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Scene Completion Problem 
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Scene Completion Problem 
4
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10 nearest neighbors from a collection of 20,000 images

Scene Completion Problem 
5

[Hays and Efros, SIGGRAPH 2007]
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10 nearest neighbors from a collection of 2 million images

Scene Completion Problem 
6
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A Common Metaphor

¨ Many problems can be expressed as 
finding “similar” sets:
¤ Find near-neighbors in high-dimensional space

¨ Examples:
¤ Pages with similar words

n For duplicate detection, classification by topic
¤ Customers who purchased similar products

n Products with similar customer sets
¤ Images with similar features

n Users who visited similar websites

7
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Problem for Today’s Lecture

¨ Given: High dimensional data points 𝑥!, 𝑥", …
¤ For example: Image is a long vector of pixel colors

1 2 1
0 2 1
0 1 0

→ [1 2 1 0 2 1 0 1 0]

¨ And some distance function 𝒅(𝒙𝟏, 𝒙𝟐)
¤ Which quantifies the “distance” between 𝒙𝟏 and 𝒙𝟐

¨ Goal: Find all pairs of data points (𝒙𝒊, 𝒙𝒋) that are within some distance 
threshold 𝒅 𝒙𝒊, 𝒙𝒋 ≤ 𝒔

¨ Note: Naïve solution would take 𝑶 𝑵𝟐 L

where 𝑵 is the number of data points

¨ MAGIC: This can be done in 𝑶 𝑵 !! How?

8
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Task: Finding Similar Documents
¨ Goal: Given a large number (𝑵 in the millions or billions) of 

documents, find “near duplicate” pairs

¨ Applications:
¤ Mirror websites, or approximate mirrors à remove duplicates
¤ Similar news articles at many news sites  à cluster
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Task: Finding Similar Documents
¨ Goal: Given a large number (𝑵 in the millions or billions) of 

documents, find “near duplicate” pairs

¨ Applications:
¤ Mirror websites, or approximate mirrors à remove duplicates
¤ Similar news articles at many news sites  à cluster

What are the challenges?
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Task: Finding Similar Documents

¨ Goal: Given a large number (𝑵 in the millions or billions) of documents, 
find “near duplicate” pairs

¨ Applications:
¤ Mirror websites, or approximate mirrors à remove duplicates
¤ Similar news articles at many news sites  à cluster

¨ Problems:
¤ Many small pieces of one document can appear out of order in another
¤ Too many documents to compare all pairs
¤ Documents are so large or so many that they cannot fit in main memory
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Two Essential Steps for Similar Docs

1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short signatures, while 
preserving similarity

Host of follow up applications
e.g. Similarity Search

Data Placement
Clustering etc.
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The Big Picture

ShinglingDocument

The set
of strings
of length k
that appear
in the doc-
ument

Min 
Hashing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarity Search
Data Placement
Clustering etc.



SHINGLING
Step 1: Shingling: Convert documents to sets

ShinglingDocument

The set
of strings
of length k
that appear
in the document



15

Documents as High-Dim Data

¨ Step 1: Shingling: Convert documents to sets

¨ Simple approaches:
¤ Document = set of words appearing in document
¤ Document = set of “important” words
¤ Don’t work well for this application. Why?

¨ Need to account for ordering of words!

¨ A different way: Shingles!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Define: Shingles

¨ A k-shingle (or k-gram) for a document is a sequence of k tokens 
that appears in the doc
¤ Tokens can be characters, words or something else, depending on the 

application
¤ Assume tokens = characters for examples

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Define: Shingles

¨ A k-shingle (or k-gram) for a document is a sequence of k tokens 
that appears in the doc
¤ Tokens can be characters, words or something else, depending on the 

application
¤ Assume tokens = characters for examples

¨ Example: k=2; document D1 = abcab
Set of 2-shingles: S(D1) = {ab, bc, ca}

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Define: Shingles

¨ A k-shingle (or k-gram) for a document is a sequence of k tokens 
that appears in the doc
¤ Tokens can be characters, words or something else, depending on the 

application
¤ Assume tokens = characters for examples

¨ Example: k=2; document D1 = abcab
Set of 2-shingles: S(D1) = {ab, bc, ca}

¤ Another option: Shingles as a bag (multiset), count ab twice: S’(D1) = 
{ab, bc, ca, ab}

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Shingles: How to treat white-space chars?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

It makes sense to replace any sequence of one or more white-space characters (blank, tab, 
newline, etc.) by a single blank. 

