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Abstract

The recent advance in deep learning and
semantic parsing has significantly im-
proved the translation accuracy of natural
language questions to structured queries.
However, further improvement of the ex-
isting approaches turns out to be quite
challenging. Rather than solely rely-
ing on algorithmic innovations, in this
work, we introduce DialSQL, a dialogue-
based structured query generation frame-
work that leverages human intelligence to
boost the performance of existing algo-
rithms via user interaction. DialSQL is
capable of identifying potential errors in a
generated SQL query and asking users for
validation via simple multi-choice ques-
tions. User feedback is then leveraged to
revise the query. We design a generic sim-
ulator to bootstrap synthetic training di-
alogues and evaluate the performance of
DialSQL on the WikiSQL dataset. Using
SQLNet as a black box query generation
tool, DialSQL improves its performance
from 61.3% to 69.0% using only 2.4 vali-
dation questions per dialogue.

1 Introduction

Building natural language interfaces to databases
(NLIDB) is a long-standing open problem and has
significant implications for many application do-
mains. It can enable users without SQL program-
ming background to freely query the data they
have. For this reason, generating SQL queries
from natural language questions has gained a re-
newed interest due to the recent advance in deep
learning and semantic parsing (Yaghmazadeh
et al., 2017; Zhong et al., 2017; Xu et al., 2017;
Iyer et al., 2017).

While new methods race to achieve the state-
of-the-art performance on NLIDB datasets such
as WikiSQL (Xu et al., 2017; Zhong et al., 2017),
the accuracy is still not high enough for real use.
For example, SQLNet (Xu et al., 2017) achieves
61.3% accuracy on WikiSQL. After analyzing the
error cases of Seq2SQL (Zhong et al., 2017) and
SQLNet, we recognized that many wrong transla-
tions cannot be easily corrected due to the lack of
external knowledge and semantic understanding.

In this paper, we aim to alleviate the aforemen-
tioned problem by putting human users in the loop.
Previous human-in-the-loop NLIDBs (Li and Ja-
gadish, 2014; Yaghmazadeh et al., 2017) rely on
users to carefully go through a generated SQL
query and revise it accordingly, which is not feasi-
ble for users who do not know the SQL language.
Instead, we resort to a different approach by intro-
ducing a goal-oriented dialogue model, DialSQL,
that interacts with users to extract and correct po-
tential errors in the generated queries.

Given a SQL query generated from a natural
language question, we assume any segment, or
span, of the generated query such as a WHERE
clause can be potentially erroneous. The goal of
DialSQL is to extract the erroneous spans and ask
users multi-choice questions to validate and cor-
rect these errors. DialSQL is based on a hier-
archical encoder-decoder architecture with atten-
tion and pointer mechanisms. The model first en-
codes each turn of interaction and runs a dialogue
level RNN network on the dialogue history. The
output of the network is then used to predict the
error category, i.e., whether it is a selection, pro-
jection, or aggregation error. Conditioned on the
error category, the output of a second RNN is used
to predict the start and end positions of the er-
ror span by pointing to the query tokens. Finally,
candidate choices are decoded from the error cate-
gory and span representations. Following previous



Natural Language Question : What are the countries that joined the NATO before 2004 ?
Ground Truth SQL Query : SELECT country WHERE date of join < 2004
Initial SQL Query : SELECT count ( country ) WHERE date of join = 2004

Turn Side NL Expression using Rule-Based Templates Response
System: Could you please confirm if you are asking total number of the results? validate agg (1, 2)
User: No, that’s not true. negate()

System:
Could you please select one of the following options :

(i) average number of results, (ii) all the results? offer agg (average, no agg)

User: It should be all the results. select(2)
System: Could you please confirm if date of join is 2004 ? validate where change(6, 11)
User: That’s wrong. negate()

System:
Could you please select one of the following options :

(i) date of join is before 2004, (ii) date of invitation is before 2004? offer where (date of join < 2004, date of invitation < 2004)

User: Date of join is before 2004. select(1)

Table 1: DialSQL model running example. Initial SQL query is generated by running a black box
model on the question. Natural language (NL) expressions are generated using a template based method.
Substrings in red represent the error spans and substrings in blue represent the choices offered. Each
response is accompanied with natural language utterances for clarity.

work (Zhong et al., 2017; Xu et al., 2017), we only
use column names and do not utilize table values.

