
A Fast Kernel for Attributed Graphs

Yu Su⇤ Fangqiu Han⇤ Richard E. Harang† Xifeng Yan⇤

Abstract

As a fundamental technique for graph analysis, graph ker-
nels have been successfully applied to a wide range of prob-
lems. Unfortunately, the high computational complexity of
existing graph kernels is limiting their further applications
to larger-scale graph datasets. In this paper, we propose a
fast graph kernel, the descriptor matching (DM) kernel, for
graphs with both categorical and numerical attributes. The
computation time of the DM kernel is linear with respect
to graph size. On graphs with n nodes and m edges, the
kernel computation for two graphs can be done in O(n+m)
time. Although there are other linear-time graph kernels,
most of them are restricted to graphs with only categorical
attributes; their e�ciency mainly comes from the sparseness
of the feature space resulted from the mutually orthogonal
categorical attributes. Extensive experiments on both syn-
thetic and real-world graph datasets show promising perfor-
mance of DM in both accuracy and e�ciency: On graphs
with both categorical and numerical attributes, DM is or-
ders of magnitude faster than several state-of-the-art graph
kernels, while being much more accurate than the only graph
kernel that is more e�cient.

1 Introduction

Large graph databases are increasingly popular in many
domains such as chemoinformatics [3], bioinformatics [5]
and the web [2]. These graph datasets are characterized
by their rich attribute information. For example,
in chemoinformatics, molecules are often modeled as
graphs, with atoms being nodes and covalent bonds
being edges. Rich attributes are associated with both
nodes and edges: categorical attributes on nodes like
element types, numerical attributes on nodes like their
partial charges and on edges like the spatial distance
between elements. Many interesting questions arise
with these graph datasets, e.g., how to predict the
mutagenicity of a chemical compound by comparing its
graph representation with other chemical compounds
having known functionality?

Graph kernels have been successfully applied to var-
ious graph problems [5, 19]. A graph kernel is basically a
function measuring the similarity of two graphs. A sig-
nificant advantage of the kernel method is that it can de-
couple data representation from the learning machines:
As long as a graph kernel is provided, readily-available
learning machines like SVM or kernel PCA become di-

⇤University of California, Santa Barbara. {ysu, fhan,
xyan}@cs.ucsb.edu.

†U.S. Army Research Lab. richard.e.harang.civ@mail.mil.

rectly applicable.
The large scale and heterogeneous attributes of

modern graph data call for graph kernels which are
(1) e�cient to compute and (2) capable of handling
rich attribute information. More specifically, we argue
that a linear-time graph kernel that can handle both

categorical and numerical attributes is desired, while
being linear-time means the runtime scales linearly
with respect to the graph size n + m, where n is the
number of nodes and m the number of edges. Few
graph kernels proposed so far achieve the two goals
simultaneously. Some graph kernels [25, 16, 8] achieve
linear-time computation. However, they are restricted
to graphs with only categorical attributes, since their
e�ciency mainly comes from the sparseness of the
feature space rendered by categorical attributes. A few
recent graph kernels [11] try to speed up computation on
graphs with numerical attributes. Unfortunately, they
are not linear-time kernels.

In this work, we propose a linear-time kernel for
graphs with both categorical and numerical attributes.
The proposed kernel, which we denote as the descrip-
tor matching (DM) kernel, is based on a simple idea:
Map each graph into a set of vectors (descriptors), and
then apply a set-of-vectors matching kernel to measure
graph similarity. We first propose a propagation based
algorithm to generate feature vectors on nodes in lin-
ear time. By propagating categorical attributes along
edges, we are able to generate a real vector for each node
which encodes its attributes as well as its neighborhood
information. Two nodes with similar attributes and
neighbors will have similar vector representations; com-
puting the similarity of two graphs therefore resorts to
matching the vectors of their nodes. We then adapt the
Vocabulary-Guided pyramid matching (VG) kernel [14]
to identify an approximately optimal matching between
two vector sets, which is also done in linear time. We
rigorously prove the linear scalability of the DM kernel.
The most related work is the propagation kernel [22],
which also propagates attribute information. It is ini-
tially proposed as a linear-time kernel for graphs with
categorical attributes, and is recently extended to han-
dle numerical attributes [21]. We will discuss the di↵er-
ences and empirically compare with it later.

We extensively experiment on both synthetic and

real-world datasets from chemo- and bioinformatics,
and compare DM with several state-of-the-art graph
kernels. Experiments on synthetic datasets confirm
the linear scalability of the DM kernel. On real-world
datasets, DM shows competitive performance in both
classification accuracy and e�ciency. Particularly, the
experiment results demonstrate that DM can well ex-
ploit additional numerical attributes to improve classi-
fication accuracy, as opposed to when only using cat-
egorical attributes. Another salient characteristic of
DM shown by the experiments is that its classification
performance is very stable across di↵erent tasks. Even
when its accuracy is not the best on a dataset, the dif-
ference to the best is usually small.

2 Related Work

We summarize existing graph kernels with an emphasis
on computational complexity. The computation of a
graph kernel is often done in two steps: (1) decomposing
each graph into a set of features, and (2) comparing
feature sets. In order to achieve overall linear scalability,
a graph kernel has to be linearly scalable in both steps.

