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Abstract—In this work, we study the problem of automatically
organizing the technical documents into different nodes in a
given taxonomy. Unlike prior work on supervised hierarchical
document categorization that relies on learning from labeled
training data, which is expensive to obtain in closed technical
domain and tends to stale as new knowledge and taxonomy
evolves, we study this problem in a weak supervision setting,
by leveraging semantic information from concepts. The core
idea is to project both documents and taxonomy categories into
a common concept space, where their fine-grained similarity
can be easily and effectively computed. Experiments on real-
world datasets from the field of computer science, physics &
mathematics, and medicine show that the proposed method can
consistently outperform a wide range of strong baselines by a
significant margin.

I. INTRODUCTION

The large volume of the scientific literature are becoming
prohibitive: according to the 2018 International Association of
Scientific, Technical and Medical Publisher’s report [1]], about
3 million journal articles are published every year with a 5%
annual growth rate. Therefore, it is becoming more and more
difficult to keep up with the scientific advancements for both
researchers and practitioners. Advanced techniques for better
understanding and organizing the scientific literature are in
great demand. According to cognitive science studies [2], [3],
a key management strategy for such information is to organize
them into a hierarchical taxonomy, which has been widely used
in the area of library study [4], internet directoriesﬂﬂ patentﬂ
and many others [3].

In this work, we study how to automatically organize
scientific publications into a given hierarchical taxonomy.
There are a number of previous methods for this problem
focusing on general-domain documents, which mainly treat
it as a supervised classification problem [6], [7], [8]. The
main idea is to adapt standard classifiers to the hierarchical
setting by incorporating similarity information of the nodes in
the hierarchy into the classification model. But they require a
significant amount of manually labeled document-class pairs,
which is prohibitively expensive for scientific publications
because the annotation can only be fulfilled by highly skilled
domain experts. In addition, the science is very dynamic,

Uhttps://en.wikipedia.org/wiki/Yahoo!_Directory
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so the taxonomy is also rapidly evolving [9], making it not
economical to commit too much annotation effort to one
static taxonomy. Another line of research [10] exploits distant
supervision [11]], but they assume a knowledge base which
may not exist for many fields.

We propose to study the task of hierarchical document
categorization with weak supervision, which only assumes
very few labeled training examples. Because of the low
annotation cost, it is also easy to adapt to different taxonomies.
More specifically, given a hierarchical taxonomy and a set
of documents, the goal is to categorize the documents into
the categories in the taxonomy [, where only a few labeled
documents are provided for each category. The hierarchical
nature of the problem makes it much more challenging than
binary or multinomial classification: a classifier needs to
respect the hierarchical structure among the categories.

There are a number of approaches to this problem. One may
take a clustering approach, which detects coherent clusters
from documents in an unsupervised fashion. Hierarchical
information can be incorporated into the clustering process by
using a hierarchical clustering algorithm [12], or by matching
the clusters to the leaf nodes of the taxonomy. A more
flexible approach is to treat each category as a keyword query,
and leverage information retrieval techniques such as query
expansion to retrieve the documents [13]]. Finally, one could
also repetitively apply simple flat unsupervised models [9],
and concatenate their predictions together to obtain the final
categorization in the hierarchical taxonomy.

We explore a vastly different categorization paradigm. It
is based on the observation that technical documents are
typically organized around concepts, which bear discriminative
information about their topics (categories). For example, a
database paper usually involves concepts such as “map and
reduce” and ”SQL”, while a machine learning paper involves
concepts like “statistical inference” and “convergence rate”.
Following this, we develop our concept based hierarchical
document categorization framework called HierCon, which
leverages concepts in technical documents to form semantic
representations for both the documents and the taxonomy
categories. We then derive the similarity between documents

4 We may use the set of terms “organize”, “categorize”, “classify” and
also use the set of terms "hierarchical label”, “taxonomy node”, "hierarchical
category” interchangeably depending on the context.
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Fig. 1: HierCon Framework Overview.

and categories using their concept level representation, based
on which we perform hierarchical categorization. Unlike pre-
vious approaches that employ model specific engineering
to incorporate hierarchy information into the category, for
example, by imposing regularization constraints over classi-
fiers at different levels of hierarchy [6] or by encoding the
similarity into model parameters [7]], we propose to represent
the categories as distribution over concepts, which allows for
flexible combination to express the similarity. Furthermore, by
projecting both the categories and documents into the space
of concept level representation, their relevance becomes more
explicit and easier to capture.

To derive the concept level representation, we employ
state-of-the-art concept mining techniques [14] to compre-
hensively discover concepts and their occurrence locations in
the documents, and learn their vectorized semantic embedding
representation without supervision signal. For example, we are
able to mine concept occurrences such as “vector machine”
and “support vector machine”, which may overlap with each
other. The task is then to select true concepts from candidate
concepts to represent the document. To address this, we pro-
pose a novel, adaptive concept level document representation
based on the hierarchical neural attention mechanism [15]],
which models the two-level-decision as a natural hierarchical
process, incorporating important signals about phrase quality
[14], [L6] and importance [17]] into the modeling process, and
is able to dynamically adjust the concept representation based
on downstream performance.

