CSE 5243 INTRO. TO DATA MINING

Word Embedding

Yu Su, CSE@The Ohio State University

How to let a computer understand meaning?

=
A cat sits on a mat. # 5@" && () @ _+@"=

Distributional semantics

You can get a lot of value by representing a word by means of
its neighbors (context)

“You shall know a word by the company it keeps”
(J. R. Firth 1957: 11)

One of the most successful ideas of modern statistical NLP

government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

N These words will represent banking #

Global co-occurrence statistics

la (Lebret & Collobert, 2014) |

History of word embedding
COUNT! PREDICT!

first NNLM

Neural Network
‘ Language Modeling
(Bengio et al., 2003)

term-term co-ocdur
decouple word
vector from task more powerful model

“ ".Hyperspace Analogue toa"

ter OC COo-OoCccur

[Jatent Semantic Analysi \
/ (Deerwester et al., 1990)

Language '
und & Burgess, 1996 Language Modeling
‘ . (Mikolov et al., 2010&11) |

N simpler model
normalization
ata ||

Hellinger PCA Word2vec "'-‘
(Mikolov et al., 2013))

RGN

+ linguistic prior
(semantic lexicons)

Retrofitting Word Vectors
(Faruqui et al., 2015)

| Collobert et al., 2008&11 Recurrent Neural Network |

Last lecture

SMOPUIM [BJO| Ul UOIIDIPaId

Glove
(Pennington et al., 2014)

Global co-occurrence statistics

la (Lebret & Collobert, 2014) |

History of word embedding
PREDICT!

COUNT!

term-doc co-occur

/" Latent Semantic Analysis‘a
_(Deerwester et al., 1990) |

I | term-term co-occur

Language Modeling
(Bengio et al., 2003)

decouple word J
vector from task

Neural Network

more powerful model

".Hyperspace Analogue toa"

~ Collobert et al., 2008&11 |

Language
_ (Lund & Burgess, 1996) |
ﬂ normalization simpler model
+ more data
Hellinger PCA Word2vec

(Mikolov et al., 2013))

Language Modeling

""» This lecture

+ linguistic prior

N /"

]“ Glove '*I
(Pennington et al., 2014)

Retrofitting Word Vectors
(Faruqui et al., 2015)

” Recurrent Neural Network

. (Mikolov et al., 2010&11) |

SMOPUIM [BJO| Ul UOIIDIPaId

Different embeddings are based on different priors

St ______________________________________
Latent semantic analysis :Z:>

“Words occur in same documents should be similar”

=

o,

Latent semantic analysis: word-doc occurrence matrix

Docs
Terms 123456789 10 11 12 13 14 15 16 17 18 19 20
data 110020000 0 1 2 11 1 0 1 0 0 O
examples 000000000 O O O O O O O O 0 0 0
introduction 0O 0O 0000000 O O O O O O O O O 0 1
mining 000000000 O O 1 1 01 O 0 0 0 0
network oocoo00000O0O OO OTOOOMI®T O 1 1t 1
package 000110000 0 01 0O O O O 0 0 0 O

1 Word-doc occurrence matrix will give general topics,
e.g., all sports words will have similar entries

7 Apply SVD for dimensionality reduction

Different embeddings are based on different priors

.-
Latent semantic analysis :Z:>

“Words occur in same documents should be similar”
Word2vec :Z:>

“Words occur in similar contexts should be similar”

o,

—_

Word2vec: “Words occur in similar contexts should
be similar”

| just played with my dog.

| just played with my cat.

My dog likes to sleep on my bed.
My cat likes to sleep on my bed.

Word2vec will adjust the vector of a word to be similar to the vectors
of its context words

Words with similar contexts thus end up with similar vectors

Different embeddings are based on different priors

10

Latent semantic analysis :Z:>

“Words occur in same documents should be similar”

Word2vec :Z:>

“Words occur in similar contexts should be similar”

Neural Network Language Modeling :Z:>

“Word vectors should assign high probability to plausible sentences”

—_

>

11

Probabilistic Language Modeling

Goal: assign a probability to a sentence

Machine Translation:

Source sentence: 2 A XL
P(large winds tonight) < P(strong winds tonight)

Spell Correction

The office is about fifteen minuets from my house

P(about fifteen minutes from) > P(about fifteen minuets from)

Speech Recognition

P(l saw a van) >> P(eyes awe of an)

+Summarization, question answering, etc.

