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ABSTRACT
The big data era is witnessing a prevalent shift of data from
homogeneous to heterogeneous, from isolated to linked. Ex-
emplar outcomes of this shift are a wide range of graph data
such as information, social, and knowledge graphs. The
unique characteristics of graph data are challenging tra-
ditional search techniques like SQL and keyword search.
Graph query is emerging as a promising complementary
search form. In this paper, we study how to improve graph
query by relevance feedback. Specifically, we focus on knowl-
edge graph query, and formulate the graph relevance feedback
(GRF) problem. We propose a general GRF framework that
is able to (1) tune the original ranking function based on
user feedback and (2) further enrich the query itself by min-
ing new features from user feedback. As a consequence, a
query-specific ranking function is generated, which is better
aligned with the user search intent. Given a newly learned
ranking function based on user feedback, we further investi-
gate whether we shall re-rank the existing answers, or choose
to search from scratch. We propose a strategy to train a bi-
nary classifier to predict which action will be more beneficial
for a given query. The GRF framework is applied to search-
ing DBpedia with graph queries derived from YAGO and
Wikipedia. Experiment results show that GRF can improve
the mean average precision by 80% to 100%.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval
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1. INTRODUCTION
Querying graph data such as information, social, and knowl-

edge graphs is always a challenging task. On the one hand,
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due to their complex schemas and varying information de-
scriptions, it is extremely hard for users to formulate struc-
tured queries like SPARQL without spending hours digest-
ing the schema [24]. On the other hand, unstructured search
techniques like keyword search are not expressive enough to
explore the structure of data to the maximum extent.

Graph querying [37, 17, 24], where users formulate infor-
mation needs as graph patterns based on their own knowl-
edge and vocabulary and look for matches in a graph, was
recently under active investigation as a promising search
technique for graph data. We focus on graph query over
knowledge graphs in this work. Knowledge graphs contain a
wealth of valuable information, with nodes representing en-
tities and edges representing various relations between en-
tities. Recent years have witnessed the blossom of large-
scale knowledge graphs, such as DBpedia [18], Freebase [8],
Google’s Knowledge Graph [1], and YAGO [31].

There are other query forms for knowledge graphs that
can be converted to graph query, such as logic query [7],
natural language query [6], and exemplary query [15, 22].
Graph query can also serve as an intermediate query form
to support question answering [42]. Figure 1 shows a graph
query “Find a Toronto professor at age of 70 who joined
Google recently,” and its possible match. We put a question
mark “?” on the node we are searching for an answer.

? Prof. ~70yrs

Toronto Google

Geoffrey Hinton 

(Professor, 1947)

Google

Univ. of 

Toronto
DNNResearch

(a) graph query (b) knowledge graph

Figure 1: A query and its match.

Since the query is formulated based on the user’s own vo-
cabulary, there come vagueness and ambiguity. If ∼ 70yrs
means one’s age, it implies the person was born around 1945.
Toronto is possibly a match for University of Toronto. Fur-
thermore, Google and Geoffrey Hinton are not directly con-
nected in the knowledge graph, but by a third node, DNNre-
search, built on the fact that Google acquired DNNresearch
founded by Geoffrey Hinton. For this query, Prof. Hinton
shall be returned as a candidate answer.



The problem of answering a knowledge graph query is to
find the matches of the query in a knowledge graph and sort
them with respect to a ranking function. The goal is to re-
turn the best set of answers a user is looking for, a central
problem of accessing knowledge graphs. The usage of graph
query is not limited to knowledge graphs. It is also evident
in e.g., social networks [33], cyber security [11] and data
centers [41]. The task of answering graph queries is very
challenging for two reasons. First, the vocabulary of differ-
ent users can vary dramatically. According to a prominent
study on the human vocabulary problem [13], about 80-90%
of the times two persons will give different representations
when they are asked to name the same concept. Second, the
underlying data graphs are highly heterogeneous. For exam-
ple, Google Knowledge Graph [1] contains over 35 thousand
different types of edges, while YAGO [31] has over 350 thou-
sand different types of nodes. Such high heterogeneity re-
sults in miscellaneous query interpretations.
A graph query technique usually crafts a generic ranking

function to answer all queries [37]. However, given the high
variety in query formulation, such functions are usually sub-
optimal for individual queries, resulting in poor answer qual-
ity. A natural solution to alleviate this situation is to develop
query-specific ranking functions, i.e., specifically tailored for
each query. To achieve that, query ambiguity and vagueness
need to be correctly resolved, which in turn requires new in-
formation in addition to the query itself. Relevance feedback
(RF), i.e., users indicating the (ir)relevance of a handful of
answers, is one promising source. It is user-friendly, easy to
get. Relevance feedback has been studied extensively and
proven to be effective in document retrieval [29, 9] and image
retrieval [40]. However, despite its naturalness, it has not yet
been studied for graph query. Due to the unique characteris-
tics of graph query, traditional relevance feedback methods
are not directly applicable. In this paper, we define and
study the graph relevance feedback (GRF) problem, which
aims to achieve query-specific search via relevance feedback,
and thus improve the search quality.
Our GRF framework works towards query-specific search

from two directions: (1) Tune the original ranking func-
tion based on the preference evidence mined from user feed-
back, and (2) enrich the original query with new information
discovered from user feedback, that is, the information the
user might have in mind but did not explicitly specify when
formulating the query. For the former, we propose Query-
Specific Tuning, which uses the original ranking function as
prior and adaptively tunes it according to user feedback.
For the latter, we propose algorithms to infer more infor-
mation from user feedback: (1) Type Inference which infers
the expected answer type of query nodes, and (2) Context
Inference which infers the context of query nodes. Putting
all these together, we produce a query-specific ranking func-
tion, and show that searching with the new ranking function
can significantly improve answer quality.
While the primary goal of GRF is to improve answer qual-

