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[Motivation] When a user formulates a query, there is more
information she has in mind but doesn't state explicitly. For example,
by “Toronto”, the user implies a university (type) that has many
professors and students (context). Infer such implicit information and
add it back to the query may greatly help disambiguation

[Entity Relevance Score] Two relevance scores are defined for each
candidate entity by calculating its similarity to the positive entities in
terms of type and context (neighborhood type distribution).

The relevance scores are then plugged into the tuned ranking function
as new features.

Select an appropriate value for A to make a good balance between
query-general parameters and user feedback. \When A is too small,
we overfit to the user feedback, and answer quality decreases.

Conclusion

e \We proposed a graph relevance feedback framework which can
improve the precision of a state-of-the-art graph query system by

80% to 100%
e One meaningful extension is to study long-term user personalization

using relevance feedback for graph query.