However, there is still a large gap between the concept
semantics and the task of discriminatively associating doc-
uments with the hierarchical categories. If there is a large
amount of labeled training data, we could simply treat this
as a standard supervised classification problem. Without that
luxury, however, this task becomes more challenging. We
propose a novel approach to compute concept based relevance
by exploiting their inner structure. The main idea is that many
concepts in the document bear discriminative information and
can be easily associated with taxonomy categories. Motivated
by this, we propose a principled approach for aggregating
the discriminative information between all concepts in the
document and category’s concept representation at all differ-

ent similarity strength, in order to obtain document-category

relevance and perform classification.

We evaluate our method on three real-world datasets from
the fields of computer science, physics & mathematics and
medicine, and compare it with a wide range of strong base-
line methods of different nature. The results show that our
method consistently outperforms all the baseline methods by
a significant margin.

In summary, our contribution is three-fold:

e« We study a novel problem of hierarchical categorization
of technical documents according to a target taxonomy,
without a large amount of labeled training data or existing
knowledge bases.

« We propose a novel concept based approach that represents
both the taxonomy categories and the documents using con-
cepts mined from the entire corpus, which can be effectively
used to compare their similarities and categorize documents
accordingly.

« We comprehensively evaluate our approaches in comparison
with the state-of-the-art hierarchical classification methods
over three real-world datasets in the fields of computer
science, physics & mathematics and medicine.

II. RELATED WORK
A. Hierachical text classification

Previous work on hierarchical document categorization [§]]
usually takes a supervised classification approach, where hier-
archy structure is taken into account by enforcing similarities
between adjacent classifiers [18]], [19], [6]. Following this, the
dataless hierarchical classification approach [10] was proposed
where they employ a large knowledge base such as Wikipedia
to generate semantic representations of documents and labels
and further apply them into the hierarchical setting using a top-
down, or bottom up approach. The above approaches either
heavily rely on the availability and quality of labeled training
set for each specific class, or expect the corpus is covered by an
external knowledge base, both of which are different from our
setting. A very recent work [20] has similar settings to ours,
where given a few labeled training data, they first generate a
representation of each class, use it to generate more pseudo-
documents in order to train a classifier, and then bootstrap



on unlabeled data. Their method requires significantly more
parameters to tune and also relies heavily on the quality of
training data.

B. Entity aware representation

Another line of related work is on concept/entity aware rep-
resentation, which utilizes information from a knowledge base,
such as entity description, entity type or links to other entities
to perform query expansion [21], [22], and improves relevance
computation [23]], or ranking [24]. Explicitly annotated entities
in documents have been utilized to represent text [25], [26],
which are then used to derive features to train a ranking
model. However, directly adapting these information retrieval
approaches to hierarchical classification setting, where one
needs to assign each document into the correct category, is
rather challenging as the query needs to cover the content of
the entire scientific field.

C. Classification without explicitly labeled training data

Yet another set of related work is concerned with the task
of performing classification without explicit labeled training
data. The common characteristics of these approaches is to
exploit the semantic meaning of the label. For example,
in the computer vision research community, this is known
as zero-shot learning, which learns the semantic embedding
of labels [27], and inputs [28]], [29], [30], or both [31],
[32]. These approaches mostly follow a representation based
approach, which relates unseen classes and seen ones by
extracting features of each class to transform them into vector
representations, and directly learns a classifier between data
and feature vectors. On the other hand, unsupervised neural
embedding methods could be potentially leveraged to solve
the unsupervised categorization task, where embedding of
single word [33]], [34], sentence [35]], and relation [36] can
be learned to reveal the semantics to support downstream
analytical tasks. [9] is among the first to study the novel
problem of unsupervised categorization, which builds upon
neural embedding approach, and learns the category attribution
of the documents based on a compressed version of the
word/concept embedding.

III. THE HIERCON FRAMEWORK

We formulate the weakly supervised hierarchical categoriza-
tion task as follows. The first set of input is a corpus of plain
text documents D, each document d € D being a sequence
of words in the form of wyws ... w)q. Secondly, we’re given
a set of target categories ), organized into a tree structure,
so that each category y € ) is associated with one parent
P(y) € ), and a set of ancestors A(y), including its parent,
grandparent, and so on. The task is then to associate each
document d € D with a relevant label y € ). We study this
in a weakly supervised setting, where users are allowed to
provide a set of labeled training data, as a set of I (d;,y;)
pairs, | < D.

