
CSE 5243 INTRO. TO DATA MINING

Word Embedding

Yu Su, CSE@The Ohio State University

22

How to let a computer understand meaning?
2

A cat sits on a mat. #_$@^_&*^&_()_@_+@^=

33

Distributional semantics
3

¨ You can get a lot of value by representing a word by means of
its neighbors (context)

¨ One of the most successful ideas of modern statistical NLP

“You shall know a word by the company it keeps”
(J. R. Firth 1957: 11)

44

History of word embedding
4

Last lecture

55

History of word embedding
5

This lecture

66

Different embeddings are based on different priors

6

Latent semantic analysis

“Words occur in same documents should be similar”

Word2vec

“Words occur in similar contexts should be similar”

Neural Network Language Modeling

“Word vectors should give plausible sentences high probability”

Collabert et al., 2008 & 2011

“Word vectors should facilitate downstream classification tasks”

Faruqui et al., 2015

“Words should follow linguistic constraints from semantic lexicons”

77

Latent semantic analysis: word-doc occurrence matrix

7

¨ Word-doc occurrence matrix will give general topics,
e.g., all sports words will have similar entries

¨ Apply SVD for dimensionality reduction

88

Different embeddings are based on different priors

8

Latent semantic analysis

“Words occur in same documents should be similar”

Word2vec

“Words occur in similar contexts should be similar”

Neural Network Language Modeling

“Word vectors should give plausible sentences high probability”

Collabert et al., 2008 & 2011

“Word vectors should facilitate downstream classification tasks”

Faruqui et al., 2015

“Words should follow linguistic constraints from semantic lexicons”

99

Word2vec: “Words occur in similar contexts should
be similar”

9

¨ Word2vec will adjust the vector of a word to be similar to the vectors
of its context words

¨ Words with similar contexts thus end up with similar vectors

I just played with my dog.
I just played with my cat.
My dog likes to sleep on my bed.
My cat likes to sleep on my bed.

1010

Different embeddings are based on different priors

10

Latent semantic analysis

“Words occur in same documents should be similar”

Word2vec

“Words occur in similar contexts should be similar”

Neural Network Language Modeling

“Word vectors should assign high probability to plausible sentences”

Collabert et al., 2008 & 2011

“Word vectors should facilitate downstream classification tasks”

Faruqui et al., 2015

“Words should follow linguistic constraints from semantic lexicons”

1111

Probabilistic Language Modeling
11

¨ Goal: assign a probability to a sentence
¤ Machine Translation:

n Source sentence: 今晚大风
n P(large winds tonight) P(strong winds tonight)

¤ Spell Correction
n The office is about fifteen minuets from my house

n P(about fifteen minutes from) P(about fifteen minuets from)

¤ Speech Recognition
n P(I saw a van) P(eyes awe of an)

¤ +Summarization, question answering, etc.

<

>

>>

1212

Probabilistic Language Modeling
12

¨ Goal: compute the probability of a sentence or a sequence of words:

¨ How to compute the joint probability?

¨ Chain rule:

P(w1
m) = P(w1,w2,...,wm)

P(a,dog,is,running,in,a,room)

P(a,dog,is,running) =
P(a)P(dog | a)P(is | a,dog)P(running | a,dog,is)

P(w1,w2,...,wm) = P(w1)P(w2 |w1)P(w3 |w1,w2)...P(wm |w1,...wm−1)

1313

Probabilistic Language Modeling
13

¨ Key:

¨ Just count? Exponential number of entries and sparsity.

¨ Markov assumption:

P(w1,w2,...,wm) = P(wt |w1,...wt−1)
t

m−1

∏
P(wt |w1,...wt−1)

P(wt |w1,...wt−1) ≈ P(wt |wt−n+1,...wt−1)

1414

Probabilistic Language Modeling
14

¨ N-gram (bigram)

¨ What’s the problem?
¤ Small context window (typically bigram or trigram)
¤ Not utilizing word similarity

n Seeing “A dog is running in a room” should increase probability of
n “The dog is walking in a room” and
n “A cat is running in the room” and
n “Some cats are running in the room”

¨ Solution: Neural Network Language Modeling!

P(running | a,dog,is) ≈ P(running | is) = count(is,running)
count(is)

1515

Neural Network Language Model
15

A Neural Probabilistic Language Model.
Bengio et al. JMLR 2003.

Projection

Fully connected
non-linear layer

Softmax
 Learn P(wt |wt−n+1,...wt−1)

1616

The Lookup Table
16

¨ Each word in vocabulary maps to a vector in
¨ LookupTable: input of the ith word is

 !
d

To get the embedding vector for the word we multiply Cx
where C is a d x D matrix with D words in the vocabulary

In the original space words are orthogonal.
cat = (0,0,0,0,0,0,0,0,0,1,0,0,0,0, …)
dog = (0,0,1,0,0,0,0,0,0,0,0,0,0,0, …)

 !
d

C contains the word vectors!