How to train and evaluate DialSQL become two
challenging issues due to the lack of error data
and interaction data. In this work, we construct a
simulator to generate simulated dialogues, a gen-
eral approach practiced by many dialogue stud-
ies. Inspired by the agenda-based methods for user
simulation (Schatzmann et al., 2007), we keep an
agenda of pending actions that are needed to in-
duce the ground truth query. At the start of the
dialogue, a new query is carefully synthesized by
randomly altering the ground truth query and the
agenda is populated by the sequence of altering ac-
tions. Each action consists of three sub-actions: (i)
Pick an error category and extract a span; (ii) Raise
a question; (iii) Update the query by randomly al-
tering the span and remove the action from the
agenda. Consider the example in Figure 1: Step-
1 synthesizes the initial query by randomly alter-
ing the WHERE clause and AGGREGATION; Step-
2 generates the simulated dialogue by validating
the altered spans and offering the correct choice.

To evaluate our model, we first train DialSQL
on the simulated dialogues. Initial queries for new
questions are manufactured by running a black
box SQL generation system on the new questions.
When tested on the WikiSQL (Zhong et al., 2017)
dataset, our model increases the query match ac-
curacy of SQLNet (Xu et al., 2017) from 61.3% to
69.0% using on average 2.4 validation questions
per query.

2 Related Work

Research on natural language interfaces to
databases (NLIDBs), or semantic parsing, has
spanned several decades. Early rule-based
NLIDBs (Woods, 1973; Androutsopoulos et al.,
1995; Popescu et al., 2003) employ carefully de-
signed rules to map natural language questions to
formal meaning representations like SQL queries.
While having a high precision, rule-based sys-
tems are brittle when facing with language vari-
ations. The rise of statistical models (Zettlemoyer
and Collins, 2005; Kate et al., 2005; Berant et al.,
2013), especially the ongoing wave of neural net-
work models (Yih et al., 2015; Dong and Lapata,
2016; Sun et al., 2016; Zhong et al., 2017; Xu
et al., 2017; Guo and Gao, 2018; Yavuz et al.,
2016), has enabled NLIDBs that are more ro-
bust to language variations. Such systems allow
users to formulate questions with greater flexibil-
ity. However, although state-of-the-art systems
have achieved a high accuracy of 80% to 90%
(Dong and Lapata, 2016) on well-curated datasets
like GEO (Zelle and Ray, 1996) and ATIS (Zettle-
moyer and Collins, 2007), the best accuracies on
datasets with questions formulated by real human
users, e.g., WebQuestions (Berant et al., 2013),
GraphQuestions (Su et al., 2016), and WikiSQL
(Zhong et al., 2017), are still far from enough for
real use, typically in the range of 20% to 60%.

Human-in-the-loop systems are a promising
paradigm for building practical NLIDBs. A num-
ber of recent studies have explored this paradigm
with two types of user interaction: coarse-grained
and fine-grained. Iyer et al. (2017) and Li et



Figure 1: An instantiation of our dialogue simulation process. Step-1 synthesizes the initial query (top)
by randomly altering the ground truth query (bottom). Step-2 generates the dialogue by validating the
sequence of actions populated in Step-1 with the user. Each action is defined by the error category, start
and end positions of the error span, and the random replacement, ex. AGG (1, 2, count).

al. (2016) incorporate coarse-grained user inter-
action, i.e., asking the user to verify the correct-
ness of the final results. However, for real-world
questions, it may not always be possible for users
to verify result correctness, especially in the ab-
sence of supporting evidence. Li and Jagadish
(2014) and Yaghmazadeh et al. (2017) have shown
that incorporating fine-grained user interaction can
greatly improve the accuracy of NLIDBs. How-
ever, they require that the users have intimate
knowledge of SQL, an assumption that does not
hold for general users. Our method also enables
fine-grained user interaction for NLIDBs, but we
solicit user feedback via a dialogue between the
user and the system.

Our model architecture is inspired by recent
studies on hierarchical neural network models
(Sordoni et al., 2015; Serban et al., 2015; Gur
et al., 2017). Recently, Saha et al. (2018) propose
a hierarchical encoder-decoder model augmented
with key-value memory network for sequential
question answering over knowledge graphs. Users
ask a series of questions, and their system finds
the answers by traversing a knowledge graph and
resolves coreferences between questions. Our in-
teractive query generation task significantly differs
from their setup in that we aim to explicitly detect
and correct the errors in the generated SQL query
via a dialogue between our model and the user.

