Review of Basic Statistical Concepts

- Statistical Inference
- Point Estimation
- Estimation Error
- Maximum Likelihood Estimate
- Expectation-Maximization (EM)
- Bayes Theorem
- Similarity and Evaluation Measures

Review of Basic Statistical Concepts

Statistical Inference

- Point Estimation
- Estimation Error
- Maximum Likelihood Estimate
- Expectation-Maximization (EM)
- Bayes Theorem
- Similarity and Evaluation Measures

Statistical Inference

More fundamental concepts

Population

Sample

Statistical Inference

Usually the population is not known completely.

How to know its parameters?

Statistical Inference

Usually the population is not known completely.

□ We can obtain information about population parameters, by using samples drawn from it.

 Statistical inference deals with such problems.
 To draw conclusions or inferences about the unknown parameters of the populations from the limited information contained in the sample.

Review of Basic Statistical Concepts

Statistical Inference

- Point Estimation
- Estimation Error
- Maximum Likelihood Estimate
- Expectation-Maximization (EM)
- Bayes Theorem
- Similarity and Evaluation Measures

An estimate is a numerical value of the unknown parameter, obtained by applying a formula (estimator) to a particular sample.

If heta is a parameter, $\hat{ heta}$ denotes its estimate

A rule used to estimate a numerical value is called estimator.

The estimator of mean is given below: $\bar{X} = \sum_{i=1}^{n} \frac{X_i}{n}$

E.g., X_i is the height of person i.

Estimate vs. Estimator

Example: Let a sample of size 5 be 2, 4, 5, 9, 10. Then an estimate of the population mean μ , obtained by applying an estimator, is:

Point Estimation Summary

Point Estimate: to estimate a population parameter.

May be made by calculating the parameter for a sample.

Point Estimation Summary

Point Estimate: to estimate a population parameter.

- May be made by calculating the parameter for a sample.
- May be used to predict values for the missing data.
 E.g.,
 - A company contains 100 employees
 - 99 have salary information
 - Mean salary of these is \$50,000
 - Use \$50,000 as value of remaining employee's salary.

Point Estimation Summary

Point Estimate: to estimate a population parameter.

- May be made by calculating the parameter for a sample.
- May be used to predict values for the missing data.
 E.g.,
 - A company contains 100 employees
 - 99 have salary information
 - Mean salary of these is \$50,000
 - Use \$50,000 as value of remaining employee's salary.

Is this a good idea?

Review of Basic Statistical Concepts

- Statistical Inference
- Point Estimation
- Estimation Error
- Maximum Likelihood Estimate
- Expectation-Maximization (EM)
- Bayes Theorem
- Similarity and Evaluation Measures

Bias: Difference between expected value and actual value.

$$Bias = E(\hat{\Theta}) - \Theta$$

Bias: Difference between expected value and actual value.

$$Bias = E(\hat{\Theta}) - \Theta$$

Mean Squared Error (MSE): expected value of the squared difference between the estimate and the actual value:

$$MSE(\hat{\Theta}) = E(\hat{\Theta} - \Theta)^2$$

Bias: Difference between expected value and actual value.

$$Bias = E(\hat{\Theta}) - \Theta$$

Mean Squared Error (MSE): expected value of the squared difference between the estimate and the actual value:

$$MSE(\hat{\Theta}) = E(\hat{\Theta} - \Theta)^2$$

Why square?

Bias: Difference between expected value and actual value.

$$Bias = E(\hat{\Theta}) - \Theta$$

Mean Squared Error (MSE): expected value of the squared difference between the estimate and the actual value:

$$MSE(\hat{\Theta}) = E(\hat{\Theta} - \Theta)^2$$

□ Why square?

Root Mean Square Error (RMSE)

Review of Basic Statistical Concepts

- Statistical Inference
- Point Estimation
- Estimation Error
- Maximum Likelihood Estimate
- Expectation-Maximization (EM)
- Bayes Theorem
- Similarity and Evaluation Measures

Maximum Likelihood Estimate (MLE)

Obtain parameter estimates that maximize the probability that the sample data occurs for the specific model.

Maximum Likelihood Estimate (MLE)

- Obtain parameter estimates that maximize the probability that the sample data occurs for the specific model.
- Joint probability for observing the sample data by multiplying the individual probabilities.

Likelihood function:

$$L(\Theta \mid x_1, ..., x_n) = \prod_{i=1}^n f(x_i \mid \Theta)$$

Maximize L.