Our proposed approach is illustrated in In order
to leverage concepts to represent documents and categories,
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Fig. 2: An example taxonomy showcasing the importance
of path semantics. The taxonomy node “Consistency” under
Software engineering and another node “Consistency” concept
under the Statistics can be distinguished by their ancestors,
descendents and neighbors.

we first perform concept mining [14], i.e. identifying meaning
bearing units such as “support vector machine” and “gen-
erative adversarial network” from text. Specifically, it will
generate a concept vocabulary V as a set of concepts that
occur in the corpus, and further recognize the (possibly over-
lapping) occurrences of each concept ¢ € V. Using techniques
described in section 4, we will generate the concept level
representation 3(-) : D — RIVI, that maps each document d in
D to a vector, where each dimension denotes the associated
concepts. The results will be a set of concepts that occurs
in it along with their associated attention weights, as a V
dimensional vector.

Associating target categories with relevant concepts in the
concept vocabulary V based on string similarity, we can derive
a basic concept representation for each label [9]. We encode it
as a |V| dimensional weight vector ¢(*)(y) over all concepts
V. As an example, a node with the name “Consistency” will
be associated with concepts such as “consistency” and “con-
sistency principle”, and such relevant concepts will have high
value in the corresponding dimensions in its representation
vector. However, solely relying on the basic semantics fails
to capture hierarchy information and could lead to potential
ambiguity, as illustrated by the example below.

Example 1 (concept representation of category nodes)
Consider the hierarchical taxonomy which we want to cat-
egorize documents into shown in Figure 2. The taxonomy is
simplified but manifests the following key observations: (1)
Many interesting and concrete concepts are buried deep in the
hierarchy, which is not directly contained in the label names of
their parent nodes, but are strongly indicative from their parent
concepts. (2) Conversely, the location of a node in the taxon-
omy, e.g. where its parent and grandparent are, is essential
for determining the actual content it represents. For example,
the category “Consistency” under the “Software engineering
- Software functional properties - Correctness” hierarchy, and
the category “Consistency” under the “Statistics, Asymptotic
theory” hierarchy have significantly different meanings.

Motivated by the first observation in the example, we
introduce aggregated representation ¢ (y), which enriches



the semantics of each node with the basic semantics of all
the taxonomy nodes in its sub-tree. It is defined recursively as
follows

5 () 2 {avg({¢(“)(y’)ly’ €0} UsP() Cl)#0

0.W.

e (y)
(D

where C(y) = P(~1(y) denotes the set of children of node
y, and avg denotes a specific function for averaging the value.
In this work we simply use the arithmetic mean.

Motivated by the second observation, we introduce path
semantics ¢®) (v) for each node y € ), as an average over
all the aggregated semantics of the current node y and all
its ancestors A(y)E], which we will use as the final node
representation. Specifically,

o(y) £ 6P (y) £ avg({6 (Y)Y € AW)}, 6 (y)) Vyed

2)

As a result, concepts that are closer in the tree share similar
“tails” in their concept representation.

Given the concept representation of taxonomy nodes ¢(y)
and documents ¢(d), the task is to learn to measure the
similarity S(¢(y),¢(d)) based on their concept representa-
tions. One possible choice is to follow traditional top-down
hierarchical classification, to sequentially make decisions on
which child from the current node one should descend to,
possibly incorporating future delayed awards using reinforce-
ment learning [37]. However this will make the model more
sensitive to the amount of labeled training data and therefore
undesirable for the weakly supervised settings. In this work
instead, we follow a big-bang approach [8] that classifies each
document against all nodes at the same time, and predict the
label as the one maximizing the similarity derived from path
semantics. Specifically, for model inference, we obtain the
prediction §(d) for each document d by

j(d) = argergl}aX(Sw(y), e(d))) VieD (3)
Y

while we use the cross-entropy loss E] as the objective function
to minimize for model training where the relevance scores
S(¢(y), p(d)) are used as the corresponding logits over classes
y e ).

The overall procedure is summarized in Algorithm 1. Given
a large text corpus D, it first learns the concept vocabulary V as
well as the concept level representation ¢ (d) of each document
d € D. Then, using the input hierarchical tree T, it derives the
semantic representation of each label by first computing basic
semantics with respect to each label, followed by a bottom
up pass that obtains the aggregated semantics using its child
nodes recursively. These aggregated semantics are then passed

SWe tweak the definition of awvg a little. So when called with two arguments
avg(-,-), it will be computed by taking the average over each argument, and
averaging the result together: in other word, the second argument, in our case
the basic representation of the current node, will take exactly half of the
weight.

Shttps://en.wikipedia.org/wiki/Cross_entropy

down in a top-down pass, to obtain the path semantics @S,p )

for each label. Based on the semantic representations of labels
and documents, a relevance function can then be computed.
Finally, for each document, we perform categorization by
choosing the top K category labels for each document d that
have the highest relevant scores.

