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Source of slides
2

¨ Richard Socher’s course in Stanford

¨ Tomas Mikolov’s invited talk at the Deep Learning workshop in 
NIPS’13

¨ Dan Jurafsky’s lecture about language modeling

¨ Tutorial at EMNLP’14: Embedding Methods for NLP 

¨ Tutorial at ACL’14: New Directions in Vector Space Models of 
Meaning 

¨ Manaal Faruqui’s talk at NAACL’15: Retrofitting Word Vectors to 
Semantic Lexicons 

http://cs224d.stanford.edu/lectures/CS224d-Lecture2.pdf
https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit
https://web.stanford.edu/class/cs124/lec/languagemodeling.pdf
http://cs224d.stanford.edu/lectures/CS224d-Lecture2.pdf
http://emnlp2014.org/tutorials/8_notes.pdf
https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit
https://www.cs.ox.ac.uk/files/6605/aclVectorTutorial.pdf
https://www.cs.ox.ac.uk/files/6605/aclVectorTutorial.pdf
http://techtalks.tv/talks/retrofitting-word-vectors-to-semantic-lexicons/61553/
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How to let a computer understand meaning?
3

A cat sits on a mat. #_$@^_&*^&_()_@_+@^=
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Knowledge Representation
4

¨ Machine understandable representation of knowledge
¨ Symbolic solution, e.g., semantic lexicons like WordNet

hypernyms of ‘panda’ (is-a relation) synonym sets of ‘good’
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Problems with this symbolic representation
5

¨ Great as resource but missing nuances
¤ e.g. synonyms: adept, expert, good, practiced, proficient, skillful? 

¨ Requires human labor to create and adapt 

¨ Subjective, sometimes hard to reach agreement

¨ Missing new words (hard to keep up to date): 
wicked, badass, nifty, crack, ace, wizard, ninjia
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Problems with this symbolic representation
6

¨ Words are distinctive atomic symbols 
¨ In vector space terms, this is a vector with one 1 and a lot of zeroes. We 

call this the “one-hot” representation.

Dimensionality: 20K (speech) – 50K (PTB) – 500K (big vocab) – 13M (Google 1T)

¨ No way to capture word similarity 

Is there another (probably better) way to represent 
the meaning of words? à
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Statistical solution: word embedding
7

¨ Each word is represented as a dense vector 
¨ Each dimension captures more information
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(Expected) regularities in word vector space
8
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(Expected) regularities in word vector space
9

generated by PCA
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(Expected) regularities in word vector space
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generated by PCA
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Q: How to generate word embedding?

11

A: Distributional semantics
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Distributional semantics
12

¨ You can get a lot of value by representing a word by means of 
its neighbors (context)

¨ One of the most successful ideas of modern statistical NLP 

“You shall know a word by the company it keeps” 
(J. R. Firth 1957: 11) 
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History of word embedding
13
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History of word embedding
14
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History of word embedding
15
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History of word embedding
16

This lecture
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History of word embedding
17

Next lecture
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Count-based methods: Build global context 
matrix X

18

¨ Choice of context: Full document vs. Local window

¨ Full document: 
¤ Context = all the words in the same doc
¤ Word-doc occurrence matrix

¨ Local window
¤ Context = words within a certain distance
¤ Word-word co-occurrence matrix
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Word-doc occurrence matrix
19

¨ Word-doc occurrence matrix will give general topics, 
e.g., all sports words will have similar entries

¨ Lead to Latent Semantic Analysis 
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Word-word co-occurrence matrix
20

¨ Window allows us to capture both syntactic and semantic information à

I  am  studying  computer  science  in  UCSB  .

central word

window size = 1

window size = 2
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Word-word co-occurrence matrix: toy example

21

¨ Example corpus (window size=1): 
¤ I like deep learning. 
¤ I like NLP.
¤ I enjoy flying. 
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Problems with simple co-occurrence vectors 
22

¨ Increase in size with vocabulary

¨ Very high dimensional: require a lot of storage 

¨ Subsequent classification models have sparsity issues 

à Models are less robust
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Solution: Low-dimensional dense vectors 
23

¨ Idea: store “most” of the important information in a fixed, small 
number of dimensions: a dense vector 

¨ Usually around 25-1000 dimensions 

¨ How to reduce the dimensionality? 
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Method 1: Dimensionality Reduction on X 
24

¨ Singular Value Decomposition (SVD) on X
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Method 1: Dimensionality Reduction on X 
25

¨ Singular Value Decomposition (SVD) on X

Vector of word 1
Vector of word 2
Vector of word 3
… ... 
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Simple SVD on X
26

¨ Corpus: I like deep learning. I like NLP. I enjoy flying.
¨ Print the first two columns of U corresponding to the 2 largest 

singular values 
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Interesting patterns emerge in the vectors 

