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Statistical Inference

1 More fundamental concepts
=1 Population

o Sample



Statistical Inference

Usually the population is not known completely.

How to know its parameters?



Statistical Inference
Usually the population is not known completely.

We can obtain information about population
parameters, by using samples drawn from it.

Statistical inference deals with such problems.

To draw conclusions or inferences about the
unknown parameters of the populations from the
limited information contained in the sample.



Review of Basic Statistical Concepts
B

O Statistical Inference
=1 Point Estimation
O Estimation Error
Maximum Likelihood Estimate

m
O Expectation-Maximization (EM)
0 Bayes Theorem

m

Similarity and Evaluation Measures



Estimate

An estimate is a numerical value of the unknown
parameter, obtained by applying a formula
(estimator) to a particular sample.

N

If 8 is a parameter, 0 denotes its estimate



Estimator

A rule used to estimate a numerical value is
called estimator.

The estimator of mean is given below:
n
_ X;
X = E —
: n
1=1

E.g., X; is the height of person i.



Estimate vs. Estimator

Example: Let a sample of size 5 be 2, 4, 5, 9,
10. Then an estimate of the population mean |,
obtained by applying an estimator, is:

X = Z?zl—l Estimator

2+4+5+9+10

X ===6 Estimate



Point Estimation Summary

N
0 Point Estimate: to estimate a population parameter.

7 May be made by calculating the parameter for a
sample.
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Point Estimation Summary
—

0 Point Estimate: to estimate a population parameter.

1 May be made by calculating the parameter for a
sample.

0 May be used to predict values for the missing data.
o E.g.,

A company contains 100 employees

99 have salary information

Mean salary of these is $50,000
Use $50,000 as value of remaining employee’s salary.
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Point Estimation Summary
—

0 Point Estimate: to estimate a population parameter.

1 May be made by calculating the parameter for a
sample.

0 May be used to predict values for the missing data.
o E.g.,

A company contains 100 employees

99 have salary information

Mean salary of these is $50,000
Use $50,000 as value of remaining employee’s salary.

Is this a good idea?
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Estimation Error

Bias: Difference between expected value and actual
value.

Bias = E(©) — ©
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Estimation Error

Bias: Difference between expected value and actual
value.

Bias = E((:‘)) — 0

Mean Squared Error (MSE): expected value of the
squared difference between the estimate and the
actual value:

MSE(©) = E(© — 0)? |
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Estimation Error

Bias: Difference between expected value and actual
value.

Bias = E((:‘)) — 0

Mean Squared Error (MSE): expected value of the
squared difference between the estimate and the
actual value:

MSE(©) = E(© — 0)? |

Why square?
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Estimation Error

Bias: Difference between expected value and actual
value.

Bias = E((:‘)) — 0

Mean Squared Error (MSE): expected value of the
squared difference between the estimate and the
actual value:

MSE(©) = E(© — 0)? |

Why square?
Root Mean Square Error (RMSE)
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Maximum Likelihood Estimate (MLE)
-

1 Obtain parameter estimates that maximize the
probability that the sample data occurs for the
specific model.

19
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Maximum Likelihood Estimate (MLE)

Obtain parameter estimates that maximize the
probability that the sample data occurs for the specific
model.

Joint probability for observing the sample data by
multiplying the individual probabilities.

Likelihood function:

Maximize L.



Maximum Likelihood Estimate (MLE)

I
1 Obtain parameter estimates that maximize the

probability that the sample data occurs for the specific
model.

1 Joint probability for observing the sample data by
multiplying the individual probabilities.

Likelihood function:

1 Maximize L.

There is an assumption here. What is it¢

21



MLE Example

N
7 Coin toss five times: {H, H, H, H, T}

1 Assuming a perfect coin with H and T equally likely,

the likelihood of this sequence is:

22



MLE Example

N
7 Coin toss five times: {H, H, H, H, T}

1 Assuming a perfect coin with H and T equally likely,

the likelihood of this sequence is:

5
L(p|1,1,1,1,0)= ][] 0.5 = 0.03.

=1

7 However if the probability of a H is 0.8 then:

Lip|1,1,1,1,0)= 0.8 x 0.8 x 0.8 x 0.8 x 0.2 = 0.08.
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MLE Example

N
7 Coin toss five times: {H, H, H, H, T}

71 Assuming a perfect coin with H and T equally likely,

the likelihood of this sequence is:

5
L(p|1,1,1,1,0)= ][] 0.5 = 0.03.

=1

7 However if the probability of a H is 0.8 then:

Lip|1,1,1,1,0)= 0.8 x 0.8 x 0.8 x 0.8 x 0.2 = 0.08.

How do we estimate the probability of a H?

24



MLE Example (cont’d)

o
1 General likelihood formula:

L(p | Ty e 335) — prz‘ (1 _ p)l—xi — pzz‘=1 x; (1 _ p)5_zi=1 Ti
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MLE Example (cont’d)

o
1 General likelihood formula:

Lip|ay,...,25) = pr“' (1—p)™ = pi=1 (1 — p)5_2?=1 e
1=1
5 5
[(p) = logL(p) = > _zilog(p) + (5— > _ i) log(1 — p)
1=1 1=1
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MLE Example (cont’d)

o
1 General likelihood formula:

Lip|ay,...,25) = pri (1—p)™ = p2?=1 (1 - p)5_2?=1 e
1=1
5 5
[(p) = logL(p) = > _zilog(p) + (5— > _ i) log(1 — p)
1=1 1=1
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MLE Example (cont’d)

o
1 General likelihood formula:

-1 MLE Estimate for p is then 4/5 = 0.8

28
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Expectation-Maximization (EM)

Solves estimation with incomplete data.