Algorithm 1 Categorization Framework

Input: a corpus of plain text documents D, set of target
categories organized as a rooted tree 7, number of labels
to predict for each document
Output: : top K labels £(d) for each document d € D
Obtain concept vocabulary V, concept representation
{¢(d)|d € D}, and concept embedding {6,|v € V} from
raw corpus D
for v € T do
Obtain basic semantics <p7(1b) € RIVI based on the concept
vocabulary V and the label name v
end for
for v € T do
compute basic semantics goq(,a)
end for
for v € 7 do
compute path semantics 905}’ )
end for
compute relevance scoring function S(¢(y), apgp )||{967c €
)
return top K labels ¢ € C for each document d €
D that has the highest relevance scores according to

S(6(y), P ||{8e,c € V})

according to (1)

e RV according to (2)

The advantages are 3-folded: First, it can be directly com-
puted compared to reinforcement learning based sequential
approach, while flexible enough (by possibly changing the avg
computation) to model the influence of class hierarchy into the
node representation. It also allows the decision of assigning to
leaf node vs. internal node: a document is assigned to leaf if it
is more similar to a specific sub-field; Or if it is equally similar
to them, and it stays at a more general level and is assigned
to common parent node. Furthermore, it is interpretable and
naturally provides not only the most likely category, but also
the secondary category, third category, besides its primary one
as auxiliary information.

IV. CONCEPT REPRESENTATION FOR DOCUMENTS

In this section we discuss our approach for obtaining the
concept representation J(d) of each document d € D, where
we follow a two-step approach: First, we pre-process the data
and follow previous approaches in concept mining [[14] to
generate a large pool of potential concepts as candidates,
which may contain false positive ones, or ones that are less
important to the major topic of a document. For example, in
the text shown in[Figure 3] whereas both “vector machine” and
“support vector machine” are recognized as concept candidate,
we may want to only select “support vector machine” as


https://en.wikipedia.org/wiki/Cross_entropy

Ai+1

feature
encoder

plausibility

feature
encoder

feature
encoder

feature
encoder

— |
... the results showed that the| supportlvector machinel algorithm outperformed other ...

Fig. 3: Tllustration of the hierarchical attention mechanism.

[ feature

feature
encoder

encoder

the correct occurrence, and furthermore select this as one
of the central concepts in the document to be used in its
representation.

To formalize this, we follow the assumption from entity
recognition literature [38] and require that the textual occur-
rences of these concepts to not overlap with each other. The
problem can then be described as: Given a document d as a
sequence of words, the result of concept recognition will be
to group these words into a sequence of super-concepts, i.e.
overlapping regions, uj, ug, us, . . . , u;, where each u; contains
a set of candidate concepts c;1, ¢i2, - - -, Cjju,| that overlap with
each other, and [ is the number of super-concepts in the
document. Our goal, then, is first to disentangle from the
overlapping candidates and select valid concepts, and then
determine important concepts from them and output the final
representation of a document ¢(d) € RIVI, as a categorical
distribution over the vocabulary of concepts.

We propose an adaptive concept representation architecture
based on the hierarchical attention mechanism [15], which
directly combines noisy concept candidates into the final docu-
ment representation in an end-to-end fashion, that dynamically
adjusts the representation based on downstream performance.
The hierarchical attention mechanism is shown in It
works as follows: inside each super-concept, the model will
choose to attend to one of its most probable candidates; And
based on the choice of concept candidates from each super-
concept, a second-level attention is drawn to select the most
important super-concepts.

At the validity level, the following information features are
captured and fed as input to the neural network

« Grammatical significance We count the number of the
candidates occurred standalone as detected by grammatical
pattern extractor, pre-trained chunking model and entity
extraction model.

« Statistical significance We use the score outputted by the
statistical significance based phrase mining tool Autophrase
[16].

« Context significance We use the embedding based quality
measure feature from ECON [14].

Formally, the attention score a;; for each c¢;,1 <t < |uy],
inside each super-concept u;,1 < i < [, can be obtained by

transforming the feasibility features for each candidates f;;
through transformation and softmax function

af,* = fir - Wy “)
pre
vt _ _conlall) s

> i(exp(a;))
Here W; is the model parameters for weighting different
feasibility features.

By the selection of feasibility features, our network will
select important super-concepts and the following information
are incorporated:

e Occurrence semantics: We adopt the occurrence location
based feature, specifically, the first occurrence location of
each super-concept divided by the number of super-concepts
[LL7]).

« Span semantics: We count the total number of words that
super-concept spans. The intuition is that super-concept with
more words are likely the one authors want to elaborate on
and therefore may be more important.

« Section semantics: We check whether a super-concept
occurs in specific logical sections in the document [17].
Specifically, in our case, we will assign the feature 1 if it
occurs in the title and O otherwise.

