Homework review

CSE 5243 SP20



Homework #1
Problem 1. (20 points)

Language modeling is the problem of modeling the joint probability of any nat-
ural language (e.g., English) utterance. For example, for the English utterance
the dog is chasing a cat

it aims to estimate the joint probability

P(the,dog,is, chasing, a, cat)
A common simplification strategy is to convert the joint probability into a prod-
uct of conditional probabilities using chain rule. Please show how to do that.

Solution:

Assume the->A, dog->B, is->C, chasing->D, a->E, cat->F

P(the, dog, is, chasing, a, cat) =P(A,B,C,D,E,F)

_P(A,B.C.D.EF) P(A,B,C,D.E) P(A,B,CD) P(A,B,C) P(A.B) A)
P(A,B,C.D.E) P(A.B,C.D) P(AB,C) P(AB) P(A)

=P(F|A,B,C,D,E) P(E|A,B,C,D) P(D|A,B,C) P(C|A,B) P(A|B) P(A)




Problem 2. (20 points)

Let X be a random variable denoting age. Consider a random sample of size n
= 20. X = (69,74,68,70,72,67,66,70,76,68,72,79,74,67,66,71,74,75,75,76).

a) Find the mean, median, and mode of X.

b) Let us use the normal distribution to model the random variable X. Write
down its probability density function (use the sample mean and standard
deviation).

Solution:
(a) sort: [66, 66, 67, 67, 68, 68, 69, 70, 70, 71, 72, 72,74, 74, 74, 75, 75, 76, 76, 79]
mean = 71.45 median =71.5 mode =74

(b) u=71.45
o= |— N (x —u)? =3.8179 (Here we use unbiased sample variance to estimate population
N—-1
variance)
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Problem 3. (20 points)

Similarity /distance between data points plays an important role in data analysis.
However, the results can vary depending on the similarity/distance measure
used, and in practice one should choose a measure that works best for the
specific type of data and analysis under investigation.

Suppose we have the following 2-D data set:

Ay | As
xy | 1.3 | 1.6
xo | 2.1 | 1.7
x3 [ 1.9 | 1.9
xq | 1.8 | 1.6
x5 | 1.5 | 2.0

a) Consider the data as 2-D data points. Given a new data point, z =
(1.7,1.8) as a query, rank the points based on similarity (most simi-
lar/closest ones first) with the query using Euclidean distance, Manhattan
distance, Jaccard similarity, and cosine similarity.

b) Normalize the data set to make the norm of each data point equal to 1.
Use Euclidean distance on the transformed data to rank the data points.



(a) Euclidean Distance:

X1:1/(1.7 = 1.3)2 + (1.8 — 1.6)2 =

X2:4/(1.7 —2.1)2 + (1.8 = 1.7)2 =

X3:/(1.7 - 1.9)2 + (1.8 — 1.9)%2 =

X4: /(1.7 —1.8)2 + (1.8 — 1.6)2 =

X5:/(1.7 — 1.5)2 + (1.8 — 2.0)2 =

Rank: x3 (tie), x4 (tie), x5, x2, x1

Manhattan Distance:

X1:|1.7 - 13|+ |1.8—-1.6| =0.6
X2:|1.7 - 21|+ |1.8—1.7]| = 0.5
X3:|1.7—-19|+|1.8—-19| =03
X4:|1.7—-18|+|1.8—1.6] = 0.3
X5:|1.7 - 15| +|1.8—-2.0| = 0.4

Rank: x3 (tie), x4 (tie), x5, x2, x1

0.447

0.412

0.224

0.224

0.283

Jaccard Similarity

X1:(1.7*1.3+1.8*1.6)/(1.7°+1.8>+1.3%+1.6%-1.7*1.3-1.8*1.6) = 0.9622
X2:(1.7%2.1+1.8%1.7)/(1.7°+1.8*+2.1%+1.72-1.7*%2.1-1.8*%1.7) = 0.9750
X3:(1.7*%1.9+1.8*1.9)/(1.7°+1.8%+1.9%+1.9%-1.7*1.9-1.8*1.9) = 0.9925
X4:(1.7*1.8+1.8*%1.6)/(1.7°+1.8%+1.8°+1.6%-1.7*1.8-1.8*1.6) = 0.9917
X5:(1.7%1.5+1.8*%2.0)/(1.7%+1.8%+1.5%+2.0%-1.7*1.5-1.8*2.0) = 0.9872