This way distinguishes shingles that cover two or more words from those that do not. 
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How to choose K?

¨ Documents that have lots of shingles in common have similar text, 
even if the text appears in different order

¨ Caveat: You must pick k large enough, or most documents will have 
most shingles
¤ k = 5 is OK for short documents
¤ k = 10 is better for long documents

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Compressing Shingles

¨ To compress long shingles, we can hash them to (say) 4 bytes
¤ Like a Code Book
¤ If #shingles manageable à Simple dictionary suffices

e.g., 9-shingle => bucket number [0, 2^32 - 1]
(using 4 bytes instead of 9)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Compressing Shingles

¨ To compress long shingles, we can hash them to (say) 4 bytes
¤ Like a Code Book
¤ If #shingles manageable à Simple dictionary suffices

¨ Doc represented by the set of hash/dict. values of its k-shingles
¤ Idea: Two documents could appear to have shingles in common, when the 

hash-values were shared

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Compressing Shingles

¨ To compress long shingles, we can hash them to (say) 4 bytes
¤ Like a Code Book
¤ If #shingles manageable à Simple dictionary suffices

¨ Doc represented by the set of hash/dict. values of its k-shingles

¨ Example: k=2; document D1= abcab
Set of 2-shingles: S(D1) = {ab, bc, ca}
Hash the singles: h(D1) = {1, 5, 7}

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



24

Similarity Metric for Shingles

¨ Document D1 is a set of its k-shingles C1=S(D1)

¨ Equivalently, each document is a 0/1 vector in the space of k-shingles
¤ Each unique shingle is a dimension

¤ Vectors are very sparse

¨ A natural similarity measure is the Jaccard similarity:

sim(D1, D2) = |C1ÇC2|/|C1ÈC2|

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Motivation for Minhash/LSH

¨ Suppose we need to find similar documents among 𝑵 = 𝟏 million 
documents

¨ Naïvely, we would have to compute pairwise Jaccard similarities for 
every pair of docs

¤ 𝑵(𝑵 − 𝟏)/𝟐 ≈ 5*1011 comparisons
¤ At 105 secs/day and 106 comparisons/sec, 

it would take 5 days

¨ For 𝑵 = 𝟏𝟎 million, it takes more than a year…
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



MINHASHING
Step 2: Minhashing: Convert large variable length sets to 
short fixed-length signatures, while preserving similarity

ShinglingDocu-
ment

The set
of strings
of length k
that appear
in the document

Min-Hash-
ing

Signatures:
short integer
vectors that 
represent the
sets, and reflect 
their similarity
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Encoding Sets as Bit Vectors
¨ Many similarity problems can be formalized as finding subsets that 

have significant intersection

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Encoding Sets as Bit Vectors
¨ Many similarity problems can be formalized as finding subsets that 

have significant intersection

¨ Encode sets using 0/1 (bit, boolean) vectors 
¤ One dimension per element in the universal set

¨ Interpret set intersection as bitwise AND, and 
set union as bitwise OR

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Encoding Sets as Bit Vectors
¨ Many similarity problems can be formalized as finding subsets that 

have significant intersection

¨ Encode sets using 0/1 (bit, boolean) vectors 
¤ One dimension per element in the universal set

¨ Interpret set intersection as bitwise AND, and 
set union as bitwise OR

¨ Example: C1 = 10111; C2 = 10011
¤ Size of intersection = 3; size of union = 4, 

¤ Jaccard similarity (not distance) = 3/4

¤ Distance: d(C1,C2) = 1 – (Jaccard similarity) = 1/4

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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From Sets to Boolean Matrices
¨ Rows = elements (shingles)