For the first step, many graph kernels choose to
exhaustively enumerate a certain type of features in a
graph, such as random walks [13, 17], paths [1], shortest
paths [4, 11], and subtrees [20]. Although algorithms
have been proposed to reduce the e↵ect of combinatorial
explosion, due to their exhaustive nature, these kernels
are still ine�cient and hard to be applied to large graphs
with hundreds or more nodes. A few recently proposed
graph kernels achieve linear scalability in the first step
by limiting the size of their feature space [25, 16, 8]. Our
kernel follows the same strategy: A graph is decomposed
into a set of vectors on nodes. The idea of propagating
categorical attributes to get local feature vectors is also
employed by some other kernels [22, 27, 21], where
a random walk based propagation scheme is used.
However, the random walk based propagation process,
if run for enough iterations, will end up with feature
vectors irrelevant to the initial labeling of the nodes
and their neighbors. Our propagation scheme, as we
will present soon, generate feature vectors well encoding
the labeling and neighborhood information. Techniques
that automatically learn meaningful features on graphs
via message propagation, such as [10], can potentially
be applied in this step.

The linear scalability in the second step is harder
to achieve. Comparing all possible feature pairs in two
sets results in a quadratic time complexity. Linear-time
comparison becomes possible when graphs have only
categorical attributes, which yields a sparse discrete
feature space [25, 16, 8]. Take [25] for example. It
decomposes a graph into a set of size-limited subtrees,

hashes each subtree into a string, and then counts
common strings via string equality check. However,
for graphs with numerical features this strategy fails,
as we have to take the similarity of the continuous
features into account, other than merely making a
binary decision of whether two features are the same.
[22, 21] try to tackle this problem via locality sensitive
hashing, which is basically putting feature vectors into
some uniform bins and then count. We employ a
di↵erent approach. From a geometric point of view,
our method identifies where the feature vectors really
reside in the feature space and divide the space into
non-uniform bins based on the real data distribution.

Our kernel seeks for a one-to-one matching be-
tween two sets of features. The graph kernels proposed
in [12, 27] try to find an optimal one-to-one matching for
their features. Unfortunately, they are not e�cient and
are not positive semi-definite kernels [29]. Our kernel ef-
ficiently identifies an approximately optimal correspon-
dence between two feature sets by employing an exist-
ing set-of-vectors matching kernel, the VG kernel [14],
whose computational complexity becomes linear with
respect to the set size after mild adaptation.

The size of graphs of interest is growing fast in the
big data era, therefore e�ciency has attracted much
attention in recent graph kernel research. For example,
a unified framework is presented in [30] for random walk
and marginalized graph kernels, which achieves various
levels of acceleration. Similarly, [11] works to speed up
the shortest path graph kernel [4]. Unfortunately, their
runtime complexity are still at least quadratic w.r.t.
graph size. Our work is along this line of research, with
the goal to derive a linearly scalable graph kernel for
graphs with rich attributes.

3 Preliminaries

Following convention, we define an undirected graph G
as a 4-tuple (V,E,Lc,Ln), where V is the set of nodes,
E the set of edges, and Lc and Ln the labeling function
for categorical and numerical attributes, respectively.
Lc : V ! ⌃, where ⌃ = l1, . . . , lL is the alphabet
of categorical attributes. The labeling function for
numerical attributes Ln : V ! RK assigns K numerical
attributes to each node. For simplicity, we will work
on a graph dataset with N graphs, and each graph
has n nodes and m edges. We define graph size as
n + m, and call a graph kernel a linear-time kernel if
its runtime complexity is linear to graph size. N (v) is
the neighborhood of node v, which is the set of nodes
directly connected to v.

Throughout the paper, we will use the term set

to denote a multiset which allows duplicate elements.
Given two sets X and Y where n1 = |X|, n2 = |Y|, and

n1  n2, a one-to-one correspondence or a matching

M(X,Y;⇡) = {(xi,y⇡i)|1  i  n1} matches every
element in X to some unique element in Y. ⇡ =
[⇡1, . . . ,⇡n1], 1  ⇡i  n2 is a permutation of indices
where ⇡i specifies a match (xi,y⇡i), for 1  i  n1. We
follow the kernel foundation in [24]:

Definition 3.1. (Gram Matrix) Let X be a

nonempty set. Given a function k : X

2
! R and

elements x1, . . . , xm 2 X , the m ⇥ m matrix K with

elements Kij := k(xi, xj) is called the gram matrix (or

kernel matrix) of k with respect to x1, . . . , xm. A gram

matrix is p.s.d. if it is a positive semi-definite matrix.

Definition 3.2. ((Valid) Kernel) Let X be a

nonempty set. A function k on X ⇥ X which for all

m 2 N and all x1, . . . , xm 2 X gives rise to a p.s.d.
gram matrix is called a valid kernel, or a p.s.d. kernel.
We will simply refer to it as a kernel.

4 Descriptor Matching Kernel

4.1 Local Descriptor. We first introduce a concept,
local descriptor. A local descriptor (or simply descrip-
tor) is a fixed-length real-valued vector associated with
a node. It encodes the labeling information of the node,
as well as the topological and labeling information in its
neighborhood, thus serving as the identity of the node:
Similar nodes should have similar descriptors. Descrip-
tor similarity is defined based on their Euclidean dis-
tance, while node similarity is defined in a recursive
manner: Two nodes are more similar if their attributes
and neighborhood are more similar. With this property,
it becomes meaningful to measure graph similarity by
matching their node descriptors. A descriptor generator

f is a function mapping a node v to a descriptor f(v) 2
RD, where D = kf(v)k. F(G) = {f(v)|v 2 V (G)} is
the descriptor set of a graph G.