Rank: x3, x4, x5, x2, x1

Cosine Similarity

X1:(1.7*1.3+1.8*1.6)/((1.7%+1.8%)*(1.3%+1.6%))°° = 0.9972
X2: (1.7%2.1+1.8*1.7)/((1.72+1.8%)*(2.1%+1.7%))°* = 0.9911
X3: (1.7*1.9+1.8*1.9)/((1.7%+1.82)*(1.92+1.9%))°° = 0.9996
X4:(1.7*1.8+1.8%1.6)/((1.7>+1.8%)*(1.8%+1.6%))°° = 0.9962
X5: (1.7*1.5+1.8*2.0)/((1.7%+1.82)*(1.52+2.0%))°° = 0.9936

Rank: x3, x1, x4, x5, x2



(b) Normalization: X — X

Euclidean Distance:

X1:4/(0.687 — 0.631)2 + (0.727 — 0.776)2 = 0.0745

)(2:\/({].687 —0.777)% + (0.727 — 0.629)%? = 0.1333

X3: \/(0.68? —0.707)2 + (0.727 — 0.707)% = 0.0286

X4: /(0.687 — 0.747)2 + (0.727 — 0.664)2 = 0.0873

X5: /(0.687 — 0.6)2 + (0.727 — 0.8)% = 0.1133

Rank: x3, x1, x4, x5, x2



Problem 4. (30 points)

A flu is going around and it is believed that 3 in 1,000 people now have it. John
just had a flu test and the result was positive. The test can accurately identify
97% of patients who have flu. If a patient doesn’t have flu, 99% of the time the
test result will be negative.

a) What is the probability that John has flu? Show how you get to the
answer.

b) John didn’t believe the test result and just had the same test one more
time. The result was still positive. Now what is the new probability that
John has flu?

¢) What if the result of the second test was negative?



(a) Define:

flu: someone has flu flu: someone does not have flu
+: result Is positive -:negative
P(flu) = —— = 0.003 P(flu) = 0.997
P(+|flu) = 0.97 P(+|flu) =0.03
P(—|flu) = 0.99 P(—|flu) = 0.01
P(flul +):P(+|f;2§(ﬂu): P(+] flu)i((;llftl)l:—)i((-lj—cr;llu)P(fTu)
_ 0.97%0.003 ~0.2259

0.97%0.003+0.01%0.997



_P(++|flW)P(flu) _ P(++|flu)P(flu)
(b) P(flul + +)= P(++) © P(++|flw)P(Flu)+P(++|fTu)P(flw)

_ P(+|flu)?P(flu)
P(+ |flu)2p(flu)+P(+|fE)2P(fTu)

0.972%0.003
= > > = 0.9659
0.972*0.003+0.012%0.997

Why P(+ +|flu)= P(+|flu)??
(Due to + and + are independent)



_P(+ —|flu)P(flu)_ P(+ —|flw)P(flu)
(C) P(flu] £)= P(+ -) ~ P(+ —|flw)P(flu)+P(+ —|fTu) P(flw)
_ P(+|flu)P(—|flu)P(flu)
P(+|flw)P(—|flw)P(flu)+P(+|flu)P(—|flu)P(flu)

0.97%0.03%0.003

= = 0.0083
0.97%0.03%0.003+0.001%0.99%0.997




Homework #2;

Problem 1 (10 points)

For the following group of data:
100, 200, 400, 500, 700, 1000, 3000

a) Caleulate its mean and standard deviation.

b) Normalize the above group of data by min-max normalization with min
— 0 and max = 1.

¢) In z-score normalization, what value should the first number 100 be trans-
formed to? What about the last number 30007

Solution:
(a) mean = 842.86

std = \/% YN (x — u)?= 924.05

[1]The solution of Homework 2 is adapted from Vishal Sunder and Xiao Liu’s submissions.



(b) For min-max normalization with maz4 = 1 and mins = 0,

U — Ny

v o= ,
MaT — Miny

Applying this to every element, new set

0,0.03448276, 0.10344828, 0.13793103, 0.20689655, 0.31034483, 1

(¢) For z-score normalization,

! . v — P',_,q
TA

'Lr

With this. first element,

100 — 842.86
0 924.05
= —0.804

And last element,

3000 — 842.86
B 024.05
— 92334



Problem 2 (10 points)

Given the following table,

X4
-3
3
-4.4
6.0
-4.0
-12.0
1.2
16.0
-16.0
13.2

3

t

= R [ <l e <=1 [l ) e a =

assuming that X is discretized into three bins as follows:
¢y = (—20,—5]; eo = (=5,5]; e3 = (5, 20]
Answer the following questions:

a) Construct the contingency table between the discretized X; and Xs at-
tributes. Include the marginal counts.

b) Compute the x? statistic between them.
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(@) Contingency table,

a b Sum (row)
i 0 (1.2) | 2 (0.8) 5
e 4(3) | 1(2) 5
C3 2 (1.8) | 1(1.2) 3
Sum (column) 6 4 10
(b) o count(A = a;) X count(B = b;)
N 1 i
C ™ 9
2 (0ij — €ij)
ceyy
i=1 j=1 €ij

(0-127 (2-08)7 (-3 (-2 (2-18°" (1-12)

5t~ t 3 t 95 *t 13 t 1
— 3.80



Problem 3 (50 points)

Assume we get some data from a car insurance company in Table[1] where there
are 6 data instances representing 6 people, with 2 attributes (Age and Car) and
1 class label (Risk). Here Age is a continuous attribute. Now we will build
decision trees for this data set.