Agenda based user simulations have been inves-
tigated in goal-oriented dialogues for model train-
ing (Schatzmann et al., 2007). Recently, Seq2seq
neural network models are proposed for user sim-
ulation (Asri et al., 2016) that utilize additional
state tracking signals and encode dialogue turns

in a more coarse way. We design a simulation
method for the proposed task where we generate
dialogues with annotated errors by altering queries
and tracking the sequence of alteration steps.

3 Problem Setup and Datasets

We study the problem of building an interactive
natural language interface to databases (INLIDB)
for synthesizing SQL queries from natural lan-
guage questions. In particular, our goal is to de-
sign a dialogue system to extract and validate po-
tential errors in generated queries by asking users
multi-choice questions over multiple turns. We
will first define the problem formally and then ex-
plain our simulation strategy.

3.1 Interactive Query Generation

At the beginning of each dialogue, we are given a
question Q = {q1, q2, · · · , qN}, a table with col-
umn names T = {T1, T2, · · · , TK} where each
name is a sequence of words, and an initial SQL
query U generated using a black box SQL genera-
tion system. Each turn t is represented by a tuple
of system and user responses, (St, Rt), and aug-
mented with the dialogue history (list of previous
turns), Ht. Each system response is a triplet of er-
ror category c, error span s, and a set of candidate
choices C, i.e., St = (c, s, C). An error category
(Table 2) denotes the type of the error that we seek
to correct and an error span is the segment of the
current query that indicates the actual error. Can-
didate choices depend on the error category and
range over the following possibilities: (i) a column
name, (ii) an aggregation operator, or (iii) a where
condition. User responses are represented by ei-



Error Category Meaning in a dialogue
validate sel Validate the select clause
validate agg Validate the aggregation operator
validate where changed Validate if a segment of a where clause is incorrect
validate where removed Validate if a new where clause is needed
validate where added Validate if an incorrect where clause exists
no error Validate if there is no remaining error

Table 2: The list of error categories and their explanations for our interactive query generation task.

ther an affirmation or a negation answer and an in-
dex c′ to identify a choice. We define the interac-
tive query generation task as a list of subtasks: at
each turn t, (i) predict c, (ii) extract s from U , and
(iii) decode C. The task is supervised and each
subtask is annotated with labeled data.

Consider the example dialogue in Table 1. We
first predict validate agg as the error cate-
gory and error span (start = 1, end = 2) is
decoded by pointing to the aggregation segment
of the query. Candidate choices, (average,
no agg), are decoded using the predicted error
category, predicted error span, and dialogue his-
tory. We use a template based natural language
generation (NLG) component to convert system
and user responses into natural language.

3.2 Dialogue Simulation for INLIDB

In our work, we evaluate our model on the Wik-
iSQL task. Each example in WikiSQL consists of
a natural language question and a table to query
from. The task is to generate a SQL query that
correctly maps the question to the given table. Un-
fortunately, the original WikiSQL lacks error data
and user interaction data to train and evaluate Dial-
SQL. We work around this problem by designing a
simulator to bootstrap training dialogues and eval-
uate DialSQL on the test questions of WikiSQL.

Inspired by the agenda-based methods (Schatz-
mann et al., 2007), we keep an agenda of pend-
ing actions that are needed to induce the ground
truth query. At the start of the dialogue, we synthe-
size a new query by randomly altering the ground
truth query and populating the agenda by the se-
quence of altering actions. Each action launches
a sequence of sub-actions: (i) Randomly select
an error category and extract a related span from
the current query, (ii) randomly generate a valid
choice for the chosen span, and (iii) update the cur-
rent query by replacing the span with the choice.
The dialogue is initiated with the final query and a
rule-based system interacts with a rule-based user

simulator to populate the dialogue. The rule-based
system follows the sequence of altering actions
previously generated and asks the user simulator
a single question at each turn. The user simulator
has access to the ground truth query and answers
each question by comparing the question (error
span and the choice) with the ground truth.