Now we define our descriptor generator. The ba-
sic idea is to capture the labeling and neighborhood
information about a node by propagating categorical
attributes. The outcome of the propagation process is
a series of feature vectors for each node. The contin-
uous features are the key for incorporating numerical
attributes. Since the features are continuous, numeri-
cal attributes can be directly appended to the feature
vectors. The idea is that the numerical attributes of
a node, such as the partial charge value of an atom
in a molecule, are a direct part of the node’s identity.
Other linear-time graph kernels like [25, 16, 8] are hard
to incorporate numerical attributes because their fea-
tures are discrete.

For better presentation, we first leave out numerical
attributes. Because of the recursive nature of the
node similarity definition, it is natural to generate

descriptors via an iterative process in which nodes
exchange information with their neighborhood. We
therefore define the Stochastic Cascade (SC) descriptor
generator. The SC descriptor of a node v, fsc(v) =
(A1(v), . . . , AL(v)), is a vector of length L, with the ith
component Ai(v) indicating the strength of association

between the categorical attribute li and the node.
Intuitively, the more nodes with attribute li there are
in N (v), the stronger the association will be. Let
⌘ 2 [0, 1] be a scalar, h be the number of iterations, we
model this intuition via the following iterative process,

which generates a sequence of descriptors f (r)
sc (v) =

(A(r)
1 (v), . . . , A(r)

L (v)), 0  r  h for v:
(1) Initialization:

A(0)
i (v) =

(
1 if Lc(v) = li,

0 otherwise;

(2) Updating:

A(r+1)
i (v) =

8
<

:

1 if A(r)
i (v) = 1,

1�
Q

u2N (v)

(1� ⌘A(r)
i (u)) otherwise,

for i = 1, . . . , L, 0  r < h.
To understand the above process, let’s focus on

the attribute l1. In the beginning of iteration r,

the strength of association A(r)
1 (v) is regarded as the

probability of v propagating l1 to all of its neighbors.
Here ⌘ is a decay factor, or can be thought as the

loss ratio of propagation. Initially, A(0)
1 (v) is set

to 1 if l1 is v’s categorical attribute, and otherwise

0. In each iteration k, A(r+1)
1 (v) is updated to the

probability of the node receiving at least one l1 from its
neighborhood: the probability of the neighboring node

u not propagating l1 to v in iteration r is 1� ⌘A(r)
1 (u),

so the probability of v not receiving any l1 from N (v)

is
Q

u2N (v) (1� ⌘A(r)
i (u)), therefore we end up with the

above updating rule.
A competitor of our SC descriptor generator is a

descriptor generator based on a random walk on graphs,
which, although termed di↵erently, has been exploited
in some way in [22, 27, 21]. But it does not have the
descriptor property. Two nodes in a graph, as long as
they have the same degree, will always end up with the
same descriptors irrelevant to the initial labeling of the
nodes and their neighborhoods1.

Theorem 4.1. The SC descriptors for N graphs can be

computed in time O(NLhm).

1The proof can be found in the full version of this paper from
the first author’s website. [21] suggested that, pragmatically,
random walk based propagation can stop early without getting
into the stationary states. We apply this strategy in evaluation.

Proof. In each iteration, each categorical attribute in
⌃ will be propagated for at most 2m times, and each
propagation will incur an O(1) number of operations,
so the overall runtime complexity of computing SC
descriptors for N graphs and h iterations is O(NhmL).

Numerical attributes are directly appended to the
descriptors defined above. We normalize each numerical
attributes to [0, 1].

4.2 Descriptor Matching Kernel.

Definition 4.1. (Descriptor Matching Kernel)

Given a base kernel k defined on sets of vectors, if we

denote the set of SC descriptors of graph G in the rth
iteration as F

(r)(G), the descriptor matching kernel
kdm on two graphs G1 and G2 is defined as:

k(h)dm(G1, G2) =
hX

r=0

k(F (r)(G1),F
(r)(G2)).

Theorem 4.2. For any h 2 N, k(h)dm is positive semi-

definite (p.s.d.) if k is p.s.d.

The proof follows directly from the fact that p.s.d.
kernels are closed under addition. The next step is
to find a base kernel defined for two sets of vectors.
There are three requirements for the base kernel: (1)
Its computation must be e�cient. More specifically,
its time complexity should be linear with respect to
graph size. (2) It should measure the similarity of
two sets of vectors in an intuitive manner. (3) It
is able to handle high-dimensional vectors. Putting
all these requirements together, we choose the VG
kernel [14] from computer vision. It identifies a one-to-
one correspondence between two sets of vectors via non-
uniform quantification, which makes it suitable for high-
dimensional vectors since it can locate where the vectors
really reside in the high-dimensional space and divide
the space accordingly. Although the original VG kernel
did not claim linear runtime complexity, we show that
with mild modification, it becomes linearly scalable.

4.3 VG Kernel. Given a descriptor generator f and
two graphs G1 and G2, we now discuss how to define
a kernel k to e�ciently measure the similarity of their
corresponding descriptor sets F(G1) and F(G2). Sup-
pose F(G1) = {x1, . . . ,xn1}, F(G2) = {y1, . . . ,yn2},
n1  n2 and M(F(G1),F(G2);⇡) is a matching from
F(G1) to F(G2), a set-of-vectors matching kernel k is
defined as follow:

k(F(G1),F(G2)) =
n1X

i=1

w(xi,y⇡i),

where w(·) is a weighting function. Note that under this
definition k is not necessarily p.s.d.

