handle multiclass classification. This involves constructing

9.9. EXERCISES 47

an ensemble of binary classifiers. Error-correcting codes can be used to
increase the accuracy of the ensemble.

• Semi-supervised classification is useful when large amounts of unla-
beled data exist. It builds a classifier using both labeled and unlabeled
data. Examples of semi-supervised classification include self-training and
co-training.

• Active learning is a form of supervised learning that is also suitable
for situations where data are abundant, yet the class-labels are scarce or
expensive to obtain. The learning algorithm can actively query a user
(e.g., a human oracle) for labels. To keep costs down, the active learner
aims to achieve high accuracy using as few labeled instances as possible.

• Transfer learning aims to extract the knowledge from one or more source
tasks and apply the knowledge to a target task. TrAdaBoost is an example
of the instance-based approach to transfer learning, which re-weights some
of the data from the source task and uses it to learn the target task,
thereby requiring fewer labeled target-task tuples.

9.9 Exercises

1. The following table consists of training data from an employee database.
The data have been generalized. For example, “31 . . . 35” for age repre-
sents the age range of 31 to 35. For a given row entry, count represents
the number of data tuples having the values for department, status, age,
and salary given in that row.

department status age salary count
sales senior 31. . . 35 46K. . . 50K 30
sales junior 26. . . 30 26K. . . 30K 40
sales junior 31. . . 35 31K. . . 35K 40
systems junior 21. . . 25 46K. . . 50K 20
systems senior 31. . . 35 66K. . . 70K 5
systems junior 26. . . 30 46K. . . 50K 3
systems senior 41. . . 45 66K. . . 70K 3
marketing senior 36. . . 40 46K. . . 50K 10
marketing junior 31. . . 35 41K. . . 45K 4
secretary senior 46. . . 50 36K. . . 40K 4
secretary junior 26. . . 30 26K. . . 30K 6

Let status be the class label attribute.

(a) Design a multilayer feed-forward neural network for the given data.
Label the nodes in the input and output layers.

48 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

(b) Using the multilayer feed-forward neural network obtained above,
show the weight values after one iteration of the backpropagation al-
gorithm, given the training instance “(sales, senior, 31. . . 35, 46K. . . 50K)”.
Indicate your initial weight values and biases, and the learning rate
used.

2. The support vector machine (SVM) is a highly accurate classification
method. However, SVM classifiers suffer from slow processing when train-
ing with a large set of data tuples. Discuss how to overcome this difficulty
and develop a scalable SVM algorithm for efficient SVM classification in
large datasets.

3. Compare and contrast associative classification and discriminative fre-
quent pattern-based classification. Why is classification based on frequent
patterns able to achieve higher classification accuracy than a classical
decision-tree method?

4. Compare the advantages and disadvantages of eager classification (e.g.,
decision tree, Bayesian, neural network) versus lazy classification (e.g.,
k-nearest neighbor, case-based reasoning).

5. Write an algorithm for k-nearest neighbor classification given k and n, the
number of attributes describing each tuple.

6. Briefly describe classification using i) genetic algorithms, ii) rough sets,
and iii) fuzzy sets.

7. Example 9.3 showed an example of the use of error-correcting codes for a
multiclass classification problem having four classes.

(a) Suppose that, given an unknown tuple to label, the seven trained
binary classifiers collectively output the codeword 0101110, which
does not match a codeword for any of the four classes. Using error
correction, what class label should be assigned to the tuple?

(b) Explain why using a 4-bit vector for the codewords is insufficient for
error correction.

8. Semi-supervised classification, active learning and transfer learning are
useful for situations in which unlabeled data are abundant.

(a) Describe semi-supervised classification, active learning and transfer
learning. Elaborate on applications for which they are useful, as well
as the challenges of these approaches to classification.

(b) Research and describe an approach to semi-supervised classification
other than self-training and co-training.

9.10. BIBLIOGRAPHIC NOTES 49

(c) Research and describe an approach to active learning other than
pool-based learning.

(d) Research and describe an alternative approach to instance-based
transfer learning. [from MK: Jiawei or Jian, can you add
some programming assignments for these topics?]