Consider the example in Figure 1 where Step-
1 synthesizes the initial query and Step-2 simu-
lates a dialogue using the outputs of Step-1. Step-1
first randomly alters the WHERE clause; the oper-
ator is replaced with a random operator. The up-
dated query is further altered and the final query
is passed to Step-2. In Step-2, the system starts
with validating the aggregation with the user sim-
ulator. In this motivating example, the aggregation
is incorrect and the user simulator negates and se-
lects the offered choice. During training, there is
only a single choice offered and DialSQL trains
to produce this choice; however, during testing, it
can offer multiple choices. In the next step, the
system validates the WHERE clause and generates
a no error action to issue the generated query.
At the end of this process, we generate a set of
labeled dialogues by executing Step-1 and Step-
2 consecutively. DialSQL interacts with the same
rule-based simulator during testing and the SQL
queries obtained at the end of the dialogues are
used to evaluate the model.

4 Dialogue Based SQL Generation

In this section, we present our DialSQL model and
describe its operation in a fully supervised setting.
DialSQL is composed of three layers linked in a
hierarchical structure where each layer solves a
different subtask : (i) Predicting error category,
(ii) Decoding error span, and (iii) Decoding can-
didate choices (illustrated in Figure 2). Given a
(Q,T, U) triplet, the model first encodes Q, each
column name Ti ∈ T , and query U into vector
representations in parallel using Recurrent Neu-
ral Networks (RNN). Next, the first layer of the



model encodes the dialogue history with an RNN
and predicts the error category from this encoding.
The second layer is conditioned on the error cate-
gory and decodes the start and end positions of the
error span by attending over the outputs of query
encoder. Finally, the last layer is conditioned on
both error category and error span and decodes a
list of choices to offer to the user.

4.1 Preliminaries and Notation
Each token w is associated with a vector ew from
rows of an embeddings matrix E. We aim at ob-
taining vector representations for question, table
headers, and query, then generating error category,
error span, and candidate choices.

For our purposes, we use GRU units (Cho et al.,
2014) in our RNN encoders which are defined as

ht = f(xt;ht−1)

where ht is the hidden state at time t. f is a nonlin-
ear function operating on input vector xt and pre-
vious state ht−1. We refer to the last hidden state
of an RNN encoder as the encoding of a sequence.

4.2 Encoding
The core of our model is a hierarchical encoder-
decoder neural network that encodes dialogue
history and decodes errors and candidate choices
at the end of each user turn. The input to the
model is the previous system turn and the current
user turn and the output is the next system ques-
tion.

Encoding Question, Column Names, and
Query. Using decoupled RNNs (Enc), we
encode natural language question, column names,
and query sequences in parallel and produce
outputs and hidden states. oQ, oTi , and oU denote
the sequence of hidden states at each step and
hQ, hTi , and hU denote the last hidden states
of question, column name, and query encoders,
respectively. Parameters of the encoders are
decoupled and only the word embedding matrix
E is shared.

Encoding System and User Turns Since there
is only a single candidate choice during training,
we ignore the index and encode user turn by
doing an embedding lookup using the validation
answer (affirmation or negation). Each element
(error category, error span, and candidate choice)
of the system response is encoded by doing an

embedding lookup and different elements are used
as input at different layers of our model.

Encoding Dialogue History At the end of each
user turn, we first concatenate the previous error
category and the current user turn encodings to
generate the turn level input. We employ an RNN
to encode dialogue history and current turn into a
fixed length vector as

hD1
0 = hQ

oD1
t , gD1

t = Enc([Ec, Ea])

hD1
t = [Attn(gD1

t , HT ), oDt ]

where [.] is vector concatenation, Ec is the error
category encoding, Ea is the user turn encoding,
hD1
0 is the initial hidden state, and hD1

t is the cur-
rent hidden state. Attn is an attention layer with a
bilinear product defined as in (Luong et al., 2015)

Attn(h,O) =
∑

softmax(tanh(hWO)) ∗O

where W is attention parameter.

4.3 Predicting Error Category
We predict the error category by attending over
query states using the output of the dialogue en-
coder as

ct = tanh(Lin([Attn(hD1
t , OU ), hD1

t ]))

lt = softmax(ct · E(C))

where Lin is a linear transformation, E(C) is a
matrix with error category embeddings, and lt is
the probability distribution over categories.