Now the problem boils down to finding appro-
priate matching and weighting. The most intuitive
way is to find the optimal matching that maximizes
k(F(G1),F(G2)), which can be formulated as the clas-
sic maximum weighted bipartite matching problem and
solved by prominent algorithms such as the Hungar-
ian algorithm [12]. However, it is not favorable for two
reasons: (1) The computational complexity is rather
high (cubic), and (2) it results in a kernel which is not
p.s.d. [29]. Another solution is discretization [22]. The
idea is to map a vector into a 1-d histogram, and ef-
ficiently match vectors based on whether they fall into
the same bin. It scales linearly, but the main prob-
lems are: (1) Bins are unweighted, or in other word, w
is a constant function; (2) bins are orthogonal, so vec-
tors in di↵erent bins are never matched. Nevertheless,
the linear computational complexity is appealing. We
choose the Vocabulary-Guided (VG) pyramid matching
kernel, which is based on a somewhat similar idea, but
in a more sophisticated manner. It aims to e�ciently
find an approximately optimal matching, and elegantly
solves both of the problems via replacing the 1-d his-
togram by a data-dependent multi-resolution histogram
with non-uniformly shaped bins. Match weights are de-
termined by bin sizes. We next reformulate it in a way
suitable for our descriptor sets, and adapt it to achieve
linear scalability.

Pyramid construction. Suppose G is a set of
N graphs and F(G) = {f(v)|v 2 G,G 2 G}. The VG
kernel starts o↵ by partitioning the descriptor space into
a pyramid of non-uniformly shaped regions/bins, which
is built by performing hierarchical clustering on F(G).
The pyramid structure is controlled by two hyper-
parameters, the number of levels t, and the branching
factor b. The jth bin at the ith level is denoted as

B(i)
j = (X(i)

j , c(i)j , s(i)j), where c(i)j is its center, s(i)j its

diameter with s(i)j = max{kx
1

� x

2

k |x

1

,x
2

2 X

(i)
j },

and X

(i)
j ✓ F(G) the set of descriptors in the bin. Then

the pyramid is denoted as {B(i)
j }0it�1,1jbi , and is

constructed as in Algorithm 1.
Lines 4, 9, and 10 compute bin diameters, i.e.,

the maximum distance between any two descriptors
in the bin. The original VG kernel will compute the
distance between each pair of descriptors and find the
maximum, which results in a quadratic time complexity.
We approximate it by two upper bounds, the doubled
maximum distance from any descriptor in the bin to
the center of the bin, and the diameter of the parent
bin, as shown at line 9 and 10, respectively. This
grants us linear scalability. Bin diameters are critical

Algorithm 1 Pyramid construction

1: Initialization:

2: X

(0)
1 F(G)

3: c(0)1 2⇥ 1
|F(G)|

P
x2F(G) x

4: s(0)1 max
x2F(G)kx� c(0)1 k

5: for i = 0 to t� 2 do

6: for j = 1 to bi do

7: run k-means clustering to partition B(i)
j

into b child bins {B(i+1)
k }(j�1)b+1kjb

8: for k = (j � 1)b+ 1 to jb do

9: s(i+1)
k 2⇥max

x2X

(i+1)
k
kx� c(i+1)

k k

10: s(i+1)
k min(s(i+1)

k , s(i)j)

and will be used to compute bin weights. Later in §5
we empirically demonstrate that the DM kernel built
on the approximated VG kernel achieves promising
performance in both e�ciency and accuracy.

Multi-resolution histogram construction.

Given a graph G and its descriptor set F(G), a
multi-resolution histogram is constructed according to
the pyramid structure. The multi-resolution histogram
is defined as (G) = [H(0)(G), . . . , H(t�1)(G)], where

H(i)(G) = [H(i)
1 , . . . , H(i)

bi] is a 1-d histogram with bi

bins at the ith level, 0  i  t � 1. Algorithm 2 shows
how to construct (G) by walking each descriptor
through the pyramid and identifying its bin member-
ships along the way, where p = (p0, . . . , pt�1) is a vector
with pi being the index of the bin where the descriptor
is located at level i, 0  i  t� 1, 1  pi  bi.

Algorithm 2 Multi-resolution histogram construction

1: for x 2 F(G) do
2: p0 1

3: H(0)
1 H(0)

1 + 1
4: for i = 1 to t� 1 do

5: pi argminjkc
(i)
j � xk, (pi�1 � 1)b + 1 

j  pi�1b

6: H(i)
pi H(i)

pi + 1

Matching multi-resolution histograms. One
can use (G) (with appropriate bin weighting) as an
explicit feature vector for graph G, just like other
e�cient graph kernels do [25, 21]. But the hierarchical
structure of the pyramid is largely ignored under this
flat representation. Instead, the VG kernel tries to
derive a more fine-grained matching of two graphs,
following the pyramid structure. The matching process
goes from the finest level (i = t�1) to the coarsest level
(i = 0). In this way, we will first consider matching
the closest descriptors (at level t� 1), and as we climb
to the higher levels in the pyramid, increasingly further

descriptors are allowed to be matched. Given two multi-
resolution histograms (G1) and (G2), the number of

matches found in B(i)
j is derived via bin intersection:

I

(i)
j = min(H(i)

j (G1), H
(i)
j (G2)).

The number of new matches found in a bin is computed
by subtracting the number of matches found in all

its child bins from I

(i)
j , which is the true number of

descriptors matched in this bin:

J

(i)
j =

(
I

(i)
j , i = t� 1;

I

(i)
j �

Pjb
k=(j�1)b+1 I

(i+1)
k , 0  i  t� 2.