ity, there is an accompanying efficiency issue. Given a new
ranking function, the existing relevance feedback methods in
IR usually re-rank all of the documents from scratch. How-
ever, it could be costly for knowledge graph queries as the
number of potential matches could be huge. GRF has a sec-
ond option: Re-rank the top-k answers in the original answer
list. Certainly, this option might affect answer quality as the
best answers might not show up in the original answer list

due to the change of the ranking function. Therefore, GRF
is faced with a decision: In what situation, it has to search
the answers from scratch in order to assure answer quality?
In this work, we propose strategies to train a binary clas-
sifier, which can help control the trade-off between answer
quality and query response time.

Contributions To the best of our knowledge, this work is
the first formal attempt to investigate relevance feedback in
graph querying. We summarize the contributions as follows:

1. The relevance feedback problem was formulated for
querying knowledge graphs.

2. We developed techniques to infer three types of im-
plicit information hidden in user feedback: relative
importance of node/edge mappings, type and context
similarity. We then put all the implicit information
together to produce a query-specific ranking function
that is better aligned with the search intent of a query.

3. We identified the runtime-quality trade-off in answer-
ing graph queries with a newly learned ranking func-
tion: Re-rank or search from scratch. A mechanism
based on binary classification was proposed to control
the trade-off according to the preference of real appli-
cations.

We evaluated the GRF framework on answering graph
queries in real-life knowledge graphs. Experiment results
show that it can improve the precision of a state-of-the-art
graph querying technique by 80% to 100%, and meanwhile
make a good trade-off between quality and runtime.

2. PRELIMINARIES
A knowledge graph, G = (V,E), is a labeled graph with

nodes representing entities such as Barack Obama and edges
representing various relations between entities, e.g., Barack
Obama isPresidentOf United States. Each entity is associ-
ated with a set of types/classes, and the classes form a class
hierarchy via the subClass relation. A graph query is a la-
beled graph Q = (VQ, EQ). The labels on nodes and edges
are provided from a user’s own vocabulary, so that she does
not need to have intimate knowledge of the schema in order
to formulate a query.

2.1 Querying Knowledge Graphs
Search techniques for knowledge graphs vary across a spec-

trum of expressivity and user-friendliness. At one end are
the structured query languages such as SPARQL [3], which
are very expressive but require users to have a fairly good un-
derstanding of the underlying data schema. Due to the ever-
growing heterogeneity of knowledge graphs, users often find
themselves facing the information overload problem [24], i.e.,
the data schema is too complex to grasp. Lying at the other
end are unstructured search techniques like keyword search,
which are easy to use but can not express structural con-
straints in queries. Graph querying emerges in the middle
of the spectrum: On the one hand, users can express their
belief or constraints via the structure of the query graph.
On the other hand, users formulate queries using their own
knowledge and vocabulary, and thus can stay agnostic about
the complex data schema. In this work, we will target graph
pattern matching (graph query for short).



The accompanying query vagueness and ambiguity make
effective answer ranking a first-class citizen in graph query-
ing: the most relevant answers should be shown to the user
first. Existing graph querying techniques have crafted var-
ious kinds of ranking functions. For example, [24] defines
a ranking function considering both the syntactic similarity
and the semantic coherence between queries and matches,
while SLQ [37] employs a conditional random field (CRF)
model to learn and estimate the probability that a match is
relevant to a query. In general, one can decompose a rank-
ing function into three steps: extracting a set of features to
characterize each match, appropriately weighting each fea-
ture, and aggregating the weighted features to generate a
final relevance score for each match. Without loss of gener-
ality, we denote a ranking function as F (ϕ(Q)|Q,θ), which
evaluates the relevance of a match ϕ(Q) to a query Q based
on a few features and their corresponding weights θ.
We introduce the ranking function of SLQ to give a con-

crete example. To measure the relevance of a match ϕ(Q),
SLQ relies on a set of transformations {fi} that matches a
query node (edge) to a set of candidate entities (relations)
in G. For example, in Figure 1, the abbreviation transfor-
mation could match Prof. to Professor, while the topol-
ogy transformation could identify the path between Geof-
frey Hinton and Google as an edge match. A set of weights
θ = {αi, βi} is assigned to the transformations in a way
that more selective transformations are assigned with higher
weights. Given a query node v ∈ VQ and a candidate entity
ϕ(v) ∈ V , the node match score is defined as a weighted sum
of the transformations:

FV (v, ϕ(v)) =
∑
i

αi · fi(v, ϕ(v)). (1)

The edge match score is defined similarly:

FE(e, ϕ(e)) =
∑
i

βi · fi(e, ϕ(e)), (2)

where e ∈ EQ and ϕ(e) is an edge match in G which could
be either an edge or a path.
SLQ employs a CRF-based probabilistic ranking function

which aggregates the node and edge match scores to estimate
the conditional probability of a match ϕ(Q) being relevant
to Q under a given θ:

P (ϕ(Q)|Q,θ) =
1

Z
exp(

∑
v∈VQ

FV (v, ϕ(v))+
∑

e∈EQ

FE(e, ϕ(e))),

(3)
where Z is a normalization factor. F (ϕ(Q)|Q,θ) can be de-
fined by logP (ϕ(Q)|Q,θ). SLQ is a specific example of a
feature-based graph matching, where each fi is a feature
measure and αi, βi are the weight (importance) of this fea-
ture in the final ranking function.