Key ldea:
Obtain initial estimates for parameters.

lteratively use estimates for missing data and continue
until convergence.



EM Example

{1,5,10,4}s n =6 k = 4; Guess (i’ = 3,
k n
1T ) i T 3+3
n n 6
k n
1 oy 1= 1 433 433
n n §
k n
1 ¥ = / 4,77+ 4.77
#3 _ ) img & i ) =kt1 %0 _ 333 T 40
n n §
k n
1% = / 4,924+ 4.92
;ﬁ_Z*;x ) ’;“ =333+ 2 =497
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EM Algorithm
—

Input:
0 =1{60y..,0,} //Parameters to be Estimated
Xops = {x1, ..., 21} //Input Database Values Observed
Xiniss = {Tka1y ey Tn} //Input Database Values Missing
Output:
0 / /Estimates for ©
EM Algorithm:
1:= 0;
Obtain initial parameter MLE estimate,O';
repeat
Estimate missing data,)A(f;u-ss;
1++;
Obtain next parameter estimate,f' to maximize data;
until estimate converges;

32
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Bayes Theorem Example

Credit authorizations (hypotheses): h,=authorize
purchase, h, = authorize after further
identification, hy=do not authorize, h,= do not
authorize but contact police

Task: Assign a label for each combination of credit
(col.) and income (row):

1 2 3 4
Excellent X1 X X3 X4
Good X5 X6 X7 Xg
Bad X9 X10 X11 X12




Bayes Example(cont’d)

Training Data:

From training data:

O

ncome

Credit

Excellent

Good

Excellent

Good

Good

Excellent

Bad

Bad

Bad

O OONO|OPH~WIN -

-
= WINWINIA~APOWODNW A~

Bad

P(h,) = 2; P(h,)=2; P(h;)=¢2; P(h,)=¢5.
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Bayes Example(cont’d)

Training Data: | ID [Income| Credit |Class
1 |4 Excellent| h;
2 |3 Good N4
3 |2 Excellent| h;
4 |3 Good N4
5 |4 Good N1
6 |2 Excellent| h;
7 |3 Bad N>
8 |2 Bad Ny
9 |3 Bad N3
10 | 1 Bad N4

From training data:

P(h,) = 60%; P(h,)=20%; P(h,)=10%; P(h,)=10%.
36



Bayes Example(cont’d)
N

o0 How to predict the class for X2 D Jnoome, Credit Class x
2 |3 Good h, X7
3 |2 Excellent | h, Xo
4 |3 Good  |hy X7
> |4 Good | h; Xs
6 |2 Excellent | h, Xp
7 3 Bad h2 X11
8 2 Bad h2 X10
9 3 Bad h3 X11
10 |1 Bad  |h, |Xs

37



Bayes Example(cont’d)
—

. ID [Income| Credit
0 How to predict the class for X2 T4 o
2 |3 Good
Calculate P(h. | X,) for all h.. 32 [Excellent
R . 4 |3 Good
Place X, in class with largest value. 5 14 Good
6 |2 Excellent
7 |3 Bad
8 |2 Bad
9 |3 Bad
10 [1 Bad

38



Bayes Example(cont’d)

I
-1 How to predict the class for X2

Calculate P(h. | X,) for all h..
Place X, in class with largest value.

In Math:

mP(hy | x)=(P(x4 1 hy)(P(hy))/P(x,)
=(1/6)(0.6)/0.1=1.

mx,in class h;.

39
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Credit

Excellent

Good

Excellent

Good

Good

Excellent

Bad

Bad

Bad

2O0NOONPWN |-

o

S WINWIN R WIN WA~

Bad
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Bayes Example(cont’d)

. ID |1 Credit |CI i
How to predict the class for X2 T et Tae
2 |3 Good h X
Calculate P(h. | X,) for all h.. 3 2 |Excellenth, x
° . 4 3 Good h1 X7
Place X, in class with largest value. 5 14 Good |hy  |xs
6 |2 Excellent | h4 X2
7 3 Bad h2 X11
8 |2 Bad h X
In Math: 9 3 Bad  |hy |
10 |1 Bad hy Xo

E(m |x4):(P(x4|h1)(P(h1))/P(x4)]
\

=(1/6)(0.6)/0.1=1. :

Bayes Theorem

x4 in class h;.
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Similarity Measures
=

11 Determine similarity between two objects.

0 Similarity characteristics:

o VtieD, Sim(ti,ti) =1

o W, t; € Dysim(t;,t;) =0 if t; and ¢; are not alike at all.

o Vi t; 1k € D sim(t;,t;) < sim(t;,ty) if ; is more like ¢; than it is like ¢;.

o1 Alternatively, distance measure measures how unlike
or dissimilar objects are.

42



Similarity Measures

o
1 22?; 1 zhtgh,
Dice: szm(t“t)
Zh 1 +Zh 1
Jaccard: sim(t;,t;) = Zi L tintjn
accard:
: Zh 1t%2h+zh 1t§h Zh L Lintin
k
] {
Cosine: szm(t“t ) D b= ;zh ih 2
\/Zh, 1tm2h B
Zi 1 zhtjh

Overlap: Szm(ti’tj) mzn(zh L 15 Zi 1 154)
1h) =17
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Distance Measures
B

1 Measure dissimilarity between objects

Euclidean: dis(t;,t;) \/Zh_ (tin, — )
Manhattan: dis(t;,t;) = thl | (tin — t5n) |

44



45

Distance Measures

1 Measure dissimilarity between objects

Euclidean: dis(t;,t;) = \/Zl}i—l(tih —
Manhattan: dis(t;,t;) = 35—, | (tin —

Why is it called Manhattan distance?
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