The VG kernel is defined as follow, where wij =
1

1+s(i)j

is the weight of B(i)
j measuring how much a match

found in the bin contributes to the overall similarity:

Definition 4.2. (VG Kernel) Given two descriptor

sets F(G1) and F(G2), and the corresponding multi-

resolution histograms (G1) and (G2), the VG kernel
kvg is defined as:

(4.1) kvg(F(G1),F(G2)) =
t�1X

i=0

biX

j=1

wijJ
(i)
j .

Theorem 4.3. kvg is p.s.d.

Proof. We re-write Eq. (4.1) as kvg(F(G1),F(G2)) =
Pt�1

i=0

Pbi

j=1(wij�pij)I
(i)
j , where pij is the weight associ-

ated with the parent bin of B(i)
j , and that for B(0)

1 is set
to 0. Since the bin intersection I is a p.s.d. kernel [23],
and since p.s.d. kernels are closed under addition and
scaling by a positive scalar, kvg is a valid kernel as long
as wij >= pij for all bins. This is guaranteed by (1) wij

is a monotonic decreasing function with respect to s(i)j ,

and (2) s(i)j is not bigger than the diameter of its parent
bin, which is guaranteed by the line 10 of Algorithm 1.

Theorem 4.4. Given N graphs and their correspond-

ing descriptor sets, suppose the maximum number of it-

erations for k-means clustering is H, the N -by-N kernel

matrix of kvg can be computed in O(N(Hb+N)tn).

Proof. Let us examine the time complexity of each step.
First, the pyramid can be built in O(HNntb). On

one hand, the hierarchical clustering can be performed
in O(HNntb). It takes at most O(Hb) operations to
determine the bin membership for each descriptor at
each level, and there are in total Nn descriptors. On
the other hand, determining all of the bin diameters
can be done in O(Nnt), because at each level, each

descriptor will be accessed exactly once. So the pyramid
construction takes O(HNntb) time.

Second, the N multi-resolution histograms can be
constructed in O(Nntb). It can be seen from that,
for each of the n descriptor, it takes b comparisons to
determine its bin membership at each level.

Finally, matching all pairs of multi-resolution his-
tograms takes O(N2nt) time. Matching two multi-
resolution histograms can be done in O(nt) time via a
sparse representation of the multi-resolution histograms
which only stores non-empty entries, and there are N2

pairs to match. For implementation details, see [14].
Therefore, the overall time complexity is

O(HNntb+Nntb+N2nt) = O(N(Hb+N)tn).

Theorem 4.4 asserts the linear scalability of the VG
kernel, which paves the way to the proof of the linear
scalability of the DM kernel.

Theorem 4.5. With kvg as the base kernel, kdm on a

pair of graphs can be computed in a linear time with

respect to graph size.

Proof. For N graphs, directly following Theorem 4.1
and Theorem 4.4, kdm can be computed in O(NLhm+
N(Hb+N)htn) = O(Nh(Lm+Htbn) +N2htn) time,
where h is the number of iterations, and the amortized
cost for a pair of graphs is O(h

N (Lm+Htbn) + htn) =
O(1

NLhm+(1
NHb+1)htn), which is linear with respect

to the graph size n+m.

5 Evaluation

We compare DM with state-of-the-art graph kernels:
the propagation kernel (PK) [22, 21], the Weisfeiler-
Lehman subtree (WL) kernel [25], the Weisfeiler-
Lehman shortest-path (WLSP) kernel [26], the shortest-
path (SP) kernel [4], the connected subgraph matching
(CSM) kernel [18], and the GraphHopper (GH) ker-
nel [11]. DM, PK, WL, SP, WLSP and GH are im-
plemented in Matlab, VG is implemented in C++, and
CSM is implemented in Java. DM, PK and WL are
linearly scalable while others are not. WL can only be
applied on graphs with categorical attributes, while DM
and PK can handle numerical attributes. DM directly
appends numerical attributes to descriptors, while PK
also propagates numerical attributes, but it incurs ad-
ditional computational cost. We denote the version of
PK where numerical attributes are not propagated as
PK⇤. Experiments are run on a Linux server with Intel
Xeon E7-8837 processors (2.67GHz) and 1T memory.

5.1 Runtime Analysis on Synthetic Datasets.

In this experiment, we test graph kernels on randomly
generated graphs with both categorical and numerical

attributes. The main goal is to confirm the linear
scalability of the proposed DM kernel.

Experiment setup. We randomly generate undi-
rected graphs based on two parameters: the number
of graphs N , and the number of nodes n, with default
value N = 10 and n = 200, respectively. Average node
degree is set to 5 so that graph size increases linearly
with respect to n. n nodes are first generated, then
edges are randomly inserted until the desired number
is reached. We additionally experiment on graphs with
varying density � = 2m

n(n�1) , and also evaluate DM with
varying number of iterations h. Node categorical and
numerical attributes are randomly generated. For DM,
the default value of h is 10, and t and b are set to 4
and 10, respectively. For PK, h is also set to 10. For
WLSP, the number of iterations h is set to 3. For CSM,
the maximum size of subgraphs k is set to 5. All other
parameters are fixed to the default when evaluating one
parameter. The CPU time to compute the whole kernel
matrix is reported.