2.2 Relevance Feedback
Despite the efforts researchers have made to craft a univer-

sally good ranking function, such a generic ranking function
is often sub-optimal. For example, if a user is interested
in the annual yield of apples (fruit), she will most likely get
overwhelmed by results about Apple, the computer company
and the yield of iPhones or iPads, unless she is able to artic-
ulate her information need very clearly to the query engine,

which usually implies a tedious and frustrating trial-and-
error procedure. A natural idea to improve search effective-
ness is to somehow acquire more query-specific information
for query disambiguation, and learn a query-specific rank-
ing function. Relevance feedback is a user-friendly manner
to provide additional information to guide a query engine to
return better results.

Definition 1 (Graph Relevance Feedback) Given a
query Q and a knowledge graph G, a ranking function F ,
a set of relevant (positive) matches M+, and a set of non-
relevant (negative) matches M−, graph relevance feedback

works to find a query-specific ranking function F̃ for Q based
on the user feedback, such that other relevant matches will
be ranked higher by F̃ than by F .

Note that we do not constrain the way for acquiring user
feedback. It could be explicit feedback (user manually judg-
ing matches), implicit feedback (relevance information in-
ferred from user behavior such as clicks), or even pseudo
feedback (blindly assuming all top ranked matches from an
initial search are relevant).

3. A GENERAL GRF FRAMEWORK
we provide an overview of a general framework to ap-

proach the GRF problem in this section. It has three key
components: Query-specific Tuning, Type Inference, and
Context Inference.

Query-specific Tuning The parameters θ in a ranking
function F (ϕ(Q)|Q,θ) usually represent feature importance
in a general sense. That is, how important each feature is
when no additional query-specific information is available.
However, for different users and queries, feature preferences
differ. Therefore, we propose Query-specific Tuning to learn
query-specific parameters θ∗ from user feedback, and there-
fore tune the generic ranking function to be better aligned
with the query intent. We design a feature re-weighting
mechanism and employ regularization to prevent overfitting
to the user feedback (Section 4).

In addition to tuning the original ranking function, we
also enrich the original query with additional discriminative
information inferred from user feedback. When a user was
formulating a query, there might be more information she
had in mind but did not state explicitly. Back to Figure 1, by
“Toronto”, the user could mean Toronto city or University
of Toronto. While she had more information in her mind,
such as what type of things she was referring to (a city or a
university), there is little chance for a graph query engine to
infer such implicit information by solely looking at the key-
word “Toronto”. Adding this information back to the query
may greatly improve answer quality. User feedback provides
the possibility to reveal such information. Specifically, we
propose algorithms to infer two types of implicit information
from user feedback: entity type and entity context.

Type Inference It is observed that the relevant entities of
a query node usually belong to the same, or at least similar,
classes. Therefore, the type information of positive feedback
could shed light on the implicit types of query nodes. For
example, if a user marks Michael Phelps as relevant, it is
more likely she is looking for some persons, not places or
films. If we have a fine-grained ontology, we can further



infer that the user might be looking for athletes or even
Olympic athletes. To quantify the implicit type information
of a query node, we gather its corresponding entities in the
positive matches (positive entities), and compute a relevance
score for each candidate entity by measuring how similar it
is to the positive entities based on their types (Section 5).

Context Inference When a user was formulating a query,
she had a specific context in mind about the interested in-
formation. User feedback could also help infer such context.
In document search, contexts are the words in the same
sentence or paragraph with the matched keywords, while
in knowledge graphs, the entities having a direct relation
with the matched entities become their context. For ex-
ample, Toronto city is the birthplace of many persons, the
home to many companies, etc., while University of Toronto
is the employer of many professors, in affiliation with many
research institutes, and so on. In other words, an entity’s
context comprises of the entities adjacent to it in the knowl-
edge graph. We employ the type distribution in an entity’s
context as a quantitative proxy. Similar to Type Inference,
a relevance score is defined for each candidate entity by mea-
suring the context similarity between the candidate entity
and the positive entities (Section 6).

4. QUERY-SPECIFIC TUNING
Our GRF framework first tunes the original ranking func-

tion F (ϕ(Q)|Q,θ) using the query-specific information pro-
vided by the user feedback. As we have discussed, the orig-
inal parameter θ reflects feature importance in a general
sense. However, different users may prefer to formulate the
same information need in different ways; and from time to
time, a user’s own preferences may also change. Therefore,
each query brings its own view of feature importance θ∗,
and user feedback provides us with the evidence to learn it.
Intuitively, we shall find θ∗ that maximizes the scores of

the positive matches while minimizing the scores of the neg-
ative matches:

g(θ∗) =

∑
ϕ(Q)∈M+

F (ϕ(Q)|Q,θ∗)

|M+| −

∑
ϕ(Q)∈M−

F (ϕ(Q)|Q,θ∗)

|M−| .

(4)
However, a problem of Eq (4) is that it does not respect

the original model θ, which contains valuable information
that should not be ignored. In other words, θ reflects which
features are more important when we have no additional
query-specific information. A better strategy is then to start
from the original (query-independent) θ, and adjust it based
on the (query-specific) evidence provided by the feedback.
To achieve that, we add a regularization term to Eq (4).

gλ(θ
∗) = (1 − λ)g(θ∗) + λR(θ,θ∗), 0 < λ ≤ 1. (5)

The regularization term R is a function of θ and θ∗. An
example is −∥θ∗−θ∥22 if both θ and θ∗ are vectors. It is de-
signed to penalize θ∗ that deviates too far from θ. The bal-
ance parameter λ controls the trade-off between the query-
independent information and the query-specific information:
A large λ implies high sensitivity to the change of θ∗, which
means that we highly respect the original parameters θ and
do not allow θ∗ to deviate far from it. On the other hand,

when λ is small, we put more weight on the user feedback,
and thus give more freedom for θ∗ to be adapted according
to the feedback information. One can either manually set λ
or learn it from training instances. The formal definition of
query-specific tuning is given as follows:

Definition 2 (Query-specific Tuning) Given a query Q
and the corresponding user feedback, a ranking function
F (ϕ(Q)|Q,θ), and a λ, the query-specific tuning algorithm
maximizes gλ(θ

∗) to find the optimal θ∗ for the query, and
outputs a query-specific ranking function F (ϕ(Q)|Q,θ∗).