4.4 Decoding Error Span
Consider the case in which there are more than
one different WHERE clauses in the query and each
clause has an error. In this case, the model needs
to monitor previous error spans to avoid decod-
ing the same error. DialSQL runs another RNN
to generate a new dialogue encoding to solve the
aforementioned problem as

hD2
0 = hQ

oD2
t , gD2

t = Enc(Ec)

hD2
t = [Attn(gD2

t , HT )oD2
t ]

where hD2
0 is the initial hidden state, and hD2

t is
the current hidden state. Start position i of the er-
ror span is decoded using the following probability
distribution over query tokens

pi = softmax(tanh(hD2
t L1H

U ))



Figure 2: DialSQL model: Boxes are RNN cells, colors indicate parameter sharing. Dashed lines denote
skip connections, dashed boxes denote classifications, and black circles denote vector concatenation.
Blue boxes with capital letters and numbers (X.1, X.2) denote that the embeddings of predicted token
at X.1 is passed as input to X.2. Each component in the pipeline is numbered according to execution
order. <GO> is a special token to represent the start of a sequence and ST and ED denote the start and
end indices of a span, respectively.

where pi is the probability of start position over the
ith query token. End position j of the error span is
predicted by conditioning on the start position

ci =
∑

pi ∗HU

p̂j = softmax(tanh([hD2
t , ci]L2H

U ))

where p̂j is the probability of end position over
the jth query token. Conditioning on the error cat-
egory will localize the span prediction problem as
each category is defined by only a small segment
of the query.

4.5 Decoding Candidate Choices

Given error category c and error span (i, j) , Di-
alSQL decodes a list of choices that will poten-
tially replace the error span based on user feed-
back. Inspired by SQLNet (Xu et al., 2017), we
describe our candidate choice decoding approach
as follows.
Select column choice. We define the following

scores over column names,

h = Attn(Lin([oUi−1, o
U
j , Ec]), H

T )

ssel = uT ∗ tanh(Lin([HT , h]))

where oUi−1 is the output vector of the query en-
coder preceding the start position, and oUj is the
output of query encoder at the end position.
Aggregation choice. Conditioned on the encod-
ing e of the select column, we define the follow-
ing scores over the set of aggregations (MIN, MAX,
COUNT, NO AGGREGATION)

sagg = vT ∗ tanh(Lin(Attn(e,HQ)))

Where condition choice. We first decode the con-
dition column name similar to decoding select col-
umn. Given the encoding e of condition column,
we define the following scores over the set of op-
erators (=, <, >)

sop = wT ∗ tanh(Lin(Attn(e,HQ)))



Next, we define the following scores over question
tokens for the start and end positions of the condi-
tion value

sst = Attn(e,HQ)

sed = Attn([e, hst, H
Q])

where hst is the context vector generated from the
first attention. We denote the number of candidate
choices to be decoded by k. We train DialSQL
with k = 1. The list of k > 1 candidate choices is
decoded similar to beam search during testing. As
an example, we select k column names that have
the highest scores as the candidate where column
choices. For each column name, we first generate
k different operators and from the set of k ∗ 2 col-
umn name and operator pairs; select k operators
that have the highest joint probability. Ideally, Di-
alSQL should be able to learn the type of errors
present in the generated query, extract precise er-
ror spans by pointing to query tokens, and using
the location of the error spans, generate a set of
related choices.

5 Experimental Results and Discussion

In this section, we evaluate DialSQL on Wik-
iSQL using several evaluation metrics by compar-
ing with previous literature.

5.1 Evaluation Setup and Metrics
We measure the query generation accuracy as well
as the complexity of the questions and the length
of the user interactions.
Query-match accuracy. We evaluate DialSQL
on WikiSQL using query-match accuracy (Zhong
et al., 2017; Xu et al., 2017). Query-match ac-
curacy is the proportion of testing examples for
which the generated query is exactly the same as
the ground truth, except the ordering of the WHERE
clauses.
Dialogue length. We count the number of turns
to analyze whether DialSQL generates any redun-
dant validation questions.
Question complexity. We use the average number
of tokens in the generated validation questions to
evaluate if DialSQL can generate simple questions
without overwhelming users.

Since SQLNet and Seq2SQL are single-step
models, we can not analyze DialSQL’s perfor-
mance by comparing against these on the last
two metrics. We overcome this issue by gener-
ating simulated dialogues using an oracle system

that has access to the ground truth query. The
system compares SELECT and AGGREGATION
clauses of the predicted query and the ground
truth; asks a validation question if they differ.
For each WHERE clause pairs of generated query
and the ground truth, the system counts the num-
ber of matching segments namely COLUMN, OP,
and VALUE. The system takes all the pairs with
the highest matching scores and asks a validation
question until one of the queries has no remaining
WHERE clause. If both queries have no remain-
ing clauses, the dialogue terminates. Otherwise,
the system asks a validate where added
(validate where removed) question when
the generated query (ground truth query) has more
remaining clauses. We call this strategy Oracle-
Matching (OM). OM ensures that the generated
dialogues have the minimum number of turns pos-
sible.