¨ Columns = sets (documents)
¤ 1 in row e and column s if and only if e is a valid shingle of 

document represented by s

¤ Column similarity is the Jaccard similarity of the corresponding 
sets (rows with value 1)

¤ Typical matrix is sparse!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

0101

0111

1001

1000

1010
1011

0111 
Documents

Sh
in

gl
es

Note: Transposed Document Matrix
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Outline: Finding Similar Columns

¨ So far:
¤ A documents ® a set of shingles
¤ Represent a set as a boolean vector in a matrix

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Outline: Finding Similar Columns

¨ So far:
¤ A documents ® a set of shingles
¤ Represent a set as a boolean vector in a matrix

¨ Next goal: Find similar columns while computing 
small signatures

¤ Similarity of columns == similarity of signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Outline: Finding Similar Columns

¨ Next Goal: Find similar columns, Small signatures

¨ Naïve approach:
¤ 1) Signatures of columns: small summaries of columns

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Outline: Finding Similar Columns

¨ Next Goal: Find similar columns, Small signatures

¨ Naïve approach:
¤ 1) Signatures of columns: small summaries of columns
¤ 2) Examine pairs of signatures to find similar columns

n Essential: Similarities of signatures and columns are related

¤ 3) Optional: Check that columns with similar signatures are really similar

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Outline: Finding Similar Columns

¨ Next Goal: Find similar columns, Small signatures

¨ Naïve approach:
¤ 1) Signatures of columns: small summaries of columns
¤ 2) Examine pairs of signatures to find similar columns

n Essential: Similarities of signatures and columns are related

¤ 3) Optional: Check that columns with similar signatures are really similar

¨ Warnings:
¤ Comparing all pairs may take too much time: Job for LSH

n These methods can produce false negatives, and even false positives (if the optional check is 
not made) J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Hashing Columns (Signatures) : LSH principle

¨ Key idea: “hash” each column C to a small signature h(C), such that:
¤ (1) h(C) is small enough that the signature fits in RAM
¤ (2) sim(C1, C2) is the same as the “similarity” of signatures h(C1) and h(C2)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Hashing Columns (Signatures) : LSH principle

¨ Key idea: “hash” each column C to a small signature h(C), such that:
¤ (1) h(C) is small enough that the signature fits in RAM
¤ (2) sim(C1, C2) is the same as the “similarity” of signatures h(C1) and h(C2)

¨ Goal: Find a hash function h(·) such that:
¤ If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

¤ If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Hashing Columns (Signatures) : LSH principle

¨ Key idea: “hash” each column C to a small signature h(C), such that:
¤ (1) h(C) is small enough that the signature fits in RAM
¤ (2) sim(C1, C2) is the same as the “similarity” of signatures h(C1) and h(C2)

¨ Goal: Find a hash function h(·) such that:
¤ If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

¤ If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

¨ Hash docs into buckets. Expect that “most” pairs of near duplicate docs 
hash into the same bucket!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

¨ Goal: Find a hash function h(·) such that:
¤ if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

¤ if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

¨ Clearly, the hash function depends on the similarity metric:
¤ Not all similarity metrics have a suitable hash function

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

¨ Goal: Find a hash function h(·) such that:
¤ if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

¤ if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

¨ Clearly, the hash function depends on the similarity metric:
¤ Not all similarity metrics have a suitable hash function

¨ There is a suitable hash function for the Jaccard similarity: It is called 
Min-Hashing

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

¨ Imagine the rows of the boolean matrix permuted under random 
permutation p

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

¨ Imagine the rows of the boolean matrix permuted under random 
permutation p

¨ Define a “hash” function hp(C) = the index of the first (in the 
permuted order p) row in which column C has value 1:

hp (C) = minp p(C)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

¨ Imagine the rows of the boolean matrix permuted under random 
permutation p

¨ Define a “hash” function hp(C) = the index of the first (in the 
permuted order p) row in which column C has value 1:

hp (C) = minp p(C)