Maximum Likelihood Estimate (MLE)

- Obtain parameter estimates that maximize the probability that the sample data occurs for the specific model.
- Joint probability for observing the sample data by multiplying the individual probabilities.

Likelihood function:

$$L(\Theta \mid x_1, ..., x_n) = \prod_{i=1}^n f(x_i \mid \Theta)$$

Maximize L.

There is an assumption here. What is it?

MLE Example

- □ Coin toss five times: {H, H, H, H, T}
- Assuming a perfect coin with H and T equally likely, the likelihood of this sequence is:

$$L(p \mid 1, 1, 1, 1, 0) = \prod_{i=1}^{5} 0.5 = 0.03.$$

MLE Example

- □ Coin toss five times: {H, H, H, H, T}
- Assuming a perfect coin with H and T equally likely, the likelihood of this sequence is:

$$L(p \mid 1, 1, 1, 1, 0) = \prod_{i=1}^{5} 0.5 = 0.03.$$

□ However if the probability of a H is 0.8 then:

 $L(p \mid 1, 1, 1, 1, 0) = 0.8 \times 0.8 \times 0.8 \times 0.8 \times 0.2 = 0.08.$

MLE Example

- □ Coin toss five times: {H, H, H, H, T}
- Assuming a perfect coin with H and T equally likely, the likelihood of this sequence is:

$$L(p \mid 1, 1, 1, 1, 0) = \prod_{i=1}^{5} 0.5 = 0.03.$$

□ However if the probability of a H is 0.8 then:

 $L(p \mid 1, 1, 1, 1, 0) = 0.8 \times 0.8 \times 0.8 \times 0.8 \times 0.2 = 0.08.$

How do we estimate the probability of a H?

General likelihood formula:

$$L(p \mid x_1, ..., x_5) = \prod_{i=1}^5 p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i=1}^5 x_i} (1-p)^{5-\sum_{i=1}^5 x_i}.$$

General likelihood formula:

$$L(p \mid x_1, ..., x_5) = \prod_{i=1}^5 p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i=1}^5 x_i} (1-p)^{5-\sum_{i=1}^5 x_i}.$$
$$l(p) = \log L(p) = \sum_{i=1}^5 x_i \log(p) + (5-\sum_{i=1}^5 x_i) \log(1-p)$$

General likelihood formula:

$$L(p \mid x_1, ..., x_5) = \prod_{i=1}^5 p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i=1}^5 x_i} (1-p)^{5-\sum_{i=1}^5 x_i}.$$

$$l(p) = log L(p) = \sum_{i=1}^{5} x_i log(p) + (5 - \sum_{i=1}^{5} x_i) log(1-p)$$
$$\frac{\partial l(p)}{\partial p} = \sum_{i=1}^{5} \frac{x_i}{p} - \frac{5 - \sum_{i=1}^{5} x_i}{1-p}.$$

General likelihood formula:

$$L(p \mid x_1, ..., x_5) = \prod_{i=1}^5 p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i=1}^5 x_i} (1-p)^{5-\sum_{i=1}^5 x_i}.$$
$$l(p) = \log L(p) = \sum_{i=1}^5 x_i \log(p) + (5-\sum_{i=1}^5 x_i) \log(1-p)$$
$$\frac{\partial l(p)}{\partial p} = \sum_{i=1}^5 \frac{x_i}{p} - \frac{5-\sum_{i=1}^5 x_i}{1-p}.$$
$$p = \frac{\sum_{i=1}^5 x_i}{5}$$

 \square MLE Estimate for p is then 4/5 = 0.8

Review of Basic Statistical Concepts

- Statistical Inference
- Point Estimation
- Estimation Error
- Maximum Likelihood Estimate

Expectation-Maximization (EM)

- Bayes Theorem
- Similarity and Evaluation Measures

Expectation-Maximization (EM)

Solves estimation with incomplete data.

- Key Idea:
 - Obtain initial estimates for parameters.
 - Iteratively use estimates for missing data and continue until convergence.