Result analysis. The results are presented in
Figure 1. Figure 1(a) shows the runtime behavior with
respect to n. DM scales linearly, while other kernels
except PK cannot scale to large graphs. When not
propagating numerical attributes, PK is more e�cient
than DM. The additional cost of numerical attribute
propagation makes PK less e�cient than DM on large
graphs, e.g., graphs with more than 1K nodes. It
gets out of memory error on graphs with 100K nodes.
Figure 1(b) gives the runtime results with varying N .
DM scales nearly linearly, which shows that the linear
term with respect to N in the overall time complexity
is dominating when N is moderate. In Figure 1(c),
we show how the graph density, i.e., the number of
edges m when n is fixed, a↵ects the runtime of DM.
As expected, the runtime of DM increases linearly. We
argue that, on real-world graphs, especially when graph
size is large, m can rarely get up to O(n2), therefore
a runtime complexity in O(m + n) usually scales more
elegantly than O(n2). Finally, Figure 1(d) shows that
DM also scales linearly with respect to h.

5.2 Classification Performance on Real-world

Datasets. We experiment with 11 well-accepted
benchmark datasets from chemo- and bioinformatics.
MUTAG [9] is a set of 188 chemical compounds la-
beled according to whether or not they have a muta-
genic e↵ect on a bacterium. ENZYMES [5] comprises
of 600 enzymes represented by their secondary struc-
ture elements (SSEs), and the task is to classify each
enzyme into one of the 6 EC top level classes. D&D
is a datasets consisting of 1178 proteins where amino
acids are modeled as nodes. The graphs are therefore

10
2

10
3

10
4

10
5

10
−2

10
0

10
2

10
4

R
u
n
ti
m

e
 i
n
 s

e
c
o
n
d
s

DM

PK

PK*

GH

WLSP

SP

CSM

(a) Number of nodes n

60 120 180 240 300
0

0.5

1

1.5

2

2.5 x 104

R
un

tim
e

in
 s

ec
on

ds

DM
GH
WLSP
SP
CSM

(b) Number of graphs N

0.2 0.4 0.6 0.8
0

100

200

300

400

500

600

R
u
n
ti
m

e
 i
n
 s

e
c
o
n
d
s

DM

GH

WLSP

SP

(c) Graph density �

2 4 6 8 10
1

2

3

4

5

R
u
n
ti
m

e
 i
n
 s

e
c
o
n
d
s

DM

(d) Number of iterations h

Figure 1: Runtime behavior on synthetic datasets.

Table 1: Statistics of the benchmark datasets.
Dataset MUTAG ENZYMES D&D FR FM MR MM COX-2 BZR DHFR ER

graphs 188 600 1178 344 351 336 349 303 306 393 446
positive 125 - 691 121 143 152 129 148 157 126 181

categorical attributes 8 3 82 20 19 19 21 7 8 7 10
Avg. # nodes 26.03 32.63 284 25.56 26.08 25.05 25.25 41.56 35.04 41.58 41.96
Max. # nodes 28 126 5748 109 109 109 109 56 57 71 93
Avg. # edges 27.89 62.14 716 25.96 26.53 25.4 25.62 43.8 37.5 43.71 43.96

much larger. The task is to predict whether a protein
is an enzyme. The PTC [15] dataset contains chemical
compounds labeled according to their carcinogenicity to
rodents. Four datasets, mice (MM), female mice (FM),
male rats (MR), and female rats (FR), are developed
according to their e↵ect on di↵erent rodents. We ac-
quired the dataset from ChemDB [7]. We obtained four
more chemical compound datasets from [28]: COX-2
is a dataset of 467 cyclooxygenase-2 inhibitors, BZR a
dataset of 405 ligands for the benzodiazepine receptor,
DHFR a dataset of 756 inhibitors of dihydrofolate re-
ductase, and ER a dataset of 1,009 estrogen receptors.
The task is to predict a chemical compound as active or
inactive in a certain reaction.

All datasets have categorical attributes on nodes.
MUTAG, MM, FM, MR and FR have a node numerical
attribute, the partial charge of atoms. COX-2, BZR,
DHFR and ER come with the 3D coordinates of atoms,
based on which we compute the spatial distance between
atoms, and use it as a numerical attribute on edges. We
choose the 3D-length of the SSEs as a node numerical
attribute for ENZYMES. The dataset statistics are
reported in Table 1.

Evaluation scheme. We perform 10-fold nested
cross-validation of C-Support Vector Machine provided
by LIBSVM [6]. In each fold, all hyper-parameters are
optimized by an extra 9-fold cross-validation on the
training data only. The whole process is repeated for
10 times, and the mean and standard deviation of the
classification accuracy over the 10 runs are reported.
The reported runtime is obtained by running each kernel
with the hyper-parameters most frequently selected by
the model selection process. The initialization time
for each kernel is included. The “one-against-one”

strategy is adopted for the multi-class classification on
ENZYMES. See the full version for more details.

Graphs with only categorical attributes. We
first experiment on graphs with only categorical at-
tributes. The results are shown in Table 3. A method
is bold-faced in the table if it achieves the highest ac-
curacy, or is not significantly worse than the highest
according to the student t test at p = 0.05. The results
show that our DM kernel achieves comparable accuracy
with other kernels. It is in top 3 on all the datasets ex-
cept COX-2, and achieves the highest accuracy on MU-
TAG and D&D. In terms of e�ciency, among the linear-
time kernels, DM is comparable with WL while in gen-
eral slower than PK. For the other kernels, GH and CSM
are less e�cient than DM. Because WLSP and SP utilize
the hash-and-check-equality strategy (cf. §2), they are
quite e�cient on datasets with small graphs like MU-
TAG. However, these non-linear-time kernels are hard
to scale to larger graphs, such as those in D&D.