¨ Use several (e.g., 100) independent hash functions (that is, 
permutations) to create a signature of a column

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

¨ Imagine the rows of the boolean matrix permuted under random 
permutation p

¨ Define a “hash” function hp(C) = the index of the first (in the 
permuted order p) row in which column C has value 1:

hp (C) = minp p(C)

¨ Use several (e.g., 100) independent hash functions (that is, 
permutations) to create a signature of a column

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Zoo example (shingle size k=1)

{ dog, cat, lion, tiger, mouse}
[ cat, mouse, lion, dog, tiger]
[ lion, cat, mouse, dog, tiger]

Universe

A = { mouse, lion }

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Zoo example (shingle size k=1)

{ dog, cat, lion, tiger, mouse}
[ cat, mouse, lion, dog, tiger]
[ lion, cat, mouse, dog, tiger]

Universe

A = { mouse, lion }
mh1(A) = min (            {mouse, lion } ) = mouse
mh2(A) = min (           { mouse, lion } ) = lion

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

Signature matrix M

1212

4

5

1

6

7

3

2

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation p

J. Leskovec, A. Rajaraman, J. Ullman: 
Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

Signature matrix M

1212

4

5

1

6

7

3

2

2nd element of the permutation 
is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation p

J. Leskovec, A. Rajaraman, J. Ullman: 
Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation p

J. Leskovec, A. Rajaraman, J. Ullman: 
Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2nd element of the permutation 
is the first to map to a 1

4th element of the permutation 
is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation p

J. Leskovec, A. Rajaraman, J. Ullman: 
Mining of Massive Datasets, http://www.mmds.org



51

Min-Hashing Example

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation p

J. Leskovec, A. Rajaraman, J. Ullman: 
Mining of Massive Datasets, http://www.mmds.org



52

Min-Hashing Example

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

2nd element of the permutation 
is the first to map to a 1

4th element of the permutation 
is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation p

Note: Another (equivalent) way is to 
store row indexes
or raw shingles
(e.g. mouse, lion):

1 5 1 5
2 3 1 3
6 4 6 4

J. Leskovec, A. Rajaraman, J. Ullman: 
Mining of Massive Datasets, http://www.mmds.org
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Min-Hash Signatures

¨ Pick K=100 random permutations of the rows

¨ Think of sig(C) as a column vector
¨ sig(C)[i] = according to the i-th permutation, the index of the first 

row that has a 1 in column C

sig(C)[i] = min (pi(C))
¨ Note: The sketch (signature) of document C is small  ~𝟏𝟎𝟎 bytes!

¨ We achieved our goal! We “compressed” long bit vectors into 
short signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Key Fact 

For two sets A, B, and a min-hash function mhi():

Unbiased estimator for Sim using K hashes (notation policy – this 
is a different K from size of shingle)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarities:
1-3      2-4    1-2     3-4

Col/Col 0.75    0.75    0        0
Sig/Sig 0.67    1.00     0        0

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) 

3

4

7

2

6

1

5

Permutation p
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The Min-Hash Property

¨ Choose a random permutation p
¨ Claim: Pr[hp(C1) = hp(C2)] = sim(C1, C2) 

¨ Why?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

01

10

00

11

00

00 

One of the two cols had to have 1 at 
position y



57

The Min-Hash Property

¨ Choose a random permutation p
¨ Claim: Pr[hp(C1) = hp(C2)] = sim(C1, C2) 

¨ Why?
¤ Let X be a doc (set of shingles), yÎ X is a shingle

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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One of the two cols had to have 1 at 
position y
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The Min-Hash Property

¨ Choose a random permutation p
¨ Claim: Pr[hp(C1) = hp(C2)] = sim(C1, C2) 

¨ Why?
¤ Let X be a doc (set of shingles), yÎ X is a shingle

¤ Then: Pr[p(y) = min(p(X))] = 1/|X|
n It is equally likely that any yÎ X is mapped to the min element