EM Example

$$\{1, 5, 10, 4\}; n = 6 \ k = 4; \text{ Guess } \hat{\mu}^0 = 3.$$
$$\hat{\mu}^1 = \frac{\sum_{i=1}^k x_i}{n} + \frac{\sum_{i=k+1}^n x_i}{n} = 3.33 + \frac{3+3}{6} = 4.33$$
$$\hat{\mu}^2 = \frac{\sum_{i=1}^k x_i}{n} + \frac{\sum_{i=k+1}^n x_i}{n} = 3.33 + \frac{4.33 + 4.33}{6} = 4.77$$
$$\hat{\mu}^3 = \frac{\sum_{i=1}^k x_i}{n} + \frac{\sum_{i=k+1}^n x_i}{n} = 3.33 + \frac{4.77 + 4.77}{6} = 4.92$$
$$\hat{\mu}^4 = \frac{\sum_{i=1}^k x_i}{n} + \frac{\sum_{i=k+1}^n x_i}{n} = 3.33 + \frac{4.92 + 4.92}{6} = 4.97$$

EM Algorithm

```
Input:

\Theta = \{\theta_1, ..., \theta_p\}

X_{obs} = \{x_1, ..., x_k\}

X_{miss} = \{x_{k+1}, ..., x_n\}

Output:

\hat{\Theta}

EM Algorithm:

i := 0;

Obtain initial parar

repeat

Estimate missing
```

//Parameters to be Estimated
//Input Database Values Observed
//Input Database Values Missing

```
//Estimates for \Theta
```

```
Obtain initial parameter MLE estimate, \hat{\Theta}^i;
```

```
Estimate missing data, \hat{X}_{miss}^{i};
```

i++;

Obtain next parameter estimate, $\hat{\theta}^i$ to maximize data; until estimate converges;

Review of Basic Statistical Concepts

- Statistical Inference
- Point Estimation
- Estimation Error
- Maximum Likelihood Estimate
- Expectation-Maximization (EM)
- Bayes Theorem
- Similarity and Evaluation Measures

Bayes Theorem Example

- Credit authorizations (hypotheses): h₁=authorize purchase, h₂ = authorize after further identification, h₃=do not authorize, h₄= do not authorize but contact police
- Task: Assign a label for each combination of credit (col.) and income (row):

	1	2	3	4
Excellent	X1	X ₂	X ₃	X4
Good	X_5	X6	X7	X8
Bad	X9	X10	X ₁₁	X ₁₂

Training Data:

ID	Income	Credit	Class	Xi
1	4	Excellent	h ₁	X 4
2	3	Good	h ₁	X ₇
3	2	Excellent	h ₁	X ₂
4	3	Good	h ₁	X ₇
5	4	Good	h ₁	X 8
6	2	Excellent	h ₁	X ₂
7	3	Bad	h ₂	X ₁₁
8	2	Bad	h ₂	X ₁₀
9	3	Bad	h ₃	X ₁₁
10	1	Bad	h ₄	X 9

From training data:

 $P(h_1) = ?; P(h_2) = ?; P(h_3) = ?; P(h_4) = ?.$

Training Data:

ID	Income	Credit	Class	Xi
1	4	Excellent	h ₁	X 4
2	3	Good	h ₁	X ₇
3	2	Excellent	h ₁	X ₂
4	3	Good	h ₁	X ₇
5	4	Good	h ₁	X 8
6	2	Excellent	h ₁	X ₂
7	3	Bad	h_2	X ₁₁
8	2	Bad	h_2	X ₁₀
9	3	Bad	h ₃	X ₁₁
10	1	Bad	h ₄	X 9

From training data:

 $P(h_1) = 60\%$; $P(h_2)=20\%$; $P(h_3)=10\%$; $P(h_4)=10\%$.

\square How to predict the class for X_4 ?

ID	Income	Credit	Class	Xi
1	4	Excellent	h ₁	X 4
2	3	Good	h ₁	X ₇
3	2	Excellent	h ₁	X ₂
4	3	Good	h ₁	X ₇
5	4	Good	h ₁	X 8
6	2	Excellent	h ₁	X ₂
7	3	Bad	h_2	X ₁₁
8	2	Bad	h ₂	X ₁₀
9	3	Bad	h ₃	X ₁₁
10	1	Bad	h ₄	X 9

\Box How to predict the class for X_4 ?

- **Calculate** $P(h_i | X_4)$ for all h_i .
- **D** Place X_4 in class with largest value.

ID	Income	Credit	Class	Xi
1	4	Excellent	h ₁	X 4
2	3	Good	h ₁	X ₇
3	2	Excellent	h ₁	X ₂
4	3	Good	h ₁	X ₇
5	4	Good	h ₁	X 8
6	2	Excellent	h ₁	X ₂
7	3	Bad	h ₂	X ₁₁
8	2	Bad	h ₂	X ₁₀
9	3	Bad	h ₃	X ₁₁
10	1	Bad	h ₄	X 9

How to predict the class for X₄?
 Calculate P(h_i | X₄) for all h_i.
 Place X₄ in class with largest value.