9.10 Bibliographic Notes

For an introduction to Bayesian belief networks, see Heckerman [Hec96]. For
a thorough presentation of probabilistic networks, see Pearl [Pea88]. Solutions
for learning the belief network structure from training data given observable
variables are proposed in [CH92, Bun94, HGC95]. Algorithms for inference on
belief networks can be found in Russell and Norvig [RN95] and Jensen [Jen96].
The method of gradient descent, described in Section 9.1.2 for training Bayesian
belief networks, is given in Russell, Binder, Koller, and Kanazawa [RBKK95].
The example given in Figure 9.1 is adapted from Russell et al. [RBKK95]. Al-
ternative strategies for learning belief networks with hidden variables include
application of Dempster, Laird, and Rubin’s [DLR77] EM (Expectation Max-
imization) algorithm (Lauritzen [Lau95]) and methods based on the minimum
description length principle (Lam [Lam98]). Cooper [Coo90] showed that the
general problem of inference in unconstrained belief networks is NP-hard. Limi-
tations of belief networks, such as their large computational complexity (Laskey
and Mahoney [LM97]), have prompted the exploration of hierarchical and com-
posable Bayesian models (Pfeffer, Koller, Milch, and Takusagawa [PKMT99]
and Xiang, Olesen, and Jensen [XOJ00]). These follow an object-oriented ap-
proach to knowledge representation.

The perceptron is a simple neural network, proposed in 1958 by Rosenblatt
[Ros58], which became a landmark in early machine learning history. Its in-
put units are randomly connected to a single layer of output linear threshold
units. In 1969, Minsky and Papert [MP69] showed that perceptrons are inca-
pable of learning concepts that are linearly inseparable. This limitation, as well
as limitations on hardware at the time, dampened enthusiasm for research in
computational neuronal modeling for nearly 20 years. Renewed interest was
sparked following presentation of the backpropagation algorithm in 1986 by
Rumelhart, Hinton, and Williams [RHW86], as this algorithm can learn concepts
that are linearly inseparable. Since then, many variations for backpropagation
have been proposed, involving, for example, alternative error functions (Hanson
and Burr [HB88]), dynamic adjustment of the network topology (Mézard and
Nadal [MN89], Fahlman and Lebiere [FL90], Le Cun, Denker, and Solla [LDS90],
and Harp, Samad, and Guha [HSG90]), and dynamic adjustment of the learn-
ing rate and momentum parameters (Jacobs [Jac88]). Other variations are
discussed in Chauvin and Rumelhart [CR95]. Books on neural networks include
[RM86, HN90, HKP91, CR95, Bis95, Rip96, Hay99]. Many books on machine
learning, such as [Mit97, RN95], also contain good explanations of the back-

50 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

propagation algorithm. There are several techniques for extracting rules from
neural networks, such as [SN88, Gal93, TS93, Avn95, LSL95, CS96, LGT97].
The method of rule extraction described in Section 9.2.4 is based on Lu, Se-
tiono, and Liu [LSL95]. Critiques of techniques for rule extraction from neural
networks can be found in Craven and Shavlik [CS97]. Roy [Roy00] proposes
that the theoretical foundations of neural networks are flawed with respect to
assumptions made regarding how connectionist learning models the brain. An
extensive survey of applications of neural networks in industry, business, and
science is provided in Widrow, Rumelhart, and Lehr [WRL94].

Support Vector Machines (SVMs) grew out of early work by Vapnik and
Chervonenkis on statistical learning theory [VC71]. The first paper on SVMs
was presented by Boser, Guyon, and Vapnik [BGV92]. More detailed accounts
can be found in books by Vapnik [Vap95, Vap98]. Good starting points in-
clude the tutorial on SVMs by Burges [Bur98], as well as textbook coverage by
Haykin [Hay08], Kecman [Kec01], and Cristianini and Shawe-Taylor [CST00].
For methods for solving optimization problems, see Fletcher [Fle87] and Nocedal
and Wright [NW99]. These references give additional details alluded to as “fancy
math tricks” in our text, such as transformation of the problem to a Lagrangian
formulation and subsequent solving using Karush-Kuhn-Tucker (KKT) condi-
tions. For the application of SVMs to regression, see Schlkopf, Bartlett, Smola,
and Williamson [SBSW99], and Drucker, Burges, Kaufman, Smola, and Vapnik
[DBK+97]. Approaches to SVM for large data include the sequential minimal
optimization algorithm by Platt [Pla98], decomposition approaches such as in
Osuna, Freund, and Girosi [OFG97], and CB-SVM, a microclustering-based
SVM algorithm for large data sets, by Yu, Yang, and Han [YYH03]. A li-
brary of software for support vector machines is provided by Chang and Lin at
www.csie.ntu.edu.tw/ cjlin/libsvm/, which supports multiclass classification.