The convergence and complexity of the tuning algorithm
depends on the mathematical form of the ranking function F
and the regularization term R. One good practice is to care-
fully select them such that it becomes a convex optimization
problem, for which efficient solutions exist.

Query-specific Tuning for SLQ To give a concrete ex-
ample, we now describe how to apply query-specific tuning
to SLQ. The ranking function of SLQ is given in Eq (3). We
choose the following empirical form for ease of optimization:

F (ϕ(Q)|Q,θ) =
∑
v∈VQ

FV (v, ϕ(v)) +
∑

e∈EQ

FE(e, ϕ(e)), (6)

and L2 regularization:

R(θ,θ∗) = −∥θ∗ − θ∥22. (7)

To get the final objective function, we substitute Eq (6)
into Eq (4), and then substitute the result as well as Eq (7)
into Eq (5). One can easily prove that the outcome is a
convex function. The domain of θ∗ is the Euclidean space
which is apparently a convex set. Therefore, we end up
with a convex optimization problem, which can be efficiently
solved by plenty of optimization tools. We use the open-
source library JOptimizer [2] to do the optimization.

5. TYPE INFERENCE
Query-specific search can also be achieved by enriching

the query itself with additional information. Types are one
kind of such information. Types are very discriminative. For
the query “Toronto”, just knowing that the user is referring
to a university could already filter out a lot of non-relevant
answers, such as Toronto city, Toronto Raptors and China-
town (Toronto). However, if users do not explicitly put type
information in queries, graph query engines are agnostic to
it. Fortunately, user feedback, especially positive feedback,
can help infer such implicit information. In this section,
we propose a type inference algorithm to infer the type of
entities from positive feedback.

In comparison with traditional relevance feedback in infor-
mation retrieval, a significant advantage of knowledge graph
for this task is that the type information is sometimes avail-
able. The ontology of a knowledge graph is where the type
information resides. An ontology contains a set of classes
(types) such as person and place, and these classes form a
class hierarchy via the subClass relation. Each entity could
be an instance of multiple classes, and therefore is associ-
ated with one or more types. For example, Barack Obama
is a politician, lawyer, writer, etc., in Freebase.

For each query node, we have a set of positive entities
from the positive matches. Given a candidate entity of the



query node, in order to examine whether its type(s) are what
the query node expects, we can instead examine whether
its type(s) are “similar” to the types of the positive entities.
Computing semantic similarity against an ontology is a well-
studied problem, and various semantic similarity measures
have been proposed, each with its own pros and cons (see [14]
for a comparison). We do not elaborate on the comparison
of different semantic similarity measures, but choose the one
based on information content [26] because it is intuitive and
efficient to compute.

PLACE
p=0.25

info=2.00

CITY

p=0.05

info=4.32

CAPITAL
p=0.005

info=7.64

COUNTRY
p=0.005

info=7.64

Paris Berlin

Munich China

subClass

type

Figure 2: The computation of siminfo.

Information content measures how informative a class is.
More formally, suppose there are in total N entities in the
knowledge graph, among which n entities belong to a class
c, the information content of c is then defined as − log p(c),
where p(c) = n

N
. In other words, a class bears more in-

formation content if it has fewer instances. The semantic
similarity of two classes, c1 and c2, is the information con-
tent of their most informative superclass in the ontology:

sim(c1, c2) = maxc∈S(c1,c2)[− log p(c)], (8)

where S(c1, c2) is the set of classes that subsume both c1
and c2. Furthermore, the semantic similarity of two entities
ent1 and ent2 is defined as follows:

siminfo(ent1, ent2) = maxc1,c2 [sim(c1, c2)], (9)

where c1 and c2 range over the respective types of ent1 and
ent2. In other words, it is the information content of the
most informative class the two entities are both found in.
An example is shown in Figure 2. There are four classes,

PLACE, CITY, COUNTRY, and CAPITAL forming a three-
layer class hierarchy. The p attribute indicates the frequency
of a class. The info attribute indicates the information
content of each class. Suppose p has the value shown in
Figure 2. There are four entities, Paris, Berlin, Munich
and China. Consider the semantic similarity of Paris to
other entities. Intuitively, Berlin is the most similar entity
to Paris, since they are both CAPITALs. Munich is less
similar as a CITY. Lastly, China is the least similar entity
to Paris because they are only common as PLACEs. The
semantic similarity measure defined above can reflect this in-
tuition. For example, the semantic similarity between Paris
and Berlin siminfo(Paris,Berlin) = 7.64, is greater than
siminfo(Paris,Munich) = 4.32.