🗖 In Math:

 $P(h_1 | x_4) = (P(x_4 | h_1)(P(h_1))/P(x_4))$ = (1/6)(0.6)/0.1=1.

 $\mathbf{I} \mathbf{x}_4$ in class \mathbf{h}_1 .

ID	Income	Credit	Class	Xi
1	4	Excellent	h ₁	X 4
2	3	Good	h ₁	X ₇
3	2	Excellent	h ₁	X ₂
4	3	Good	h ₁	X ₇
5	4	Good	h ₁	X 8
6	2	Excellent	h ₁	X ₂
7	3	Bad	h_2	X ₁₁
8	2	Bad	h_2	X ₁₀
9	3	Bad	h ₃	X ₁₁
10	1	Bad	h ₄	X 9

How to predict the class for X₄?
 Calculate P(h_i | X₄) for all h_i.
 Place X₄ in class with largest value.

🗖 In Math:

 $P(h_1 | x_4) = (P(x_4 | h_1)(P(h_1))/P(x_4))$

=(1/6)(0.6)/0.1=1.

Bayes Theorem

 $\mathbf{I} \mathbf{x}_4$ in class \mathbf{h}_1 .

ID	Income	Credit	Class	Xi
1	4	Excellent	h ₁	X 4
2	3	Good	h ₁	X ₇
3	2	Excellent	h ₁	X ₂
4	3	Good	h ₁	X ₇
5	4	Good	h ₁	X 8
6	2	Excellent	h₁	X ₂
7	3	Bad	h_2	X ₁₁
8	2	Bad	h_2	X ₁₀
9	3	Bad	h ₃	X ₁₁
10	1	Bad	h ₄	X 9

Review of Basic Statistical Concepts

- Statistical Inference
- Point Estimation
- Estimation Error
- Maximum Likelihood Estimate
- Expectation-Maximization (EM)
- Bayes Theorem
- Similarity and Evaluation Measures

Similarity Measures

- Determine similarity between two objects.
- Similarity characteristics:
- $\forall t_i \in D, sim(t_i, t_i) = 1$
- $\forall t_i, t_j \in D, sim(t_i, t_j) = 0$ if t_i and t_j are not alike at all. $\forall t_i, t_j, t_k \in D, sim(t_i, t_j) < sim(t_i, t_k)$ if t_i is more like t_k than it is like t_j .
- Alternatively, distance measure measures how unlike or dissimilar objects are.

Similarity Measures

Dice:
$$sim(t_i, t_j) = \frac{2\sum_{h=1}^{k} t_{ih} t_{jh}}{\sum_{h=1}^{k} t_{ih}^2 + \sum_{h=1}^{k} t_{jh}^2}$$

Jaccard: $sim(t_i, t_j) = \frac{\sum_{h=1}^{k} t_{ih} t_{jh}}{\sum_{h=1}^{k} t_{ih}^2 + \sum_{h=1}^{k} t_{jh}^2 - \sum_{h=1}^{k} t_{ih} t_{jh}}$
Cosine: $sim(t_i, t_j) = \frac{\sum_{h=1}^{k} t_{ih} t_{jh}}{\sqrt{\sum_{h=1}^{k} t_{ih}^2 \sum_{h=1}^{k} t_{jh}^2}}$
Overlap: $sim(t_i, t_j) = \frac{\sum_{h=1}^{k} t_{ih} t_{jh}}{min(\sum_{h=1}^{k} t_{ih}^2, \sum_{h=1}^{k} t_{jh}^2)}$

Distance Measures

Measure dissimilarity between objects

Euclidean:
$$dis(t_i, t_j) = \sqrt{\sum_{h=1}^k (t_{ih} - t_{jh})^2}$$

Manhattan: $dis(t_i, t_j) = \sum_{h=1}^k |(t_{ih} - t_{jh})|$

Distance Measures

Measure dissimilarity between objects

Euclidean:
$$dis(t_i, t_j) = \sqrt{\sum_{h=1}^k (t_{ih} - t_{jh})^2}$$

Manhattan: $dis(t_i, t_j) = \sum_{h=1}^k |(t_{ih} - t_{jh})|$

Why is it called Manhattan distance?

Previous CSE 5243 course offered by Prof. Srinivasan Parthasarathy @OSU:

http://web.cse.ohio-state.edu/~parthasarathy.2/674/

Point Estimation on SlidesShare:

https://www.slideshare.net/ShahabYaseen/point-estimation-48241348