The formalization of super-concept level attention is similar

to the overlpapping ones, Given the importance features f; for
each super-concept 7, 1 < i <[, we have

al™ = fi- Wi 6)
a; — Z({afre|1 < ) < l})l (7)
3

where W, is the weight parameters associated with importance
features, and the gating operation Z(-) refers to the gated-
softmax operation described above.

The concept representation ¢(d) for each document d € D,
as a |V| dimensional vector, will gather the attention weights
distributed to each concept. Specifically, the value of ¢(d) for
each dimension corresponding to a specific concept ¢, (p(d)).
will be computed as

(e(d)e =Y ai-ait - I(cij = c) YeeV  (9)
it

V. CONCEPT BASED RELEVANCE

In this section we describe the model for computing the
relevance S(¢(d), #(y)) between each pair of taxonomy node
and document (y,d) € Y x D, based on their concept
representations.

The approach of measuring the similarities between labels
and documents is relevant to several lines of previous work.
Zero-shot learning in computer vision embeds labels and input
instances into a latent embedding space, and tries to learn a
compatibility function between the embedding vectors [39];
Information retrieval extracts features from documents and
queries, and build a model to predict their relevance [40], [41].
These models are still supervised in nature that are trained



on seen classes to predict the unseen ones. There are also
models that leverage an external knowledge base to derive
vector representation and relevance. None of the above are
applicable to our scenario, where both training examples and
knowledge base coverage are scarce.

To address this, we propose a novel similarity aggregation
framework that exploits the interaction between the individual
concepts in a document and label’s concept representation to
learn a direct relevance signal and aggregate them together
in order to obtain document-label relevance and perform
classification. Formally, let S(c;,¢;),1 < i,j < |V| denote
the pre-computed concept-wise similarity function that is used
to measure the similarity based on the learned embeddings,
which we implement as cosine similarity in this work. Our
goal is then to aggregate these similarities together using the
document and taxonomy node’s weights, in the form of

S(p(d), o(y)) = agg({S(ci,¢;), 1 <i,j < |V|}780(d)»¢((y1)0))

where agg is the aggregation function that we will elaborate
later.

Formally, assume that all the concepts are arranged into a
list, ¢1,c¢o,. .., s and that we have trained the embedding
vectors for each concept based on the concept mining [14].

In order to obtain direct relevance signal from concept-
wise interaction, we leverage the embedding lookup operation,
which learns the relevance signal based on the raw concept
similarities. Inspired by the idea of bin-pooling [40]], which
uses raw similarity scores between words in query and doc-
ument as features for downstream tasks, our approach will
also learn the relevance signal as a function of the embedding
similarity. The architecture is shown in It works as
follows, we divide the range of similarity into K discrete bins,
with the kth bin covering the range [sty,endy), 1 < k < K,
so that the similarity of each pair of concept (¢;,¢;) € V x V
will be mapped to a specific bin k; ;. Then we embed each bin
into a (arbitrarily) learned representation using the embedding
parameter w € R¥ . whose k-th dimension describes the rele-
vance signal for the k-th bin. Using the embedding parameters,
each concept pair (¢;, ¢;) will be mapped to a representation,
which directly corresponds to its relevance signal, M (i, j|w),
as

M (i, j|lw) £ wg, , V1 <i,j<|V| (11)

The task then becomes aggregating the mapped relevance
signals together. In this work, we weigh the concept pairs
{M (i, jlw)|1 < 4,5 < |V|} directly with the document’s
weight towards the ith concept, (¢(d));, and the taxonomy
nodes’ weight towards the j th concept, (¢(y));, and obtain
the relevance as

S(p(d), p(y)lw) £ D (p(d)i - (8(y)); - MG, jlw)  (12)
2]
The above model works as a dynamic version of histogram

computing, where instead of using the similarity historgram
as a fixed static feature for downstream tasks, the histogram is

document's weight distribution over concepts
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concept-wise interactions
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#0)
Fig. 4: Dynamic bin-pooling for similarity aggregation.

aggregated similarity score

S(e(d), ()

dynamically generated based on learnable weight distribution.
We denote this as “dynamic bin pooling”, which is able to
adaptively attend to specific concepts, while allowing arbi-
trary interpretation of relevance signal from the raw different
similarity strength.

Although in the above process, the binning operation is

non-differentiable in general and prevents us from directly
readjusting the concept similarity function < ¢;,¢; >, it is,
however, clear that the aggregation is differentiable in the
concept weights and therefore allows us to fine-tune both
the attention weights in document’s concept representation
W, W; and parameters for the similarity interpretation w in
an end-to-end manner.
Gradient path saving However, directly optimizing the sim-
ilarity aggregation model by current hardware may be hard
due to the large number of concept interactions and the model
parameters that are influenced by them during gradient compu-
tation. For example, a naive backpropagation would generate
Q(K|Y||[V|?) gradients which can easily exceed the memory
capacity of modern GPU. Even if we store the concepts
sparsely, the set of all concepts in the category’s concept
representation could be still quite large, and we need to
consider the relevance for all y in ) during learning/prediction.
To address this, we propose a Gradient path saving approach,
which explores the best path for propagating the gradients
based on the re-parameterization trick. Specifically, it can be
shown that