After computing the pair-wise semantic similarity between
a candidate entity and each positive entity, we define the
type relevance score to measure the relevance of this candi-
date entity to the query node. We simply take the average
(the range of siminfo is scaled to [0, 1]):

Definition 3 (Type Relevance Score) Given a query
node v, a candidate entity ent, and a set of positive entities
{ent1, ..., entn}, the type relevance score of ent is defined as:

st(ent|v) =
∑n

i=1 siminfo(ent, enti)

n
. (10)

6. CONTEXT INFERENCE
People always bear a specific context in mind when they

refer to something. Take “Toronto” for example. If the user
means Toronto city, she might think it is the home to many
companies’ headquarters, the birthplace of many people, a
beautiful place that has been written in many books, etc. On
the other hand, if what she means is University of Toronto,
then the context in her mind would be professors, students,
departments, and so on. Since users rarely put such infor-
mation into queries, we have no access to it. User feedback
can help infer the context of a query and thus further dis-
ambiguate it.

We propose a context inference algorithm to infer the con-
text of each query node from positive feedback. Quite dif-
ferent from the traditional relevance feedback in document
search, where context often refers to the words in the same
sentence or document with a matched keyword, the struc-
ture of knowledge graphs provide a more clear-cut definition
of context: the context of an entity is the entities directly
adjacent to it in the knowledge graph. It is possible to ex-
tend this definition by incorporating multiple-hop neighbors.
To cope with the context in a quantitative manner, we use
the type distribution in a context as its proxy. The context
of Toronto city is now defined as the type distribution of
entities that are linked to the node Toronto city :

Definition 4 (Contextual Type Distribution) Suppose
there are L classes, {c1, ..., cL}, in the ontology, and ni is the
number of entities in an entity ent’s neighbors belonging to
class ci, i = 1, ..., L, respectively, then the contextual type
distribution of ent is a discrete distribution dent(i) = (ni

n
),

where n =
∑

i ni, i = 1, ..., L.

It is possible to explore the class hierarchy and the infor-
mation content of classes to get a more comprehensive de-
scription of a context, but we find from an empirical study
that the performance of this strategy is worse than the cur-
rent simple strategy. A possible reason is that the contexts
of the non-relevant entities become more similar to those
of the relevant entities when incoporating the general su-
perclasses in the class hierarchy, which makes the context
information less discriminative.

The similarity of two contexts is simply defined as the
intersection of the corresponding type distributions:

Definition 5 (Contextual Similarity) Given two entities
ent1 and ent2 and their contextual type distributions dent1

and dent2 , their contextual similarity is defined as:

simc(ent1, ent2) =

L∑
i=1

min(dent1(i), dent2(i)). (11)



Similar to type inference, we define a relevance score for
each candidate entity based on its contextual similarity to
the positive entities. More formally:

Definition 6 (Contextual Relevance Score) Given a
query node v, a candidate entity ent, and a set of positive
entities {ent1, ..., entn}, the contextual relevance score of ent
is defined as:

sc(ent|v) =
∑n

i=1 simc(ent, enti)

n
. (12)

The two types of implicit query information from user
feedback: entity type and entity context can be computed
efficiently online. They can be treated as additional features
and plugged into the existing ranking function, e.g., Eq (1).
We denote the weights of st and sn as wt and wn, which
can be either manually set or learned using a few training
instances.

7. SEARCHING FROM SCRATCH?
After putting all the possible modifications together, we

end up with a new ranking function which is better aligned
with a user’s search intent. The next step is to apply the new
ranking function to the answers the user has not seen so far.
For traditional relevance feedback in information retrieval,
a second search is usually conducted from scratch or on the
basis of the initial search [36]. However, it could be costly
for graph querying as the potential match space is huge.
Therefore, we explore an alterative option, that is, simply
to re-rank the answer list from the initial search using the
new ranking function. The problem is stated formally as
follows: We have retrieved an initial list of top-k answers
using the original ranking function F and generated a new
ranking function F̃ . Now there is a binary decision problem:
(Plan A) Simply re-rank the k answers in the initial list
(re-ranking) or (Plan B) Search from scratch with the new
ranking function (re-searching). The former strategy is very
efficient, but may lose some good answers. On the other
hand, Plan B incurs a non-negligible time overhead, but
has the potential to discover good answers missing from the
initial top-k list. Obviously, this decision depends on many
factors, and itself is a trade-off between answer quality and
query response time.
In this section, we formulate this decision as a binary

classification problem: Given a query, predict which query
execution plan we shall choose. We propose an automatic
method to build a ground-truth training set and learn a bi-
nary classifier on this training set. The key step is to build
the training set, which takes two steps: (1) Feature Ex-
traction, to convert a query into a feature vector, and (2)
Label Assignment, to decide which class label (re-ranking
or re-searching) we should assign to each query. After con-
structing a training set like this, the training of a binary
classifier becomes straightforward.
Given a ground-truth query set, i.e., all relevant matches

for each query are known, the construction process of a train-
ing set is as follows: For each query in the query set, (1) Send
the query to the base graph query engine and fetch the ini-
tial top-100 answers using the original ranking function F ;
(2) Mark the top-10 answers as relevant or non-relevant ac-
cording to the ground truth; (3) Run our GRF framework to

learn a new ranking function F̃ ; (4) Re-rank the rest answers

in the initial list using F̃ and let Lr be the new list (feedback

removed); (5) Conduct a fresh search using F̃ and let Ls be
this top-100 list (feedback removed); (6) Extract a feature
vector for the query using the feature extraction strategy
in Section 7.1; (7) Assign a class label (re-ranking or re-
searching) to the query using the label assignment strategy
in Section 7.2.