Many algorithms have been proposed that adapt frequent pattern mining to
the task of classification. Early studies on associative classification include the
CBA algorithm, proposed in Liu, Hsu, and Ma [LHM98]. A classifier that uses
emerging patterns (itemsets whose support varies significantly from one dataset
to another) is proposed in Dong and Li [DL99] and Li, Dong, and Ramamoha-
narao [LDR00]. CMAR (Classification based on Multiple Association Rules) is
presented in Li, Han, and Pei [LHP01]. CPAR (Classification based on Predic-
tive Association Rules) is presented in Yin and Han [YH03]. Cong, Tan, Tung,
and Xu describe RCBT, a method for mining top-k covering rule groups for clas-
sifying high-dimensional gene expression data with high accuracy [CTTX05].
Wang and Karypis [WK05] present HARMONY (Highest confidence classificA-
tion Rule Mining fOr iNstance-centric classifYing), which directly mines the
final classification rule set with the aid of pruning strategies. Lent, Swami,
and Widom [LSW97] propose the ARCS system (Chapter 7) regarding min-
ing multidimensional association rules. It combines ideas from association rule
mining, clustering, and image processing, and applies them to classification.
Meretakis and Wüthrich [MW99] propose constructing a näıve Bayesian clas-
sifier by mining long itemsets. Veloso, Meira, and Zaki [VMZ06] propose an
association rule-based classification method that differs from the above studies.

9.10. BIBLIOGRAPHIC NOTES 51

It is based on the lazy (non-eager) learning approach to classification, in which
the computation is performed on a demand-driven basis. Studies on discrimina-
tive frequent pattern-based classification were conducted by Cheng, Yan, Han,
and Hsu [CYHH07] and Cheng, Yan, Han, and Yu [CYHY08]. The former work
establishes a theoretical upper bound on the discriminative power of frequent
patterns (based on either information gain [Qui86] or Fisher score [DHS01]),
which can be used as a strategy for setting minimum support. The latter work
describes the DDPMine algorithm, which is a direct approach to mining dis-
criminative frequent patterns for classification in that it avoids generating the
complete frequent pattern set.

Nearest-neighbor classifiers were introduced in 1951 by Fix and Hodges
[FH51]. A comprehensive collection of articles on nearest-neighbor classifica-
tion can be found in Dasarathy [Das91]. Additional references can be found in
many texts on classification, such as Duda et al. [DHS01] and James [Jam85],
as well as articles by Cover and Hart [CH67] and Fukunaga and Hummels
[FH87]. Their integration with attribute-weighting and the pruning of noisy
instances is described in Aha [Aha92]. The use of search trees to improve
nearest-neighbor classification time is detailed in Friedman, Bentley, and Finkel
[FBF77]. The partial distance method was proposed by researchers in vector
quantization and compression. It is outlined in Gersho and Gray [GG92]. The
editing method for removing “useless” training tuples was first proposed by
Hart [Har68]. The computational complexity of nearest-neighbor classifiers is
described in Preparata and Shamos [PS85]. References on case-based reason-
ing (CBR) include the texts by Riesbeck and Schank [RS89], Kolodner [Kol93],
as well as Leake [Lea96] and Aamodt and Plazas [AP94]. For a list of busi-
ness applications, see [All94]. Examples in medicine include CASEY by Koton
[Kot88] and PROTOS by Bareiss, Porter, and Weir [BPW88], while Rissland
and Ashley [RA87] is an example of CBR for law. CBR is available in several
commerical software products. For texts on genetic algorithms, see Goldberg
[Gol89], Michalewicz [Mic92], and Mitchell [Mit96]. Rough sets were introduced
in Pawlak [Paw91]. Concise summaries of rough set theory in data mining in-
clude Ziarko [Zia91], and Cios, Pedrycz, and Swiniarski [CPS98]. Rough sets
have been used for feature reduction and expert system design in many appli-
cations, including Ziarko [Zia91], Lenarcik and Piasta [LP97], and Swiniarski
[Swi98]. Algorithms to reduce the computation intensity in finding reducts
have been proposed in [SR92]. Fuzzy set theory was proposed by Zadeh in
[Zad65, Zad83]. Additional descriptions can be found in [YZ94, Kec01].