Data Point | Age Car Risk
To 40 | Vintage H
g 25 SUV L
Ty 45 SUV L
T3 20 Sports H
Ts 40 Sports L
Tq 45 Sports L

Table 1: Data for Problem 3. Age is numeric and Car is categorical. Risk gives
the class label for each point: high (H) or low (L).

a) Let us consider a multi-way split for the Car attribute (using its unique
values for partition). What is the information gain if we choose the Car
attribute to split the root node? (5 points)



Info(D) =1(2,4)

:—glog g—%lﬂg 1
6 "6 6 6
= 0.92
Car | H; | L; | I(H;, L;)
Vintage | 1 | 0 0
SUV 0| 2 0
Sports | 1 | 2 0.92
1 2 3
Infoe, (D)= o * () + c * () + G * (.92
= 0.46
Gain(car) = Info(D) — Infoer (D)
=0.92 —0.46

= 0.46



b)

Let us consider the binary splits for the Car attribute. Using information
gain as the measure, which binary split of the Car attribute is the best at
the root node? (5 points)

Between (a) and (b), which one do you prefer for splitting the root node
using the Car attribute? Hint: Consider the GainRatio measure. (5
points)

Now, construct an entire decision tree for the given data set, using in-
formation gain as the split point evaluation measure. You can use your
calculations or conclusions in (a-c). (30 points)

Classify the point (Age=27, Car=SUV) based on the constructed decision
tree in (d). (5 points)



(b) Let’s consider the three possible splits:

Car HE LE I(Hi LL)
(a) | {Vintage,SUV} | 1 | 2 0.92
Sports 1| 2 0.92

Gain =0.92 — (% (.92 +% x (.92)
=0

Car Hi L?; I(Hi, Lg)
(b) Vintage 0
{SUV Sports} | 1 | 4 0.72

ot
=

e

Gain = 0.92 — (_é £ 0+ % «0.72)

= (.32
Car H; | L; | I(H, Ly)
(c) SUV 012 o
{Vintage,Sports} | 2 | 2 1.00

2 4
Gain = 0.92 = (5 * 0+ £ * 1.00)
—0.25

Therefore, we choose the split {{SUV, Sports}, Vintage} which has the highest gain of
0.32



(¢) For (a),
1 1 2

2 3 3

SplitInfo(D) = —z *logy & — = ¥ logy = — = *logy

= 1.46

_ Gamn
~ SplitInfo
0.6
146

= (.32

GainRatio, (D)

For (b),
1 1

Splitinfop(D) = —= = log, G

6
= 0.65

Gain

GainRatioy(D) = SplitInfo
0.32
~ 0.65
= (.49

Hence, we choose (b), as it has a higher gain ratio.

D D



(d) For the first split, lets compare the age and car attribute.

For age,

Step 1: Sorted Values and insert possible splitting values

Step 2: calculate the frequencies of each category

Step 3: calculate information gain

20 25 40 45
22 27 42
<= > <= <=
H 1 1 1 2
L 0 4 1 2
Info 0.4170 0.6059 0.4621
Gain 0.2195 0.0306 0.1744
SplitInfo 0.4506 0.6365 0.6365
Gainratio 0.4871 0.0481 0.2740

The gainratio is equal to (c). So both ways should work.
Assume we use {{SUV,sports},vintage}as the first split.




(d) For the second split, the node {vintage} only contain one class {H}. No need to split.
Lets split the node{SUV, sports}
%

Assuming that we split the first stage according to (c), Infoag.(D) = —% * [0gos
fogg% = 0.72 we now split for the age which is a continuous attribute,

| =

*

H L L L,L
20 25 40 45
22.5 32.5 42.5
H 1 0 1 0 1 0
L 0 P 1 3 2 2
Gain 0.72-0=0.72 0.72-0.40=0.32 0.72-0.55=0.17

Highest gain = 0.72 corresponding to split point 22.5.

I,/C a;\:'

Vintage — {SUV, Sports}
- \‘
( | | <=22.5
\. \ /
Yes/" &\o
g 7N
A L)

(e) According to the decision-tree above, the point (Age—=27, Car=SUV) will be classified
as L.