5.2 Training Details
We implement DialSQL in TensorFlow (Abadi
et al., 2016) using the Adam optimizer (Kingma
and Ba, 2014) for the training with a learning
rate of 1e−4. We use an embedding size of 300,
RNN state size of 50, and a batch size of 64.
The embeddings are initialized from pretrained
GloVe embeddings (Pennington et al., 2014) and
fine-tuned during training. We use bidirectional
RNN encoders with two layers for questions, col-
umn names, and queries. Stanford CoreNLP to-
kenizer (Manning et al., 2014) is used to parse
questions and column names. Parameters of each
layer are decoupled from each other and only the
embedding matrix is shared. The total number
of turns is limited to 10 and 10 simulated di-
alogues are generated for each example in the
WikiSQL training set. SQLNet and Seq2SQL
models are trained on WikiSQL using the exist-
ing implemention provided by their authors. The
code is available at https://github.com/
izzeddingur/DialSQL.

5.3 Evaluation on the WikiSQL Dataset
Table 3 presents the results of query match accu-
racy. We observe that DialSQL model with a num-
ber of 5 choices improves the performance of both
SQLNet and Seq2SQL by 7.7% and 9.4%, respec-
tively. The higher gain on Seq2SQL model can
be attributed that the single-step Seq2SQL makes
more errors: DialSQL has more room for improve-
ment. We also show the results of DialSQL where

https://github.com/izzeddingur/DialSQL
https://github.com/izzeddingur/DialSQL


Model QM-Dev QM-Test
Seq2SQL (Xu et al., 2017) 53.5% 51.6%
SQLNet (Xu et al., 2017) 63.2% 61.3%
BiAttn (Guo and Gao, 2018) 64.1% 62.5%
Seq2SQL - DialSQL 62.2% 61%
SQLNet - DialSQL 70.9% 69.0%
Seq2SQL - DialSQL+ 68.9% 67.8%
SQLNet - DialSQL+ 74.8% 73.9%
Seq2SQL - DialSQL* 84.4% 84%
SQLNet - DialSQL* 82.9% 83.7%

Table 3: Query-match accuracy on the WikiSQL
development and test sets. The first two scores
of our model are generated using 5 candidate
choices, (+) denotes a variant where users can re-
visit their previous answers, and (*) denotes a vari-
ant with more informative user responses.

users are allowed to revisit their previous answers
and with more informative user responses; instead
the model only validates the error span and the
user directly gives the correct choice. In this sce-
nario, the performance further improves on both
development and test sets. It seems decoding can-
didate choices is a hard task and has room for
improvement. For the rest of the evaluation, we
present results with multi-choice questions.

5.4 Query Complexity and Dialogue Length

In Table 4, we compare DialSQL to the OM strat-
egy on query complexity (QC) and dialogue length
(DL) metrics. DialSQL and SQLNet-OM both
have very similar query complexity scores show-
ing that DialSQL produces simple questions. The
number of questions DialSQL asks is around 3
for both query generation models. Even though
SQLNet-OM dialogues have much smaller dia-
logue lengths, we attribute this to the fact that
61.3% of the dialogues have empty interactions
since OM will match every segment in the gen-
erated query and the ground truth. The average
number of turns in dialogues with non-empty in-
teractions, on the other hand, is 3.10 which is close
to DialSQL.

5.5 A Varying Number of Choices

In Figure 3, we plot the accuracy of DialSQL on
WikiSQL with a varying number of choices at
each turn. We train DialSQL once and generate a
different number of choices at each turn by offer-
ing top-k candidates during testing. We observe
that offering even a single candidate improves the
performance of SQLNet remarkably, 1.9% and

Model QC Dev DL Dev QC Test DL Test
Seq2SQL - OM 3.47 (2.25) 0.84 (1.77) 3.51 (2.41) 0.88 (1.8)
SQLNet - OM 3.37 (2.63) 0.61 (1.45) 3.34 (2.51) 0.63 (1.49)
Seq2SQL - DialSQL 3.53 (1.79) 5.54 (2.32) 3.55 (1.81) 5.55 (2.34)
SQLNet - DialSQL 3.6 (1.86) 5.57 (2.34) 3.17 (1.55) 4.77 (1.57)

Table 4: Average query complexity and dialogue
length on the WikiSQL datasets (values in paran-
thesis are standard deviations). Metrics for SQL-
Net and Seq2SQL models are generated by the
OM strategy as described earlier.