Work on multiclass classification is described in Hastie and Tibshirani [HT98],
Tax and Duin [TD02], and Allwein, Shapire, and Singer [ASS00]. Zhu [Zhu05]
presents a comprehensive survey on semi-supervised classification. For addi-
tional references, see the book edited by Chapelle, Schölkopf, and Zien [ClZ06].
Dietterich and Bakiri [DB95] propose the use of error-correcting codes for mul-
ticlass classification. For a survey on active learning, see Settles [Set10]. Pan
and Yang present a survey on transfer learning in [PY10]. The TrAdaBoost
boosting algorithm for transfer learning is given in [DYXY07].

52 CHAPTER 9. CLASSIFICATION: ADVANCED METHODS

Bibliography

[Aha92] D. Aha. Tolerating noisy, irrelevant, and novel attributes in
instance-based learning algorithms. Int. J. Man-Machine Studies,
36:267–287, 1992.

[All94] B. P. Allen. Case-based reasoning: Business applications. Comm.
ACM, 37:40–42, 1994.

[AP94] A. Aamodt and E. Plazas. Case-based reasoning: Foundational is-
sues, methodological variations, and system approaches. AI Comm.,
7:39–52, 1994.

[ASS00] E. Allwein, R. Shapire, and Y. Singer. Reducing multiclass to bi-
nary: A unifying approach for margin classifiers. In Journal of
Machine Learning Research, pages 113–141, 2000.

[Avn95] S. Avner. Discovery of comprehensible symbolic rules in a neural
network. In Proc. 1995 Int. Symp. Intelligence in Neural and Bio-
logical Systems, pages 64–67, 1995.

[BGV92] , B. Boser, I. Guyon, and V. N. Vapnik. A training algorithm for
optimal margin classifiers. In Proc. Fifth Annual Workshop on Com-
putational Learning Theory, pages 144–152, ACM Press: San Mateo,
CA, 1992.

[Bis95] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, 1995.

[BPW88] E. R. Bareiss, B. W. Porter, and C. C. Weir. Protos: An exemplar-
based learning apprentice. Int. J. Man-Machine Studies, 29:549–
561, 1988.

[Bun94] W. L. Buntine. Operations for learning with graphical models. J.
Artificial Intelligence Research, 2:159–225, 1994.

[Bur98] C. J. C. Burges. A tutorial on support vector machines for pat-
tern recognition. Data Mining and Knowledge Discovery, 2:121–168,
1998.

53

54 BIBLIOGRAPHY

[CH67] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE
Trans. Information Theory, 13:21–27, 1967.

[CH92] G. Cooper and E. Herskovits. A Bayesian method for the induction
of probabilistic networks from data. Machine Learning, 9:309–347,
1992.

[ClZ06] O. Chapelle, B. Schölkopf, and A. Zien. Semi-supervised Learning.
MIT Press, 2006.

[Coo90] G. F. Cooper. The computational complexity of probabilistic infer-
ence using Bayesian belief networks. Artificial Intelligence, 42:393–
405, 1990.

[CPS98] K. Cios, W. Pedrycz, and R. Swiniarski. Data Mining Methods for
Knowledge Discovery. Kluwer Academic, 1998.

[CR95] Y. Chauvin and D. Rumelhart. Backpropagation: Theory, Architec-
tures, and Applications. Lawrence Erlbaum, 1995.