27

Rohde et al., 2005
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Interesting patterns emerge in the vectors 
28

Rohde et al., 2005
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Interesting patterns emerge in the vectors 
29

Rohde et al., 2005
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Problems with SVD
30

¨ Naive implementation: Computational cost scales 
quadratically for n x m matrix: O(mn^2) when n<m

à Bad for millions of words or documents
à More efficient approximate solutions exist, though

¨ Hard to incorporate new words or documents
¤ Changing a single entry has a global effect 
¤ Need to do it again…
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Method 2: Directly learn low-dimensional word 
vectors

31
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Main idea
32

¨ Instead of capturing global co-occurrence counts directly

¨ Sequentially scan local windows and do prediction

¨ Easily incorporate a new sentence/document or add a word to 
the vocabulary 
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Word2vec
33

¨ The simplest NN-like model to learn word embedding

¨ Skip-gram: given the central word, predict surrounding words

¨ Continuous Bag-of-words (CBOW): given the surrounding words, 
predict the central word
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I  am  studying  computer  science  in  UCSB  .

central word

window size = 2
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Skip-gram
35

¨ Given the central word, predict surrounding words in a window of 
size c

¨ Objective function: Maximize the log probability of the surrounding 
words given the current central word:
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Skip-gram
36

¨ Given the central word I, predict a surrounding word O

¨ Softmax: the simplest formulation for            : 

¨ v and v’ are the “input” and “output” vectors of words (each 
word has two vectors!) 

¨ V is the whole vocabulary

p(O | I ) = exp(vO
' T vI )

exp(vw
' T vI )

w∈V
∑

p(O | I )
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Derivation of gradients
37

log p(O | I ) = v 'O
T vI − log( exp(

w
∑ v 'w

T vI ))

∂log p(O | I )
∂vI

= v 'O− p(w | I )v 'w
w
∑

Try to derive it by yourself!
1. Note that all vs are vectors
2. The chain rule is your 
good friend

∂log p(O | I )
∂v 'O

= vI
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Skip-gram naive implementation: step by step
38

Input: a text corpus, dimensionality k
Output: two k-dimensional vectors for each word

¨ Convert the corpus into a single string of words
¨ A single epoch: scan from the first word to the last word, for each 

window with central word I:
¤ For each context word O, compute                and
¤ Update      and         using stochastic gradient ascent

¨ Repeat the above step

∂log p(O | I )
∂v 'O

∂log p(O | I )
∂vIvI v 'O
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Problem of the naive implementation
39

¨ With large vocabularies this objective function is not scalable and 
would train too slowly! à Why? 

¨ Solutions: Approximate the normalization or

¨ Just sample a few negative words (not in context) to contrast with the 
positive word (in context) 

¨ Will talk about them in the next lecture
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Linguistic regularities in word vector space
40

¨ The resulting distributed representations of words contain 
surprisingly a lot of syntactic and semantic information 

¨ There are multiple degrees of similarity among words:
¤ KING is similar to QUEEN as MAN is similar to WOMAN
¤ KING is similar to KINGS as MAN is similar to MEN 

¨ Simple vector operations with the word vectors provide very 
intuitive results 
¤ vKING – vQUEEN ≈ vMAN – vWOMAN
¤ vKING – vKINGS ≈ vMAN – vMEN
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Linguistic regularities in word vector space
41



42

Visualization of regularities in word vector 
space

42

generated by PCA
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Visualization of regularities in word vector 
space

43

generated by PCA
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Visualization of regularities in word vector 
space

44

generated by PCA
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Count based vs. prediction based
45

Count Prediction

l Efficient usage of global 
statistics

l Primarily used to 
capture word similarity

l Inefficient usage of 
global statistics

l Improved performance 
on other tasks

l Can capture richer 
relations between words
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Combining the two worlds: GloVe (EMNLP’14)

46

¨ is the number of co-occurrences of word i and word j

¨ f is just a weighting function

¨ Fast training:                         is the corpus size 

¨ Scalable to huge corpora (840 billion words)

  ∼O(C
0.8 ), C

Pij
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Glove results
47
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Glove results
48
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Resources
49

¨ Word2vec: https://code.google.com/p/word2vec/
¤ including codes, training/testing sets and pre-trained vectors

¨ Glove: http://nlp.stanford.edu/projects/glove/
¤ including codes, training/testing sets and pre-trained vectors

¨ Dimensionality reduction: 
¤ Tapkee for C++: http://jmlr.org/papers/v14/lisitsyn13a.html
¤ Scikit-learn for Python: http://scikit-learn.org/stable/

https://code.google.com/p/word2vec/
http://nlp.stanford.edu/projects/glove/
http://jmlr.org/papers/v14/lisitsyn13a.html
http://scikit-learn.org/stable/