95((d), 9(y)|w)
&Uk

= (p(d) @ ¢(y)) © My

2%

13)

where ® denotes vector outer-product, and each entry in
My (i, j) stores up the look-up results of Mi, j) for the kth
bin, as

(My);,; = Z(sti << ¢i,¢; >< endy,) (14)

By pre-computing (p(d) ® ¢(y)) © M}, and treating it as fixed
value, the amount of gradient computation can be cut down
to O(|Y|). Similarly, the gradient for the document’s concept
weight ¢(d);, Vi € |V] (or labels’ weight) can also be reduced
to O(]Y|) allowing for efficient implementation even on a
single GPU card.

Monotonicity enforcement A common mode of failure for
learning the bin weight {wr,1 < k < K} is to have



TABLE I: Dataset Statistics

Computer Science Physics & Math  Medicine
# docs 47K 127K 55K
# words M 22M M
taxonomy size 31 28 17
taxonomy height 3 5 3

them “scatter around”, where lower similarity strength may
have even higher bin-weight than those with higher simi-
larity strength. To ensure that the similarity weights have
meaningful values, we employ a monotonicity enforcement,
which enforces the weights for different similarity strengths
to be monotonically non-decreasing via a activation function.
Again, through re-parameterization, we store the difference of
strength, as wfc, and each time, the kth bin-weight w; will
be obtained as a computed value, using the ReLU activation
function to enforce their monotonicity

wp= Y ReLU (w))

1<j<k

Yk, 1<k <K (15)

Therefore, only the positive weight differences will be
counted, and the network will learn to increase the bin-weight
for higher similarity strength, or keep it the same.

Since our similarity aggregation model only learns param-
eters wy for different concept-wise similarity strength and
the feature weight Wy, W, for the concept-level features,
we can efficiently tune these parameters using quite few
labeled training documents, because each such document-label
pair corresponds to a much large number of concepts and
concept similarities pairs that we train our parameters on. In
addition, because it makes prediction based on the concept
level information, it is not limited to knowledge about specific
classes and is naturally transferable to unseen classes labels.

VI. EXPERIMENT

In this section, we evaluate the proposed methods with
extensive experiments across several technical domains and
demonstrate its efficiency and effectiveness.

A. Experiment settings

1) Computing environment: All the model training and
evaluation pipeline are conducted on a lab server with with 3
GeForce RTX 2080 GPU card and 2 6-core Intel(R) Core(TM)
i7-6800K CPU @ 3.40GHz CPU with 12GB memory. The
longest run took less than 1 hour.

2) Datasets: We have collected the following corpus, cov-

ering the domain of computer science, physics & mathematics
and medicine. The statistics of these datasets are summarized
in Table I, and the details are described below.
Computer Science The Computer Science corpus is obtained
by crawling paper abstracts from arXiv.org under the top level
category “computer science”, and aligning the arxiv’s category
with aminer.org’s academic conference classiﬁcatiorﬂ

"https://aminer.org/ranks/conf

Physics & Mathematics The Physics & Mathematics corpus
is also obtained from jarXiv.org, by crawling paper abstracts
under the top level category “physics” and “mathematics”, and
aligning them with the math subject heading and the physics
subject headingsﬂ

Medicine The Medicine corpus is obtained by crawling ab-
stracts from Pubmeﬂ and we directly take the top 3 level of
the Medicine subject headingsE] under the top level category
”Organisms”, ”Analytical, Diagnostic and Therapeutic Tech-
niques, and Equipment” and “Psychiatry and Psychology” as
the taxonomy.

3) Compared methods: We compare our method with a
wide range of state-of-the-art ones, as described below:
WeSHClass [20] is a state-of-the-art approach for weakly
supervised hierarchical classification. It first generates a set of
pseudo-documents for each class based on supervised signal
such as labeled documents to train the classification model,
then bootstrap on unlabeled data. We follow the author’s
implementatio and use their recommended settings.
Dataless refers to the hierarchical dataless classifcation ap-
proach, which is [10] is a state-of-the-art distant supervision
based method in the hierarchical classification settings. It
works by first obtaining vector representations of documents
and class labels by its similarity with Wikipedia articles [42],
and associate documents based on the class labels based
on its vector representation. We follow the original dataless
implementation classification from the author and apply it
with a bottom-up scheme.

Pretrain BERT is the currently the state-of-the-art deep learn-
ing approach for downstream NLP tasks, which leverage very
deep self-attention based architecture with weights pretrained
on large training corpus. Specifically, we add an classification
layer added upon the first input token ([CLS]) from the last
transformer layer, same as the experiment used for GLUE
classification tasks [43]], fine-tune all the layers and report the
test accuracy under the best hyper-parameter settings.
Hierarchical SVM [19] augments SVM classifier with hi-
erarchical information with a top-down paradigm [8], where
training documents for child nodes are included in their
ancestors.