17

Neural Network Language Model

wt−n+1,wt−n+2,...,wt−1

x = (Cwt−n+1,Cwt−n+2,...,Cwt−1)
T

z = tanh(Hx + b1)

y =Uz + b2

projection

non-linearity

output

P(wt = i) =
exp(yi)
exp(yj)j=1

D∑
softmax

18

wt−n+1,wt−n+2,...,wt−1

x = (Cwt−n+1,Cwt−n+2,...,Cwt−1)
T

z = tanh(Hx + b1)

y =Uz + b2

projection

non-linearity

output

P(wt = i) =
exp(yi)
exp(yj)j=1

D∑
softmax

d :word vector dimensionality
n: window size
D: vocabulary size
h: # of hidden units

h

D

Dimensionality of each layer?

n*d

19

wt−n+1,wt−n+2,...,wt−1

x = (Cwt−n+1,Cwt−n+2,...,Cwt−1)
T

z = tanh(Hx + b1)

y =Uz + b2

projection

non-linearity

output

P(wt = i) =
exp(yi)
exp(yj)j=1

D∑
softmax

n*d

n*d *h + h

h*D + D

of parameters in each layer?

d :word vector dimensionality
n: window size
D: vocabulary size
h: # of hidden units

2020

Training
20

¨ All free parameters

¨ Backpropagation + Stochastic Gradient Ascent:

θ = (C,H ,U,b1,b2)

θ ←θ + ε ∂logP(wt |wt−n+1,...,wt−1)
∂θ

Costly!

2121

Speed up training
21

¨ Most computations are at the output layer
¤ In order to compute the normalization term of softmax, we have to

compute the yi for every word!
¤ Cost (almost) linear to vocabulary size.
¤ Same problem in Skip-gram

¨ Solutions: Approximate the normalized probability
¤ Negative sampling
¤ Noise contrastive estimation
¤ Hierarchical softmax
¤ …

2222

Speed up training
22

¨ Most computations are at the output layer
¤ In order to compute the normalization term of softmax, we have to

compute the yi for every word!
¤ Cost (almost) linear to vocabulary size.
¤ Same problem in Skip-gram

¨ Solutions: Approximate the normalized probability
¤ Negative sampling
¤ Noise contrastive estimation
¤ Hierarchical softmax
¤ …

2323

Refresher: Skip-gram
23

¨ Given the central word, predict surrounding words in a window of
length c

¨ Objective function:

¨ Softmax:

p(O | I) = exp(vO
' T vI)

exp(vw
' T vI)

w∈V
∑

∂log p(O | I)
∂vI

= v 'O− p(w | I)v 'w
w
∑

2424

Negative sampling
24

¨ I: central word. O: a context word
¨ Original: Maximize
¨ We will derive an alternative which is less costly to compute
¨ Does pair (I,O) really come from the training data?

¨ Trivial solution: same (long enough) vector for all words
¨ Contrast with negative words!

p(O | I ,θ)

θ = argmaxθ p(D = 1| I ,O,θ)

where p(D = 1| I ,O,θ) =σ (vI

T vO
') = 1

1+ e−vI
T vO
'

2525

Negative sampling
25

¨ Solution: randomly sample k negative words wi from a noise
distribution, assume (I,wi) are incorrect pairs

¨ I = “is”, O = “running”, w1 = “walk”, w2 = “do”, etc.

maximize p(D = 1| I ,O,θ)• p(D = 0 | I ,wi ,θ)

i=1

k

∏

or logσ (vI

T vO
')+ Ewi∼Pn (w)

[logσ (−vI
T vwi

')]
i=1

k

∑

where Pn (w) =

U(w)3/4

Z
,U(w) the unigram distribution

2626

Different embeddings are based on different priors

26

Latent semantic analysis

“Words occur in same documents should be similar”

Word2vec

“Words occur in similar contexts should be similar”

Neural Network Language Modeling

“Word vectors should give plausible sentences high probability”

Collobert et al., 2008 & 2011

“Word vectors should facilitate downstream classification tasks”

Faruqui et al., 2015

“Words should follow linguistic constraints from semantic lexicons”

2727

What to get from this work
27

¨ How to supervise the learning of word embedding using external
classification tasks

¨ How to do semi-supervised learning of word embedding

¨ How to apply word vectors and neural networks in other traditional
NLP tasks

2828

Embedding for other NLP tasks (Collobert et al., 2008&11)

28

2929

The Large-scale Feature Engineering Way
29

3030

The sub-optimal cascade
30

3131

NLP: Large scale machine learning
31

3232

The big picture
32

4343

Different embeddings are based on different priors

43

Latent semantic analysis

“Words occur in same documents should be similar”

Word2vec

“Words occur in similar contexts should be similar”

Neural Network Language Modeling

“Word vectors should give plausible sentences high probability”

Collabert et al., 2008 & 2011

“Word vectors should facilitate downstream classification tasks”

Faruqui et al., 2015

“Words should follow linguistic constraints from semantic lexicons”

4444

Semantic lexicon: WordNet
44

wrong

untruefalse

flawed incorrect

4545

Retrofitting word vectors to semantic lexicons (NAACL’15)
45

¨ Incorporates information from lexicons in word vectors

¨ Post-processing approach

¨ Applicable to any word embedding method

¨ Applicable to any lexicon

4646

Retrofitting
46

Original Vectors

Retrofitted Vectors

4747

Semantic lexicons used in this work
47

¨ PPDB: Lexical paraphrases obtained from parallel texts
¨ WordNet: synonyms, hypernyms and hyponyms
¨ FrameNet: Cause_change_of_position -> push=raise=growth

Table 1. Approximate size of the graphs obtained from different lexicons

4848

Experiment results
48

Original
Embedding

Semantic
Lexicons

Word Similarity
Synonym
Selection

Syntactic
Analysis

Sentiment
Analysis

4949

In this lecture…
49

¨ More types of supervision used in training word embedding
¤ Language modeling
¤ NLP labeling tasks
¤ Semantic lexicons

¨ Ways to speed up
¤ E.g., negative sampling
¤ Necessary for training on huge text corpora
¤ Scale up from hundreds of millions to hundreds of billions

¨ How word embeddings help other NLP tasks