12

Probabilistic Language Modeling

Goal: compute the probability of a sentence or a sequence of words:

Pw")=Pw, ,w,,...w)

How to compute the joint probability?

P(a,dog,is,runningin,a,room)
Chain rule:
Pw, ,w,,...w)=Pw)Pw, lw)Pw,lw ,w,).Pw lw,.w)

P(Cl,dOg,iS,running) =
P(a)P(dog|a)P(is | a,dog)P(running | a,dog,is)

Probabilistic Language Modeling

_ 13
m—1
P(Wl,wz,...,wm)ZHP(W, |W1,...Wt_1)
t

0 Key: P(Wt |W1,...Wt_1)
o1 Just count? Exponential number of entries and sparsity.

o Markov assumption:

Pw, Iw,.w_)=Pwlw_ _ ,.w_)

13

14

Probabilistic Language Modeling

N-gram (bigram)
count (is,running)

P(running l a,dog,is) = P(running | is) = :
count(is)

What's the problem?
Small context window (typically bigram or trigram)
Not utilizing word similarity
Seeing “A dog is running in a room” should increase probability of
“The dog is walking in a room” and
“A cat is running in the room” and

“Some cats are running in the room”

Solution: Neural Network Language Modeling!

A Neural Probabilistic Language Model.
Bengio et al. JMLR 2003.

Neural Network Language Model

15|
Learn P(w, lw,_ _,,..w)

Softmax @ ooSOﬁmax D

most| computation here

Fully connected onh
non-linear layer (eoe / \ *e)

: jC(Wt_z) C(w,_
(eo ...0) (ee -

i-th output = P(w, = i | context)

Projection

-~
~

shared parameters
across words

15 index for wy_, 41 index for w;_», index for w,_;

The Lookup Table
e 4.

1 Each word in vocabulary maps to a vector in R

o1 LookupTable: input of the i"™ word is
x=(0,0,...,1,0,...,0) 1 at position i

In the original space words are orthogonal.

cat = (0,0,0,0,0,0,0,0,0,1,0,0,0,0, ...)
dog = (0,0,1,0,0,0,0,0,0,0,0,0,0,0, ...)

To get the RY embedding vector for the word we multiply Cx
where C is a d x D matrix with D words in the vocabulary

C contains the word vectors!

16

Neural Network Language Model

i-th output = P(w, = i| context)

softmax

exp(y;)
Y, exp(y)

ﬁ softmax

P(w, =1)=

(eeo [X

most | computation here

tanh
(... ..)

Table .. ~., Matrix C

s ssssssssssssssEsnpa s n e

shared parameters
across words

index for w;_,+1 index for w;_»o index for w;,_;

) y=Uz+Db,

U output

z=tanh(Hx+b,)

ﬁ non-linearity

x=(Cw, .. ,Cw LCw,)’

t—n+1° t-n+2°°°
ﬁ projection
wt—n+1 ? Wt—n+2 200 Wr—l

n: window size

D: vocabulary size

d :word vector dimensionality

Dimensionality of each layer?

. . . exp(y;)
h: # of hidden units Pw, =i)==5
D, exp(y))
J
i-th output = P(w, = i| context)
softmax
softmax
(eoo [X 000) y:UZ-l—bz D
most | computation here
H output
tanh
(eoeo . o0)

..................................

index for wy_,4+1

index for w;y_;

shared parameters
across words

z=tanh(Hx+b,)

H non-linearity

C(W;_l)
_ r %k
x=(Cw,_ .,Cw,_ ,,...CW,_) n*d
ﬁ projection
index for w,_; wt—n+1 ’wt—n+2 r°ce ’wt—l

n: window size

D: vocabulary size
h: # of hidden units

d :word vector dimensionality

of parameters in each layer?

P(w, =i)= exp(y;)

D
> exn)
i-th output = P(w, = i| context)
softmax
softmax
Ceeoe (XD e00) y:UZ+b2
most | computation here
H output
tanh
=2) z=tanh(Hx+b,)
non-linearit
Cwi2) C(wi1) H y
— T
o x=Cw,,..,.Cw,_ ,,..Cw,)
o e 1 projection
index for wy_,41 index for w;_» index for w,_; wt—n+1 ’ wt—n+2 %o wt—l

h*D+ D

n*d*h+h

20

Training

All free parameters

6=(C,H,U,b,,b,)
Costly!