[CS96] M. W. Craven and J. W. Shavlik. Extracting tree-structured repre-
sentations of trained networks. In D. Touretzky and M. Mozer M.
Hasselmo, editors, Advances in Neural Information Processing Sys-
tems. MIT Press, 1996.

[CS97] M. W. Craven and J. W. Shavlik. Using neural networks in data
mining. Future Generation Computer Systems, 13:211–229, 1997.

[CST00] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vec-
tor Machines: And Other Kernel-Based Learning Methods. Cam-
bridge Univ. Press, 2000.

[CTTX05] G. Cong, K.-Lee Tan, A. K. H. Tung, and X. Xu. Mining top-k
covering rule groups for gene expression data. In Proc. 2005 ACM-
SIGMOD Int. Conf. Management of Data (SIGMOD’05), pages
670–681, Baltimore, MD, June 2005.

[CYHH07] H. Cheng, X. Yan, J. Han, and C.-W. Hsu. Discriminative fre-
quent pattern analysis for effective classification. In Proc. 2007
Int. Conf. Data Engineering (ICDE’07), pages 716–725, Istanbul,
Turkey, April 2007.

[CYHY08] H. Cheng, X. Yan, J. Han, and P. S. Yu. Direct discriminative
pattern mining for effective classification. In Proc. 2008 Int. Conf.
Data Engineering (ICDE’08), Cancun, Mexico, April 2008.

[Das91] B. V. Dasarathy. Nearest Neighbor (NN) Norms: NN Pattern Clas-
sification Techniques. IEEE Computer Society Press, 1991.

BIBLIOGRAPHY 55

[DB95] T. G. Dietterich and G. Bakiri. Solving multiclass learning problems
via error-correcting output codes. Journal of Artificial Intelligence
Research, 2:263–286, 1995.

[DBK+97] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. N. Vap-
nik. Support vector regression machines. In M. Mozer, M. Jordan,
and T. Petsche, editors, Advances in Neural Information Processing
Systems 9, pages 155–161. MIT Press, 1997.

[DHS01] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification
(2nd ed.). John Wiley & Sons, 2001.

[DL99] G. Dong and J. Li. Efficient mining of emerging patterns: Dis-
covering trends and differences. In Proc. 1999 Int. Conf. Knowledge
Discovery and Data Mining (KDD’99), pages 43–52, San Diego, CA,
Aug. 1999.

[DLR77] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. J. Royal Statistical Society,
39:1–38, 1977.

[DYXY07] W. Dai, Q. Yang, G. Xue, and Y. Yu. Boosting for transfer learning.
In Proc. 24th Intl. Conf. on Machine Learning, pages 193–200, Jun.
2007.

[FBF77] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for
finding best matches in logarithmic expected time. ACM Transac-
tions on Math Software, 3:209–226, 1977.

[FH51] E. Fix and J. L. Hodges Jr. Discriminatory analysis, non-parametric
discrimination: consistency properties. In Technical Report 21-49-
004(4), USAF School of Aviation Medicine, Randolph Field, Texas,
1951.

[FH87] K. Fukunaga and D. Hummels. Bayes error estimation using parzen
and k-nn procedure. In IEEE Trans. Pattern Analysis and Machine
Learning, pages 634–643, 1987.

[FL90] S. Fahlman and C. Lebiere. The cascade-correlation learning al-
gorithm. In Technical Report CMU-CS-90-100, Computer Science
Dept., Carnegie Mellon University, 1990.

[Fle87] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons,
1987.

[Gal93] S. I. Gallant. Neural Network Learning and Expert Systems. MIT
Press, 1993.

[GG92] A. Gersho and R. M. Gray. Vector Quantization and Signal Com-
pression. Kluwer Academic, 1992.

56 BIBLIOGRAPHY

[Gol89] D. Goldberg. Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Addison-Wesley, 1989.

[Har68] P. E. Hart. The condensed nearest neighbor rule. IEEE Trans.
Information Theory, 14:515–516, 1968.

[Hay99] S. S. Haykin. Neural Networks: A Comprehensive Foundation. Pren-
tice Hall, 1999.