Graphs with numerical attributes. We now
test on graphs with additional numerical attributes,
which are the main targets of this work. WL is not
applicable in this case. Table 3 shows the experiment
results. In terms of classification accuracy, DM is among
the best on 9 out of the 10 datasets, and achieves
the highest accuracy on 6 of them. The only kernel
which is comparable in terms of overall classification
performance is WLSP. PK, SP and GH are in general
less competitive, while CSM can compete on several
datasets. In terms of e�ciency, since the incorporation
of numerical attributes fails the hash-and-equality-check
strategy, SP and WLSP become much slower. We
compute the average ratio between the runtime of each
method and the runtime of DM over all the datasets.

Table 2: Experiment results on graphs with only categorical attributes.
Method MUTAG ENZYMES D&D COX-2 BZR DHFR ER

DM
accuracy 87.89±1.88 59.48±0.89 79.69±0.64 73.97±1.80 75.80±1.10 80.54±0.94 83.61±1.17

runtime 4” 27” 1h10’ 29” 31” 27” 1’2”

PK
accuracy 84.22±1.47 46.43±1.26 79.27±0.33 75.33±2.34 76.60±1.77 80.51±1.66 81.91±0.78
runtime 0.2” 2.9” 6’2” 1.5” 0.6” 4.2” 0.5”

WL
accuracy 86.61±1.40 53.22±1.30 79.01±0.43 76.13±1.74 78.17±1.60 81.03±0.82 82.52±0.86
runtime 7” 28” 8’47” 17” 15” 22” 1’10”

SP
accuracy 85.94±1.94 43.20±1.21 78.26±0.76 73.97±2.33 72.83±1.87 75.18±0.97 76.93±1.22
runtime 0.4” 3” 4h27’ 1.4” 1” 2” 2”

GH
accuracy 82.89±1.69 37.98±1.57 75.80±0.46 71.90±2.15 72.93±1.46 74.00±1.40 78.36±1.02
runtime 37” 12’11” 3d20h 4’24” 3’33” 6’50” 9’

WLSP
accuracy 85.72±1.96 60.92±0.90 - 72.47±1.35 77.17±1.51 78.95±1.29 83.80±0.91

runtime 3” 1’26” > 2 days 8” 7” 12” 14”

CSM
accuracy 85.61±1.95 58.68±1.03 - 77.27±0.68 71.43±1.91 78.87±0.82 78.80±0.92
runtime 6’5” 8h24’ > 2 days 5’54” 22’45” 24’31” 4h9’

Table 3: Experiment results on graphs with numerical attributes.
Method MUTAG ENZYMES COX-2 BZR DHFR

DM
accuracy 90.09±1.87 70.37±1.57 76.17±2.01 78.83±1.31 80.92±0.94

runtime 11” 44” 19” 52” 32”

PK
accuracy 83.56±1.15 55.38±1.21 74.80±2.55 72.00±2.41 79.67±1.23
runtime 0.2” 3.3” 0.6” 0.9” 3.4”

SP
accuracy 87.11±1.73 70.90±0.83 72.03±1.17 74.60±2.35 77.28±1.14
runtime 2’25” 19’20” 6’25” 4’15” 8’40”

GH
accuracy 85.78±2.50 62.33±1.07 71.27±2.87 73.10±1.76 74.08±1.21
runtime 29” 9’ 4’44” 3’42” 7’14”

WLSP
accuracy 89.06±1.98 71.38±0.36 74.87±2.74 77.70±1.84 78.54±1.07
runtime 7’30” 32’6” 13’ 18’55” 43’

CSM
accuracy 90.61±2.39 68.91±0.92 75.03±1.63 74.37±2.20 79.72±1.66

runtime 6’25” 1’45” 6’41” 19’16” 35’35”

Method ER FR FM MR MM

DM
accuracy 83.77±1.17 66.83±1.26 61.94±1.34 60.79±1.59 65.09±1.74
runtime 1’10” 5” 13” 5” 6”

PK
accuracy 78.57±0.93 65.49±1.54 61.03±2.61 58.71±2.10 66.76±1.36

runtime 3.3” 0.5” 1.1” 0.7” 0.3”

SP
accuracy 80.89±1.08 64.66±1.21 59.85±1.32 60.44±1.38 65.24±1.04
runtime 13’ 5’18” 5’5” 5’ 4’40”

GH
accuracy 78.48±0.84 63.57±1.70 59.68±1.71 58.62±1.29 60.27±1.54
runtime 9’39” 2’52” 2’40” 2’42” 2’33”

WLSP
accuracy 83.73±0.97 66.09±2.19 62.62±2.00 59.88±1.53 67.03±1.41

runtime 49’50” 14’20” 13’46” 13’38” 12’47”

CSM
accuracy 80.16±0.79 66.49±1.49 60.71±1.77 58.24±2.37 65.94±2.45

runtime 41’ 1’53” 2’50” 13’57” 14’20”

DM is 29 times faster than SP, 18 times faster than
GH, 80 times faster than WLSP, and 53 times faster
than CSM. The other linear-time kernel, PK, is more
e�cient than DM because of its simplicity. However, it
is less competitive in accuracy, being among the best
in only two datasets. If we consider all the 17 datasets
in both Table 2 and Table 3, DM is significantly better
than PK on 11 datasets, while PK wins on 2 datasets
(under student t test at p = 0.05).

Comparing the results on the 6 common datasets
(MUTAG, ENZYMES, COX-2, BZR, DBFR, and ER)
in Table 2 and Table 3 shows each kernel’s capability
of exploiting numerical attributes. Particularly, we see
that the accuracy of DM increases on each dataset after
incorporating numerical attributes. On the contrary,

on 5 of the 6 datasets, the accuracy of PK actually
decreases2. This may imply that directly appending the
numerical attributes to the SC descriptors is an e↵ective
way of exploiting numerical attributes. A more in-depth
analysis is of interest for future study.