UNEC [9] is a state-of-the-art unsupervised text categorization
method that extracts concepts by segmenting the corpus into
phrases and then learns a concept embedding graph, where
similarity to classes are propagated. We adopt an alternative,
personalized page rank approaclﬂ to propagate the similarity
on the concept graph.

Hiercon refers to our proposed approach. We utilize the
concept mining technique ECON [14] to obtain concepts for

8https://www.maa.org/press/periodicals/loci/joma/subject-taxonomy
9https://physh.aps.org/
Whttps://www.ncbi.nlm.nih.gov/pubmed/
https://www.nlm.nih.gov/mesh/meshhome.htm]
2https://github.com/yumeng5/WeSHClass/
Bhttps://cogcomp.org/page/download_view/Descartes
4https://networkx.github.io/documentation/networkx- 1.10/reference/
generated/networkx.algorithms.link_analysis.pagerank_alg.pagerank.html
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TABLE II: Overall performance comparison measured by prediction accuracy. The top-K prediction score among all possible

taxonomy nodes are recorded and compared against the ground truth according to both flat classification accuracy and taxonomy

|

[

[

[

[

tree based accuracy
WeSHClass [ Pretrain BERT | Hier-SVM Dataless [ UNEC Hiercon |
Dataset | Accuracy Measure [|  Flat Tree | Flat | Tree | Flat Tree | Flat | Tree | Flat | Tree | Flar | Tree
Computer Science Top 1 0.3082 | 0.4453 | 0.4354 | 0.6207 | 0.1095 | 0.4156 | 0.2094 | 0.5453 | 0.1742 | 0.3502 | 0.7927 | 0.8763
P Top 3 0.4984 | 0.6672 | 0.6665 | 0.8676 | 0.2894 | 0.4747 - - 0.3405 | 0.6633 | 0.9486 | 0.9613
top 5 0.6004 | 0.7870 | 0.7728 | 0.9305 | 0.3685 | 0.6758 - - 0.4358 | 0.8072 | 0.9803 | 0.9846
. . Top 1 0.3551 0.7100 | 0.3292 | 0.7262 | 0.0508 | 0.0555 | 0.2403 | 0.6229 | 0.2507 | 0.4149 | 0.7223 | 0.9270
Physics & Mathematics Top 3 0.6086 | 0.8692 | 0.6355 | 0.8450 | 0.0605 | 0.0605 - - 0.4939 | 0.7329 | 0.9450 | 0.9791
top 5 0.7292 | 0.9233 | 0.7985 | 0.9061 | 0.0608 | 0.0710 - - 0.6157 | 0.8444 | 0.9787 | 0.9871
Medicine Top 1 0.2478 | 0.7208 | 0.3550 | 0.7943 | 0.0000 | 0.5491 | 0.1641 | 0.6193 | 0.3275 | 0.5130 | 0.5296 | 0.8375
Top 3 0.5562 | 0.8563 | 0.6775 | 0.9394 | 0.0512 | 0.7500 - - 0.5932 | 0.8347 | 0.8399 | 09146
top 5 0.7249 | 0.9567 | 0.8145 | 0.9805 | 0.3661 | 0.7903 - - 0.7361 | 0.9256 | 0.9437 | 0.9864
[ Average (Top1) | - [ 0.3037 [ 06254 | 0.3732 [ 0.7137 [ 00534 | 0.3401 | 0.2046 | 05958 | 0.2865 | 0.5331 | 06815 | 0.8803 |
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Fig. 5: Detailed Performance evaluation divided by the subject categories. The flat classification accuracy for each sub-fields

are recorded top-K prediction score are displayed along specific vertical axis.
procedure: instead of returning 1 only when the prediction is

the same as the ground truth and O otherwise, we also return 1
if the prediction is the sibling or the parent node of the ground

representing documents and categories. The concept embed-
truth node, and O if it is in other part of the tree.

ding vector used for similarity computation is trained using the
Skip-gram objective as a 50 dimensional embedding vector for
each concept. And in the dynamic bin pooling stage, we divide
the concept similarities into K = 16 bins, 15 of which equally
spaced bins between [—0.5,1) plus 1 for exact match, to be
used in bin pooling for the similarity aggregation. Overall performance We present the results of the overall
4) Evaluation methodology: In order to evaluate the above performance evaluation in [Table TI] Hiercon achieves the best
methods in a weakly supervised setting, we randomly select performance overall by effectively deriving concept represen-
3 documents for each class label and combine them together tation for documents and hierarchy labels, and comprehen-
as the training set, following previous work [20], and we use sively utilizing all the concept similarity, and allowing them to
all the remaining documents as the test set. flow to downstream relevance computation. Pretrained BERT
Because the category label from each class may contain also works relatively well, which confirms the validity of
noise, and that each document may be associated with multiple training label, and the generalizability of pre-trained weights;
WeSHClass is able to improve it by efficiently utilizing