Figure 3: DialSQL performance on WikiSQL with
a varying number of choices at each turn.

2.5% for development and test sets, respectively.
As the number of choices increases, the perfor-
mance of DialSQL improves in all the cases. Par-
ticularly, for the SQLNet-DialSQL model we ob-
serve more accuray gain. We increased the num-
ber of choices to 10 and observed no notable fur-
ther improvement in the development set which
suggests that 5 is a good value for the number of
choices.

5.6 Error Distribution

We examine the error distribution of Dial-
SQL and SQLNet. In DialSQL, almost all
the errors are caused by validate sel and
validate where change, while in SQLNet
validate where change is the major cause
of error and other errors are distributed uniformly.

5.7 Human Evaluation

We extend our evaluation of DialSQL using hu-
man subject experiment so that real users in-
teract with the system instead of our simulated
user. We randomly pick 100 questions from Wik-
iSQL development set and run SQLNet to gen-
erate initial candidate queries. Next, we run Di-
alSQL using these candidate queries to gener-
ate 100 dialogues, each of which is evaluated



Model Accuracy
SQLNet 58
DialSQL w/ User Simulation 75
DialSQL w/ Real Users 65 (1.4)

Table 5: QM accuracies of SQLNet, DialSQL
with user simulation, and DialSQL with real users
(value in paranthesis is standard deviation).

Figure 4: Distribution of user preference for Dial-
SQL ranking (scaled to 1-6 with 6 is None of the
above.).

by 3 different users. At each turn, we show
users the headers of the corresponding table, orig-
inal question, system response, and list of can-
didate choices for users to pick. For each error
category, we generate 5 choices except for the
validate where added category for which
we only show 2 choices (YES or NO). Also, we
add an additional choice of None of the above so
that users can keep the previous prediction un-
changed. At the end of each turn, we also ask users
to give an overall score between 1 and 3 to evalu-
ate whether they had a successful interaction with
the DialSQL for the current turn. On average, the
length of the generated dialogues is 5.6.

In Table 5, we compare the performance of
SQLNet, DialSQL with user simulation, and Dial-
SQL with real users using QM metric. We present
the average performance across 3 different users
with the standard deviation estimated over all di-
alogues. We observe that when real users interact
with our system, the overall performance of the
generated queries are better than SQLNet model
showing that DialSQL can improve the perfor-
mance of a strong NLIDB system in a real setting.
However, there is still a large room for improve-
ment between simulated dialogues and real users.

In Figure 4, we present the correlation between
DialSQL ranking of the candidate choices and user
preferences. We observe that, user answers and

DialSQL rankings are positively correlated; most
of the time users prefer the top-1 choice. Inter-
estingly, 15% of the user answers is None of the
above. This commonly happens in the scenario
where DialSQL response asks to replace a correct
condition and users prefer to keep the original pre-
diction unchanged. Another scenario where users
commonly select None of the above is when ta-
ble headers without the content remain insufficient
for users to correctly disambiguate condition val-
ues from questions. We also compute the Mean
Reciprocal Rank (MMR) for each user to measure
the correlation between real users and DialSQL.
Average MMR is 0.69 with standard deviation of
0.004 which also shows that users generally prefer
the choices ranked higher by DialSQL. The over-
all score of each turn also suggests that users had a
reasonable conversation with DialSQL. The aver-
age score is 2.86 with standard deviation of 0.14,
showing users can understand DialSQL responses
and can pick a choice confidently.

6 Conclusion

We demonstrated the efficacy of the DialSQL, im-
proving the state of the art accuracy from 62.5%
to 69.0% on the WikiSQL dataset. DialSQL suc-
cessfully extracts error spans from queries and of-
fers several alternatives to users. It generates sim-
ple questions over a small number of turns with-
out overwhelming users. The model learns from
only simulated data which makes it easy to adapt
to new domains. We further investigate the usabil-
ity of DialSQL in a real life setting by conducting
human evaluations. Our results suggest that the
accuracy of the generated queries can be improved
via real user feedback.
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