7.1 Feature Extraction
The goal of feature extraction is to characterize each query

using a set of features which can help us decide which exe-
cution plan we should take for this query. Two underlying
factors affect the decision making of this trade-off, query am-
biguity and query complexity. If a query is ambiguous, the
quality of the initial answer list is more likely to be poor,
and the potential gain in effectiveness of re-searching is thus
large. If a query is complex, it may take a long time to
search, and the potential gain in efficiency of re-ranking is
large. To capture these two factors, we identify three classes
of features: query features, match features, and feedback
features. Due to space limitations, we only give a high-level
description of each feature class with intuitive examples.

Query Features Features in this class include query graph
size, selectivity of terms, and the average number of terms
on each query node. The intuition is to differentiate queries
that are more specific and less ambiguous.

Match Features The initial search process and results can
also give hints for the decision. Features in this class include
the number of candidate nodes and the average match score
of the initial matches. For example, if the nodes of a query
have a lot of candidate nodes in the knowledge graph, then
re-searching may incur a high time overhead. If the average
match score of a query is low, it might imply that the query
is ambiguous and the initial search result is poor, so we may
need to search again with the new ranking function in the
hope of discovering more relevant matches.

Feedback Features The feedback matches could also pro-
vide useful information. For example, the number of pos-
itive matches, the ranking of the positive matches in the
initial answer list, and the average match score of the posi-
tive matches and the negative matches.

Putting all the features together, we are able to convert
each graph query into a 18-dimensional feature vector. The
next step is to assign a class label to each training query.

7.2 Label Assignment
The task of label assignment is to assign a class label to

each query in the training set. The question is, if we know
the search result and the time cost of both the query execu-
tion plans, which plan, re-ranking or re-searching, is more
beneficial? Intuitively, if the quality gain of re-searching is
large and it takes a reasonable time, re-searching is more
favored. Here we propose a quantitative measure to take
both quality and runtime into consideration, where a thresh-
old can be employed to control the trade-off.

Suppose we have an effectiveness measure h to evaluate
how good a result list is, e.g., Average Precision (AP), then
the gain of doing re-searching for the query is defined as:

gain =
h(Ls)− h(Lr)

log(1 + ts − tr)
, (13)



where ts and tr are the time cost of re-searching and re-
ranking, respectively. We then assign the class label of Q,
l(Q), using the following strategy:

l(Q) =

{
re-searching, if gain > τ

re-ranking, otherwise
(14)

where τ ∈ R is a pre-defined threshold controlling the trade-
off.
After constructing a training set as above, we are ready to

train a binary classifier to make decision for future queries.
In Section 8 we use random forest as the classifier and show
that our strategy can achieve a good trade-off between an-
swer quality and query time. In practice, one can try differ-
ent classifiers to select the best one.

8. EXPERIMENTAL EVALUATION
In this section, we empirically evaluate our methods. SLQ

is used as the base graph query engine. We first describe the
experiment design (Section 8.1) and then answer the follow-
ing questions: (1) Can our GRF framework improve the
search effectiveness of SLQ? If so, how much does each com-
ponent contribute? (Section 8.2) (2) What is the impact
of the hyper-parameters in GRF? (Section 8.3) (3) Can our
learning-based algorithm lead to good trade-off between an-
swer quality and query run time? (Section 8.4)

8.1 Experiment Design

Knowledge Graph DBpedia [18] is a popular knowledge
graph extracted from Wikipedia. After indexing DBpedia
3.91 using SLQ, we end up with a knowledge graph contain-
ing 4.6M nodes and 100M edges. The ontology of DBpedia
contains 529 classes which form a 8-layer class hierarchy.

Naval Battle

WWIIUS

US state Capital city California Sacramento

Battle of Midway

World War IIUnited 

States

(a) (b)

(c) (d)

Figure 3: Exemplar queries and ground truth.

Graph Queries Plenty of benchmarks (e.g., TREC [4]) are
available for researchers to evaluate their relevance feedback
methods in document retrieval. Unfortunately, there is no
widely-accepted benchmark for graph querying. Previous
studies have resorted to ad-hoc evaluation. Here, we propose
two methods to generate graph queries with ground-truth.
Our first query generating method capitalizes the list pages

in Wikipedia. A list page contains structured information
about a topic. For example, the page “List of States and

1http://wiki.dbpedia.org/Downloads39?v=2zd

Territories of the United States” contains a table about US
states and their capital city, popularity, etc. We can there-
fore construct graph queries from such structured informa-
tion. Figure 3(a) shows an example. Its answers can be ex-
tracted from the list page. We manually crafted 50 queries
and denote this query set as WIKI. Most of them have two
nodes and one edge.

Due to the miscellaneous ways of structured information
representation in Wikipedia, it is hard to automatically con-
struct graph queries. Therefore, we propose a second query
generating approach which is more automated and thus more
scalable. This approach leverages the YAGO ontology [31],
a rather fine-grained ontology with 350K classes forming
a 20-layer class hierarchy. It contains a lot of highly spe-
cific classes which can be converted to graph queries. For
example, there is a YAGO class about “Naval Battles of
World War II Involving the United States”, from which we
can formulate the graph query in Figure 3(c). Another ad-
vantage is that DBpedia entities are annotated with YAGO
classes, which makes it feasible to build the ground truth2.
Figure 3(d) shows a sample answer. We select 100 YAGO
classes and convert them into ground-truth queries. This
query set is denoted as YAGO. YAGO queries are more di-
verse in terms of structure: The number of query nodes
range from 1 to 4, while the number of query edges range
from 0 to 3. All the queries have multiple answers so that
users have a chance to provide some positive feedback.