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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One of the two cols had to have 1 at 
position y
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The Min-Hash Property

¨ Choose a random permutation p
¨ Claim: Pr[hp(C1) = hp(C2)] = sim(C1, C2) 

¨ Why?
¤ Let X be a doc (set of shingles), yÎ X is a shingle

¤ Then: Pr[p(y) = min(p(X))] = 1/|X|
n It is equally likely that any yÎ X is mapped to the min element

¤ Let y be s.t. p(y) = min(p(C1ÈC2))

¤ Then either: p(y) = min(p(C1))  if y Î C1 , or

p(y) = min(p(C2))  if y Î C2

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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The Min-Hash Property

¨ Choose a random permutation p
¨ Claim: Pr[hp(C1) = hp(C2)] = sim(C1, C2) 

¨ Why?
¤ Let X be a doc (set of shingles), yÎ X is a shingle

¤ Then: Pr[p(y) = min(p(X))] = 1/|X|
n It is equally likely that any yÎ X is mapped to the min element

¤ Let y be s.t. p(y) = min(p(C1ÈC2))

¤ Then either: p(y) = min(p(C1))  if y Î C1 , or

p(y) = min(p(C2))  if y Î C2

¤ So the prob. that both are true is the prob. y Î C1 Ç C2

¤ Pr[min(p(C1))=min(p(C2))]=|C1ÇC2|/|C1ÈC2|= sim(C1, C2) 
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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The Min-Hash Property (Take 2: simpler proof)
¨ Choose a random permutation p
¨ Claim: Pr[hp(C1) = hp(C2)] = sim(C1, C2) 

¨ Why?
¤ Given a set X, the probability that any one element is the min-

hash under p is 1/|X| ß (0)
n It is equally likely that any yÎ X is mapped to the min element 

¤ Given a set X, the probability that one of any k elements is the 
min-hash under p is k/|X|    ß (1)

¤ For C1 È C2, the probability that any element is the min-hash 
under p is 1/|C1 È C2| (from 0) ß (2)

¤ For any C1 and C2, the probability of choosing the same min-hash 
under p is |C1ÇC2|/|C1 È C2| ß from (1) and (2)
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Similarity for Signatures

¨ We know: Pr[hp(C1) = hp(C2)] = sim(C1, C2)

¨ Now generalize to multiple hash functions

¨ The similarity of  two signatures is the fraction of the hash functions in 
which they agree

¨ Note: Because of the Min-Hash property, the similarity of columns is 
the same as the expected similarity of their signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example
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Similarities:
1-3      2-4    1-2     3-4

Col/Col 0.75    0.75    0        0
Sig/Sig 0.67    1.00     0        0

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) 

3

4

7

2

6

1

5

Permutation p
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Min-Hash Signatures

¨ Pick K=100 random permutations of the rows

¨ Think of sig(C) as a column vector
¨ sig(C)[i] = according to the i-th permutation, the index of the first 

row that has a 1 in column C

sig(C)[i] = min (pi(C))
¨ Note: The sketch (signature) of document C is small  ~𝟏𝟎𝟎 bytes!

¨ We achieved our goal! We “compressed” long bit vectors into 
short signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Implementation Trick

¨ Permuting rows even once is prohibitive

¨ Approximate Linear Permutation Hashing

¨ Pick K independent hash functions (use a, b below)
¤ Apply the hash function on each column (document) for each hash function and get minhash signature

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

How to pick a random
hash function h(x)?

Universal hashing:

ha,b(x)=((a·x+b) mod p) mod N
where:
a,b … random integers
p … prime number (p > N)
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Summary: 2 Steps

¨ Shingling: Convert documents to sets
¤ We used hashing to assign each shingle an ID

¨ Min-Hashing: Convert large sets to short signatures, while 
preserving similarity
¤ We used similarity preserving hashing to generate signatures with 

property Pr[hp(C1) = hp(C2)] = sim(C1, C2)

¤ We used hashing to get around generating random permutations

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org