Backpropagation + Stochastic Gradient Ascent:

dlogP(w, 1w _ _,..,w,_)
00

0—0+¢

21

Speed up training

Most computations are at the output layer

In order to compute the normalization term of softmax, we have to
compute the y; for every word!

Cost (almost) linear to vocabulary size.

Same problem in Skip-gram

Solutions: Approximate the normalized probability
Negative sampling
Noise contrastive estimation

Hierarchical softmax

22

Speed up training

Most computations are at the output layer

In order to compute the normalization term of softmax, we have to
compute the y; for every word!

Cost (almost) linear to vocabulary size.

Same problem in Skip-gram

Solutions: Approximate the normalized probability
Negative sampling
Noise contrastive estimation

Hierarchical softmax

23

Refresher: Skip-gram

Given the central word, predict surrounding words in a window of
length ¢

Obijective function:

JO)= 23" Y logplwnssluw)

t=1 —c<j<c,j#0

Softmax: .
exp(v, v;)

2 exp(v,'v,)

weV

dlogp(O1I) |
> Vo

pOIlI)=

24

Negative sampling

l: central word. O: a context word
Original: Maximize p(O | 1,9)
We will derive an alternative which is less costly to compute

Does pair (I,0) really come from the training data?

0 =argmax, p(D=111,0,0)
1

where p(D=111,0,0)=0(vv,)= —
l1+e 1%

Trivial solution: same (long enough) vector for all words

Contrast with negative words!

25

Negative sampling

Solution: randomly sample k negative words w; from a noise
distribution, assume (l,w;) are incorrect pairs

= “walk”, w, = “do”, etc.
k

maximize p(D=111,0,0)e Hp(D =011,w,,0)

i=1

| = “is”, O = “running”, w;

k
or logo(v,v,)+ Z B, p,llog G(—v,Tvai)]
i=1

3/4
where P (w)= U(V;) ,U(w) the unigram distribution

Different embeddings are based on different priors

| Latent semantic analysis :Z', >

“Words occur in same documents should be similar”
Word2vec :Z:>

“Words occur in similar contexts should be similar”

Neural Network Language Modeling :Z:>

“Word vectors should give plausible sentences high probability”

Collobert et al., 2008 & 2011 — >

“Word vectors should facilitate downstream classification tasks”

>

26

27

What to get from this work

How to supervise the learning of word embedding using external
classification tasks

How to do semi-supervised learning of word embedding

How to apply word vectors and neural networks in other traditional
NLP tasks

Embedding for other NLP tasks (coliobert et al.,, 2008&11)

@ Part-Of-Speech Tagging (POS): syntactic roles (noun, adverb...)
e Chunking: syntactic constituents (noun phrase, verb phrase...)

@ Name Entity Recognition (NER): person/company/location...
e Semantic Role Labeling (SRL):

[John]arGo [ate|reL [the apple]argi [in the garden|arem—LoC

S
/\
NP VP
I /\
PRP VBZ NP
| | — T
It operates NP PP
ARGOpredicate |
NNS “mostly in Towa and Nebraska
ARGM - LOC
stores

ARG1

28

The Large-scale Feature Engineering Way

S
NP//\VP

p1|zp vmp

N operates No Bp

ARGOpredicate | //\

NNS “ynostly in Towa and Nebraska
ARGM - LOC

stores

ARG1

e Extract hand-made features e.g. from the parse tree
@ Disjoint: all tasks trained separately, Cascade features

@ Feed these features to a shallow classifier like SVM

The sub-optimal cascade

hand coded outputsl hand coded outputs
hand coded input features

hand coded outputs I
hand coded input features

30

NLP: Large scale machine learning

Goals

@ Task-specific engineering limits NLP scope
@ Can we find unified hidden representations?
@ Can we build unified NLP architecture?