[Hay08] S. Haykin. Neural Networks and Learning Machines. Prentice Hall,
Saddle River, NJ, 2008.

[HB88] S. J. Hanson and D. J. Burr. Minkowski back-propagation: Learning
in connectionist models with non-euclidean error signals. In Neu-
ral Information Processing Systems, American Institute of Physics,
1988.

[Hec96] D. Heckerman. Bayesian networks for knowledge discovery. In U. M.
Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, ed-
itors, Advances in Knowledge Discovery and Data Mining, pages
273–305. MIT Press, 1996.

[HGC95] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian
networks: The combination of knowledge and statistical data. Ma-
chine Learning, 20:197–243, 1995.

[HKP91] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory
of Neural Computation. Addison Wesley, 1991.

[HN90] R. Hecht-Nielsen. Neurocomputing. Addison Wesley, 1990.

[HSG90] S. A. Harp, T. Samad, and A. Guha. Designing application-specific
neural networks using the genetic algorithm. In D. S. Touretzky,
editor, Advances in Neural Information Processing Systems II, pages
447–454. Morgan Kaufmann, 1990.

[HT98] T. Hastie and R. Tibshirani. Classification by pairwise coupling.
Annals of Statistics, 26:451–471, 1998.

[Jac88] R. Jacobs. Increased rates of convergence through learning rate
adaptation. Neural Networks, 1:295–307, 1988.

[Jam85] M. James. Classification Algorithms. John Wiley & Sons, 1985.

[Jen96] F. V. Jensen. An Introduction to Bayesian Networks. Springer
Verlag, 1996.

[Kec01] V. Kecman. Learning and Soft Computing. MIT Press, 2001.

[Kol93] J. L. Kolodner. Case-Based Reasoning. Morgan Kaufmann, 1993.

BIBLIOGRAPHY 57

[Kot88] P. Koton. Reasoning about evidence in causal explanation. In Proc.
7th Nat. Conf. Artificial Intelligence (AAAI’88), pages 256–263,
Aug. 1988.

[Lam98] W. Lam. Bayesian network refinement via machine learning ap-
proach. IEEE Trans. Pattern Analysis and Machine Intelligence,
20:240–252, 1998.

[Lau95] S. L. Lauritzen. The EM algorithm for graphical association models
with missing data. Computational Statistics and Data Analysis,
19:191–201, 1995.

[LDR00] J. Li, G. Dong, and K. Ramamohanrarao. Making use of the
most expressive jumping emerging patterns for classification. In
Proc. 2000 Pacific-Asia Conf. Knowledge Discovery and Data Min-
ing (PAKDD’00), pages 220–232, Kyoto, Japan, April 2000.

[LDS90] Y. Le Cun, J. S. Denker, and S. A. Solla. Optimal brain damage.
In D. Touretzky, editor, Advances in Neural Information Processing
Systems. Morgan Kaufmann, 1990.

[Lea96] D. B. Leake. CBR in context: The present and future. In D. B.
Leake, editor, Cased-Based Reasoning: Experiences, Lessons, and
Future Directions, pages 3–30. AAAI Press, 1996.

[LGT97] S. Lawrence, C. L Giles, and A. C. Tsoi. Symbolic conversion,
grammatical inference and rule extraction for foreign exchange rate
prediction. In Y. Abu-Mostafa, A. S. Weigend, , and P. N. Refenes,
editors, Neural Networks in the Capital Markets. World Scientific,
1997.

[LHM98] B. Liu, W. Hsu, and Y. Ma. Integrating classification and associa-
tion rule mining. In Proc. 1998 Int. Conf. Knowledge Discovery and
Data Mining (KDD’98), pages 80–86, New York, NY, Aug. 1998.

[LHP01] W. Li, J. Han, and J. Pei. CMAR: Accurate and efficient classifi-
cation based on multiple class-association rules. In Proc. 2001 Int.
Conf. Data Mining (ICDM’01), pages 369–376, San Jose, CA, Nov.
2001.