labels, we adopt the top k = 1, 3,5 accuracy measure [44] to
training signals. Dataless is able to achieve coarse level
categorization, as seen by the tree accuracy, but in general

suffers bad performance when the knowledge base coverage

B. Overall Performance with Automatic Evaluation

evaluate the performance of each method.
In order to further incorporate tree structure into the eval-

vation and account for the fact that the prediction into nodes
which are closer to the ground truth nodes are less “wrong”, is low.

we propose a tree version of top k accuracy, in addition to Performance evaluation for each category We show in
the classical flat one. Its calculation is based on the following [Figure 3| the detailed performance for more specific categories.



Concepts
discriminative indiscriminative
fpga (Hardware) framework
Computer Science nash equilibria (Game Theory) goal
attacks (Security) technique
entanglement (Quantum Physics) | correspondance
Physics Maths Jupyter (Planet astrophysics) metric
complete graph (Combinatorics) series
MRI (Diagnosis) levels
Medicine treatment (Therapeutics) ability
HIV (Viruses) regression

TABLE III: Example discriminative vs indiscriminative con-
cepts discovered in each dataset

For better illustration, we group these them into sub-categories
for each subject field. We can observe that although the
performance of each method varies by category depending on
the difficulty of the corresponding science field, the relative
trend stays similar: Hiercon is almost always outperform other
baseline approaches, with its top 3 prediction covering the
right class most of the time, followed by other methods such as
WeSHClass. There are very few cases where Hiercon doesn’t
perform well, for example, the category “Logic” in the Physics
and Mathematics dataset, possibly due to less accurate concept
representation for that category. However, in practice we can
remedy this by associating categories with more accurate
concepts to describe the content of that class.

Performance evaluation with varying numbers of training
examples To further investigate how well our model utlize the
training data, we perform an ablation study over the number
of training instances given to the model. The results are shown
in where we give the model various number of
training examples and record its top 1 accuracy relative to the
original model with the complete training set, as its relative
performance measure. We can clearly see that our approach
can efficiently fine-tune the model weights with very little
number of examples, with 10 training examples, it already
reaches a considerable level of accuracy; with 20-30 training
examples, the model can approximately recover performance
of the original model trained on the full training set.

C. Qualitative Study

Discriminative & indiscriminative concepts If we treat each
concept as a document and perform classification on it, we can
obtain the direct relevance between concepts and taxonomy
nodes. [Table TMI] shows some of the most discriminative &
indiscriminative concepts. We can see that the concept repre-
sentation of taxonomy nodes is able to capture latent semantics
and make meaningful distinctions on the concept level.

Error case analysis with concept attention Document’s
relevance to taxonomy nodes can be viewed as a combination
of its individual concepts’ relevance, weighted by the attention.
utilizes this to perform error cases analysis, where
concept’s attention-weighted relevance to the top-5 predicted
category is visualized. From the figure we can clearly see what
concepts and how much they contribute to the final prediction.
For example, in[Figure 7a]concepts such as “relational algebra”
and “decomposition trees” confuse the model to associate
the document with more theoretic subject such as logic

EEN Computer Science Medicine
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10 20 30
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o o o
& o e}

Relative performance

o
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Number of Examples

Fig. 6: Ablation study of over the number of training examples.
The performance are measured by the relative (top-1) accuracy
of the original performance.
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Fig. 7: Error case analysis with concept attention. The attention
weights distribution over different concepts in a document are
illustrated with the colors’ color along specific columns.

(coded ’cs.LO”) and formal languages (coded “cs.FL”). At the
meantime, other evidence such as “tpc-h” and “probabilistic
database” support the model to partially correctly predict it
as database. Similarly, in concepts such as “grid
computing” and “load balancing” strongly support the model
to predict the document as "Hardware & Architecture” (coded
”cs.AR”).

VII. CONCLUSION

In this work, we studied the problem of hierarchical organi-
zation of technical documents, where given a set of documents
and a set of labels organized as a taxonomy tree, the goal is
to classify each document into the taxonomy tree using very
few training examples. We proposed a novel concept based



framework that learns to represent documents and hierarchy
nodes using concepts mined from the corpus, and obtain
their relevance by aggregating similarity of individual concepts
similarities. We extensively evaluated the proposed approach
with state of the art baseline methods, and demonstrated its
effectiveness in a wide range of technical domains. As one
of several promising future directions, we are planning to
dynamically generate the target taxonomy that might better
reflect the inner structure of the input corpus. Another
direction is to further study how to incorporate the concept
semantics to more general text mining and analytics tasks.
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