Means

e Start from scratch: forget (most of) NLP knowledge
o Compare against classical NLP benchmarks
o Our dogma: avoid task-specific engineering

31

The big picture

I
A unified architecture for all NLP (labeling) tasks:

Sentence: | Felix sat on the mat
POS: NNP VBD IN DT NN

CHUNK: NP VP PP NP NP-I .
NER: PER - - - - -
SRL: ARGl REL ARG2 ARG2-I ARG2-1 -

@ Joint training (" BlahBlahBlah)

. Y —
Embedding j’\(» The cat sat on the mat
* T he feline sat on the mat
[w«d cat J [Word feline]

(Local features) (Local features) C Local features) l ‘

Lookup Table Lookup Table
i, ~_-> m, ~_->
(' Global features) (Global features) (Global features)

(TaskiTags) (Task2Tags) (Task3Tags)

32

Different embeddings are based on different priors

.
Latent semantic analysis :Z:>

“Words occur in same documents should be similar”
Word2vec — >

“Words occur in similar contexts should be similar”

Neural Network Language Modeling :Z:>

“Word vectors should give plausible sentences high probability”

Collabert et al., 2008 & 2011 — >

“Word vectors should facilitate downstream classification tasks”

Faruqui etal., 2015 — >

“Words should follow linguistic constraints from semantic lexicons”
43

Semantic lexicon: WordNet

Sy
ke

[t _'“'" ’//41 el
S =

[eoncoct [eatch_up _with] S

|
|
]
o
il
i

! [Farmorise P77 T
Gontra ‘ [t T i
o e) resin) ﬂ'ﬁ%ﬂzcm\‘ BT ,J_r'—
gy e :‘%\m@m - shor T ._"A§r-—a
) ot s/ |\
[aftectlate]

lpartake

—
= \= s
oy B __._n\

(int prurb pet]
=

comidkeen_company]
{cope_with]”

ripss e

ey __ ooy} cef b (et
baa \\, el) e rf-_‘:ﬂ, el i
il JmmaMSJK/é@ gl

e fom] iy Bonal] (5] ,.,;Im,_c'r;:nz/

e e S8 e

S
a0 after]

Totiear ---~1

|y
oar N

44

A NS
oo o ater | o Tohampion] \
By g weeae oy |\

untrue

Incorrec

Retrofitting word vectors to semantic lexicons wascuis)

7 Incorporates information from lexicons in word vectors
01 Post-processing approach
1 Applicable to any word embedding method

o Applicable to any lexicon

45

Retrofitting

‘ Original Vectors
(o Q Retrofitted Vectors
(1

CIwrong
Qincorrect lea[se

V(Q) =) |ailla—al*P+ D Bijlla— gl

i=1 (i)EE

46

47

Semantic lexicons used in this work

PPDB: Lexical paraphrases obtained from parallel texts
WordNet: synonyms, hypernyms and hyponyms

FrameNet: Cause_change_of_position -> push=raise=growth

Lexicon Words Edges
PPDB 102,902 | 374,555
WordNet,,,,, | 148,730 | 304,856
WordNet,,;; 148,730 | 934,705
FrameNet 10,822 | 417,456

Table 1. Approximate size of the graphs obtained from different lexicons

Experiment results

_ 48|
o Synonym Syntactic Sentiment
Word Similarity Selection Analysis Analysis
: : v f i i
Lexicon MEN-3k | RG-65 | WS-353 || TOEFL | SYN-REL SA
oronal_—["Glove 37| 767 60.5 89.7 67.0 || 79.6
mbedding _
+PPDB 1.4 2.9 -1.2 5.1 04 1.6
Semantic _ +WNsyn 0.0 2.7 0.5 5.1 -12.4 0.7
Lexicons +WN.u 2.2 7.5 0.7 2.6 -8.4 0.5
| +FN -3.6 -1.0 -5.3 2.6 -7.0 0.0
SG 67.8 72.8 65.6 85.3 73.9 | 81.2
+PPDB 54 3.5 4.4 10.7 2.3 0.9
+WNgyn 0.7 3.9 0.0 9.3 -13.6 0.7
+WN i 2.5 5.0 1.9 9.3 -10.7 || -0.3
+FN -3.2 2.6 —4.9 1.3 -1.3 0.5

48

49

In this lecture...

More types of supervision used in training word embedding
Language modeling
NLP labeling tasks

Semantic lexicons

Ways to speed up
E.g., negative sampling
Necessary for training on huge text corpora

Scale up from hundreds of millions to hundreds of billions

How word embeddings help other NLP tasks