[LM97] K. Laskey and S. Mahoney. Network fragments: Representing
knowledge for constructing probabilistic models. In Proc. 13th An-
nual Conf. on Uncertainty in Artificial Intelligence, pages 334–341,
Morgan Kaufmann: San Francisco, CA, Aug. 1997.

[LP97] A. Lenarcik and Z. Piasta. Probabilistic rough classifiers with mix-
ture of discrete and continuous variables. In T. Y. Lin and N. Cer-
cone, editors, Rough Sets and Data Mining: Analysis for Imprecise
Data, pages 373–383. Kluwer Academic, 1997.

58 BIBLIOGRAPHY

[LSL95] H. Lu, R. Setiono, and H. Liu. Neurorule: A connectionist approach
to data mining. In Proc. 1995 Int. Conf. Very Large Data Bases
(VLDB’95), pages 478–489, Zurich, Switzerland, Sept. 1995.

[LSW97] B. Lent, A. Swami, and J. Widom. Clustering association rules. In
Proc. 1997 Int. Conf. Data Engineering (ICDE’97), pages 220–231,
Birmingham, England, April 1997.

[Mic92] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution
Programs. Springer Verlag, 1992.

[Mit96] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press,
1996.

[Mit97] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[MN89] M. Mézard and J.-P. Nadal. Learning in feedforward layered net-
works: The tiling algorithm. J. Physics, 22:2191–2204, 1989.

[MP69] M. L. Minsky and S. Papert. Perceptrons: An Introduction to Com-
putational Geometry. MIT Press, 1969.

[NW99] J. Nocedal and S. J. Wright. Numerical Optimization. Springer
Verlag, 1999.

[OFG97] E. Osuna, R. Freund, and F. Girosi. An improved training algorithm
for support vector machines. In Proc. 1997 IEEE Workshop on
Neural Networks for Signal Processing (NNSP’97), pages 276–285,
Amelia Island, FL, Sept. 1997.

[Paw91] Z. Pawlak. Rough Sets, Theoretical Aspects of Reasoning about Data.
Kluwer Academic, 1991.

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan
Kauffman, 1988.

[PKMT99] A. Pfeffer, D. Koller, B. Milch, and K. Takusagawa. SPOOK: A
system for probabilistic object-oriented knowledge representation.
In Proc. 15th Annual Conf. Uncertainty in Artificial Intelligence
(UAI’99), pages 541–550, Stockholm, Sweden, 1999.

[Pla98] J. C. Platt. Fast training of support vector machines using sequen-
tial minimal optimization. In B. Schotolkopf, C. J. C. Burges, and
A. Smola, editors, Advances in Kernel Methods—Support Vector
Learning, pages 185–208. MIT Press, 1998.

[PS85] F. P. Preparata and M. I. Shamos. Computational Geometry: An
Introduction. Springer-Verlag, 1985.

[PY10] S. J. Pan and Q. Yang. A survey on transfer learning. In IEEE
Trans. on Knowledge and Data Engineering, in press, 2010.

BIBLIOGRAPHY 59

[Qui86] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–
106, 1986.

[RA87] E. L. Rissland and K. Ashley. HYPO: A case-based system for trade
secret law. In Proc. 1st Int. Conf. Artificial Intelligence and Law,
pages 60–66, Boston, MA, May 1987.

[RBKK95] S. Russell, J. Binder, D. Koller, and K. Kanazawa. Local learn-
ing in probabilistic networks with hidden variables. In Proc. 1995
Joint Int. Conf. Artificial Intelligence (IJCAI’95), pages 1146–1152,
Montreal, Canada, Aug. 1995.

[RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning in-
ternal representations by error propagation. In D. E. Rumelhart
and J. L. McClelland, editors, Parallel Distributed Processing. MIT
Press, 1986.

[Rip96] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge
University Press, 1996.

[RM86] D. E. Rumelhart and J. L. McClelland. Parallel Distributed Pro-
cessing. MIT Press, 1986.

[RN95] S. Russell and P. Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice-Hall, 1995.

[Ros58] F. Rosenblatt. The perceptron: A probabilistic model for informa-
tion storage and organization in the brain. Psychological Review,
65:386–498, 1958.