Experiment Pipeline Besides the knowledge graph and
the graph query sets, we also need a way to obtain user feed-
back. Following the convention in IR [19], we simulate ex-
plicit feedback using ground truth, that is, we use the ground
truth of a query to determine the relevance of several top-
ranked matches from an initial search and use them as user
feedback. For a given graph query, our experiment runs as
follows: (1) Use SLQ to retrieve the initial top-100 matches.
(2) Use the ground truth of the query to identify the rel-
evant and non-relevant matches in the top-Nfb. (3) Take
the result as user feedback to run GRF and obtain a new
ranking function. (4) Finally, run SLQ with the new ranking
function to retrieve a new list of top-100 matches. The feed-
back size Nfb is a hyper-parameter (typically set to 10, if not
otherwise stated). Although we use explicit feedback as the
default setting, we also evaluate GRF using pseudo feedback,
i.e., the top Nfb initial matches are blindly treated as rele-
vant, to test GRF’s performance when feedback information
is noisy or even erroneous. We choose Mean Average Pre-
cision at different cutoffs (MAP@K, K = 1, 5, 10, 20, etc.)
as the main evaluation metric. For explicit feedback, feed-
back matches are removed before calculating MAP for the
sake of fair comparison. We use paired Student’s t test with
p = 0.05 for significance test.

8.2 Overall Performance
The question we want to answer in this experiment is, can

our GRF framework improve the search quality of SLQ? If
so, how much contribution each component makes? We first
experiment with explicit feedback on both query sets: Do
model selection (choose values for hyper-parameters) on one
query set and then test on the other. The experiment results
are shown in Figure 4. The horizontal axis (K) indicates
different cut-offs and the vertical axis shows MAP@K. We

2YAGO classes are excluded from the following experiments.
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Figure 4: Performance of different GRF variants on:
(a) WIKI, (b) YAGO.

Table 1: GRF vs. SLQ with varying query size.

Query Size 1 2 3 4
# Queries 7 62 25 6

SLQ 0.45 0.30 0.23 0.10
GRF 0.56 0.57 0.56 0.12

evaluate the contribution of the three components: query-
specific tuning, type inference and context inference. GRF
is able to bring a significant improvement in mean average
precision. In comparison with the baseline SLQ, all GRF
variants get significantly better performance. Moreover, the
results demonstrate that all of the three components are use-
ful and complement each other: query-specific tuning alone
already results in a significant improvement, and adding
the other two components further improves. The full GRF
pipeline achieves the best performance on both query sets,
improving over the baseline by 102% on WIKI and 86% on
YAGO (MAP@20).
We also compare the performance of SLQ and GRF with

varying query graph size (number of query nodes). We test
on YAGO queries since they are more diverse in structure.
Experiment results are shown in Table 1. MAP@20 is re-
ported and statistically significant results are bold-faced. In
comparison with SLQ, the performance of GRF is consis-
tent across query sizes (1-3). An exception is when query
size is 4. The quality of the initial search by SLQ is very
poor and there are few relevant matches ranked top-10 in
the initial answer lists. Due to the lack of positive feedback,
the improvement of GRF is tiny. It is worth a further study
for the situation where only negative feedback is available.
This also includes the situation where a query only has one
answer and the answer is not in the initial top list. Selec-
tive application of GRF based on query difficulty can also
be investigated [5].
As a complementary experiment, we also evaluate GRF

with pseudo feedback. The results are shown in Table 2.
GRF still significantly outperforms SLQ when the feedback
information is noisy or even erroneous.

8.3 Impact of Hyper-parameters
We evaluate four hyper-parameters: balance parameter λ,

feedback size Nfb, and weights of the two relevance scores
from type and context wt and wc. We only report the ex-
periment results on WIKI. The observations on YAGO are
similar and thus omitted for brevity.
Figure 5(a) shows the results of different λs in query-

specific tuning. λ = 1 means we do not do re-weighting,
which is the baseline SLQ. As we discussed, λ controls the
balance between user feedback and the original ranking func-

Table 2: GRF vs. SLQ with pseudo feedback.

MAP@K 1 5 10 20 50 100
SLQ WIKI 0.23 0.21 0.24 0.25 0.27 0.28
GRF WIKI 0.73 0.58 0.52 0.50 0.49 0.49

SLQ YAGO 0.40 0.35 0.33 0.32 0.36 0.39
GRF YAGO 0.82 0.66 0.60 0.57 0.58 0.61

tion. Experiment results show that a moderate value of λ is
more appropriate. When λ is too small (e.g., 0.1), we over-
fit to the user feedback and cannot generalize well to unseen
results. Therefore, regularization is helpful in this case to
prevent overfitting. In the following experiments, λ will be
set to 0.3.

The feedback size Nfb also affects system performance.
Intuitively, we should get better performance if we have more
feedback information. In this experiment, feedback matches
are not excluded before evaluation, because otherwise the
experiment results of different Nfb will become not directly
comparable. Figure 5(b) shows that, as Nfb increases, MAP
increases in the mean time, which is as expected. But the
gain of large Nfb (e.g., 20) is relatively small. Since a larger
feedback size incurs a heavier burden for acquiring user feed-
back, Nfb = 10 seems a good setting.

Finally, we evaluate the impact of wt and wc. Basically,
wt and wc specify how much weight we put on each rele-
vance score. Figure 5(c) and Figure 5(d) show that a mod-
erate value is more appropriate. When the weight of either
component is too large (e.g., 10), we are overfitting to that
component and system performance is therefore affected.

8.4 Answer Quality vs. Runtime
In this experiment, we examine the trade-off between an-

swer quality and runtime (Section 7). Average Precision@20
is used as the effectiveness metric h. We experiment on
YAGO and train a random forest using training sets gener-
ated with different τ . We employ the leave-one-out strategy
for evaluation: For each query, we train a random forest on
all the other queries and test on that query. The reported
results are averaged over all the queries. Experiment results
are shown in Figure 6. In this dataset, the re-ranking strat-
egy achieves good performance: The answer quality does not
decrease very much while the runtime is almost negligible.
As shown by the results, the threshold τ can help make a
good trade-off between answer quality and runtime.

9. RELATED WORK
Knowledge Graph Search. Various techniques have been
proposed to search knowledge graphs. One popular search
paradigm is structured search [3, 16], where queries are for-
mulated using exact schema items (entity names, classes, re-
lations) of the knowledge graph. But the usability of struc-
tured search is reduced due to the high and ever-growing
heterogeneity of knowledge graphs. For this reason, keyword
search [12, 23, 39] has been explored in order to improve ac-
cessibility. [35] gives a recent survey of the study in this
line. However, users also lose the chance to specify query
constraints to better express their information need.

Graph querying techniques [37, 17, 24] emerge as an alter-
native search technique. They allow users to (1) formulate
queries using their own vocabulary, and (2) express query



1 5 10 20 50 100

0.2

0.3

0.4

0.5

0.6

K

M
A

P
@

K

 

 

!=0.1

!=0.3

!=0.5

!=0.7

!=0.9

!=1.0 (SLQ)

(a)

1 5 10 20 50 100
0.1

0.3

0.5

0.7

0.9

K

M
A

P
@

K

 

 

N
fb

=0 (SLQ) N
fb

=5 N
fb

=10 N
fb

=20

(b)

1 5 10 20 50 100
0.3

0.35

0.4

0.45

0.5

0.55

0.6

K

M
A

P
@

K

 

w
t
=0 w

t
=1 w

t
=2 w

t
=5 w

t
=10

(c)

1 5 10 20 50 100
0.3

0.35

0.4

0.45

0.5

0.55

0.6

K

M
A

P
@

K

 

w
c
=0 w

c
=1 w

c
=2 w

c
=5 w

c
=10

(d)

Figure 5: Impact of the hyper-parameters on WIKI: (a) balance parameter λ, (b) number of feedback matches
Nfb, (c) weight of the type relevance score wt, (d) weight of the context relevance score wc.

Figure 6: Answer quality vs. Runtime on YAGO

constraints via graph structure. Various ranking functions
have been proposed. For example, [24] defines a ranking
function which combines both semantic coherence and syn-
tactic similarity, while NeMa [17] takes both syntactic simi-
larity and the structural proximity of the matched nodes into
account. However, all these ranking functions are generic.
We propose to convert these generic ranking functions into
query-specific ranking functions using user feedback.
The idea of searching for more entities based on a set of

positive entities bears some similarity to entity search [21],
where the goal is to find more entities given a set of exem-
plar entities. Another work similar in spirit to ours is [30],
which employs pseudo-relevance feedback to improve key-
word search over RDF graphs. To the best of our knowl-
edge, our work is the first attempt to investigate relevance
feedback in graph querying, which is quite different from
keyword search.

Relevance Feedback in IR. Relevance feedback has been
studied extensively in information retrieval. A relevance
feedback method is usually designed for a specific retrieval
model. For example, [38] incorporates relevance information
into the language model, [28] works for the vector space re-
trieval model, and [27] employs relevance information to re-
estimate the parameters in a probabilistic retrieval model.
Therefore, they are not directly applicable to the graph
query paradigm.
The idea of incorporating user feedback with the origi-

nal model is not new. Traditional relevance feedback meth-
ods also combine the feedback information with the origi-
nal query/model to produce the final ranking function (e.g.,
[28, 27, 38]). We employ regularization techniques to pre-
vent overfitting, which is conceptually similar to [32], where
a regularized EM algorithm is proposed for the language
model. But our ways of regularization are quite different
because of the different retrieval models.

New relevance feedback methodologies recently under ex-
ploration in information retrieval can potentially be applied
to graph relevance feedback as well. [25] and [34] exploit
the relations between retrieved results and define a query-
specific ranking function on all the results, instead of on each
individual result. [19] works to predict the optimal balance
parameter between the original model and the feedback in-
formation for each query, instead of a fixed balance param-
eter for all the queries. Finally, [20] explores the idea of a
non-uniform context by assigning higher weights to words
closer to a matched keyword. The idea can also be applied
to our GRF framework. A possible way is to treat the en-
tities in the context of an entity differently based on their
similarity or relation strength to the entity.

The efficiency issue of relevance feedback has also attracted
some attention in IR [36, 10]. Their focus is to reduce the
runtime of the second search. We approach this problem
from a different perspective. Instead of always conducting
a second search, we also consider the option of simply re-
ranking the initial list. Our experiment results show that
it can be a reasonable strategy: Depending on queries, the
answer quality might not decrease too much.

10. CONCLUSIONS
In this work, we identified the limits of the generic rank-

ing mechanism employed by existing graph querying tech-
niques, and proposed to combine relevance feedback with
graph querying in order to achieve query-specific ranking,
i.e., GRF. We developed a novel GRF framework which
works to tune the original ranking function as well as in-
ferring additional information to enrich the query itself. We
further identified an accompanying efficiency issue of GRF
and proposed a classification mechanism to control the trade-
off between answer quality and runtime. As verified by the
experiments, our GRF framework can significantly improve
the precision of a state-of-the-art graph querying technique,
and make a good trade-off between answer quality and run-
time in the mean time.

As the first attempt to study relevance feedback in graph
querying, our work opens up an array of interesting future
directions, e.g., discriminative feature mining from positive
and negative feedback, and personalizing graph querying.
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