[RS89] C. Riesbeck and R. Schank. Inside Case-Based Reasoning. Lawrence
Erlbaum, 1989.

[SBSW99] B. Schloekopf, P. L. Bartlett, A. Smola, and R. Williamson. Shrink-
ing the tube: A new support vector regression algorithm. In M. S.
Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in Neu-
ral Information Processing Systems 11, pages 330–336. MIT Press,
1999.

[Set10] B. Settles. Active learning literature survey. In Computer Sciences
Technical Report 1648, University of Wisconsin-Madison, 2010.

[SN88] K. Saito and R. Nakano. Medical diagnostic expert system based
on PDP model. In Proc. 1988 IEEE Int. Conf. Neural Networks,
pages 225–262, San Mateo, CA, 1988.

[SR92] A. Skowron and C. Rauszer. The discernibility matrices and func-
tions in information systems. In R. Slowinski, editor, Intelligent
Decision Support, Handbook of Applications and Advances of the
Rough Set Theory, pages 331–362. Kluwer Academic, 1992.

60 BIBLIOGRAPHY

[Swi98] R. Swiniarski. Rough sets and principal component analysis and
their applications in feature extraction and selection, data model
building and classification. In S. Pal and A. Skowron, editors, Fuzzy
Sets, Rough Sets and Decision Making Processes. New York, 1998.

[TD02] D. M. J. Tax and R. P. W. Duin. Using two-class classifiers for multi-
class classification. In Proc. 16th Intl. Conf. on Pattern Recognition
(ICPR’2002), pages 124–127, 2002.

[TS93] G. G. Towell and J. W. Shavlik. Extracting refined rules from
knowledge-based neural networks. Machine Learning, 13:71–101,
Oct. 1993.

[Vap95] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-
Verlag, 1995.

[Vap98] V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons,
1998.

[VC71] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence
of relative frequencies of events to their probabilities. Theory of
Probability and its Applications, 16:264–280, 1971.

[VMZ06] A. Veloso, W. Meira, and M. Zaki. Lazy associative classificaiton.
In Proc. of 2006 Int. Conf. on Data Mining (ICDM’06), pages 645–
654, 2006.

[WK05] J. Wang and G. Karypis. HARMONY: Efficiently mining the best
rules for classification. In Proc. 2005 SIAM Conf. Data Mining
(SDM’05), pages 205–216, Newport Beach, CA, April 2005.

[WRL94] B. Widrow, D. E. Rumelhart, and M. A. Lehr. Neural networks:
Applications in industry, business and science. Comm. ACM, 37:93–
105, 1994.

[XOJ00] Y. Xiang, K. G. Olesen, and F. V. Jensen. Practical issues in
modeling large diagnostic systems with multiply sectioned bayesian
networks. Intl. J. Pattern Recognition and Artificial Intelligence
(IJPRAI), 14:59–71, 2000.

[YH03] X. Yin and J. Han. CPAR: Classification based on predictive associ-
ation rules. In Proc. 2003 SIAM Int. Conf. Data Mining (SDM’03),
pages 331–335, San Fransisco, CA, May 2003.

[YYH03] H. Yu, J. Yang, and J. Han. Classifying large data sets using SVM
with hierarchical clusters. In Proc. 2003 ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining (KDD’03), pages 306–315,
Washington, DC, Aug. 2003.

BIBLIOGRAPHY 61

[YZ94] R. R. Yager and L. A. Zadeh. Fuzzy Sets, Neural Networks and Soft
Computing. Van Nostrand Reinhold, 1994.

[Zad65] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

[Zad83] L. Zadeh. Commonsense knowledge representation based on fuzzy
logic. Computer, 16:61–65, 1983.

[Zhu05] X. Zhu. Semi-supervised learning literature survey. In Technical
Report 1530, Computer Sciences, University of Wisconsin - Madison,
2005.

[Zia91] W. Ziarko. The discovery, analysis, and representation of data de-
pendencies in databases. In G. Piatetsky-Shapiro and W. J. Frawley,
editors, Knowledge Discovery in Databases, pages 195–209. AAAI
Press, 1991.