Another salient characteristic of DM regarding ac-
curacy is that, while the accuracy of other kernels vary
from dataset to dataset, DM consistently gives good ac-
curacy. Even on COX-2 and BZR in Table 2 where DM
seems to fall short, the di↵erence between the accuracy
of DM and the highest is small (3.3% at most).

2On COX-2, BZR, DHFR and ER, we run two experiments
for PK: One uses the the inverse of the 3D-distance as edge
weight; the other uses the 3D coordinates as node attributes. PK
performed much worse in the former. We report the latter.

6 Conclusions and Acknowledgements

We introduced a linear-time graph kernel which can
handle graphs with both categorical and numerical at-
tributes. From experiments on both synthetic and real-
world datasets, the proposed kernel showed promising
performance in accuracy and e�ciency. The proposed
kernel is a good alternative to existing kernels for tasks
involving small graphs. Moreover, it is among the first
kernels applicable to large graphs with rich attributes.

This research was sponsored in part by the Army
Research Laboratory under cooperative agreements
W911NF-09-2-0053, W911NF-11-2-0086 and NSF IIS-
1528175. The views and conclusions contained herein
are those of the authors and should not be interpreted
as representing the o�cial policies, either expressed or
implied, of the Army Research Laboratory or the U.S.
Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government pur-
poses notwithstanding any copyright notice herein.

References

[1] A. Airola, S. Pyysalo, J. Björne, T. Pahikkala, F. Gin-
ter, and T. Salakoski. All-paths graph kernel for
protein-protein interaction extraction with evaluation
of cross-corpus learning. BMC bioinformatics, 9(Suppl
11):S2, 2008.

[2] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data -
the story so far, 2009.

[3] D. D. Bonchev and D. H. Rouvray. Chemical graph

theory: introduction and fundamentals, volume 1. 1991.
[4] K. Borgwardt and H. Kriegel. Shortest-path kernels on

graphs. In ICDM, 2005.
[5] K. Borgwardt, C. S. Ong, S. Schönauer, S.V.N. Vish-

wanathan, A. J. Smola, and H. Kriegel. Protein
function prediction via graph kernels. Bioinformatics,
21(suppl 1):i47–i56, 2005.

[6] C. Chang and C. Lin. Libsvm: a library for support
vector machines. TIST, 2(3):27, 2011.

[7] J. H. Chen, E. Linstead, S. J. Swamidass, D. Wang,
and P. Baldi. ChemDB update – full-text search and
virtual chemical space. Bioinformatics, 23(17):2348–
2351, 2007.

[8] F. Costa and K. D. Grave. Fast neighborhood subgraph
pairwise distance kernel. In ICML, 2010.

[9] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath,
A. J. Shusterman, and C. Hansch. Structure-activity
relationship of mutagenic aromatic and heteroaromatic
nitro compounds. correlation with molecular orbital
energies and hydrophobicity. Journal of Medicinal

Chemistry, 34(2):786–797, 1991.
[10] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre,

R. Bombarell, T. Hirzel, A. Aspuru-Guzik, and R. P.
Adams. Convolutional networks on graphs for learning
molecular fingerprints. In NIPS, 2015.

[11] A. Feragen, N. Kasenburg, J. Petersen, M. de Bruijne,

and K. Borgwardt. Scalable kernels for graphs with
continuous attributes. In NIPS, 2013.

[12] H. Fröhlich, J. K. Wegner, F. Sieker, and A. Zell.
Optimal assignment kernels for attributed molecular
graphs. In ICML, 2005.

[13] T. Gärtner, P. Flach, and S. Wrobel. On graph kernels:
Hardness results and e�cient alternatives. In Learning

Theory and Kernel Machines, pages 129–143. 2003.
[14] K. Grauman and T. Darrell. Approximate correspon-

dences in high dimensions. In NIPS, 2006.
[15] C. Helma, R. D. King, S. Kramer, and A. Srinivasan.

The predictive toxicology challenge 2000–2001. Bioin-

formatics, 17(1):107–108, 2001.
[16] S. Hido and H. Kashima. A linear-time graph kernel.

In ICDM, 2009.
[17] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized

kernels between labeled graphs. In ICML, 2003.
[18] N. Kriege and P. Mutzel. Subgraph matching kernels

for attributed graphs. In ICML, 2012.
[19] U. Lösch, S. Bloehdorn, and A. Rettinger. Graph

kernels for rdf data. In the Semantic Web: Research

and Applications, pages 134–148. Springer, 2012.
[20] P. Mahé and J. Vert. Graph kernels based on tree

patterns for molecules. Machine Learning, 75(1):3–35,
2009.

[21] M. Neumann, R. Garnett, C. Bauckhage, and K. Ker-
sting. Propagation kernels: e�cient graph kernels from
propagated information. Machine Learning, pages 1–
37, 2015.

[22] M. Neumann, N. Patricia, R. Garnett, and K. Kersting.
E�cient graph kernels by randomization. In Machine

Learning and Knowledge Discovery in Databases, pages
378–393. 2012.

[23] F. Odone, A. Barla, and A. Verri. Building kernels
from binary strings for image matching. IEEE Trans.

on Image Processing, 14(2):169–180, 2005.
[24] B. Schölkopf and A. J. Smola. Learning with kernels.

The MIT Press, 2002.
[25] N. Shervashidze and K. Borgwardt. Fast subtree

kernels on graphs. In NIPS, 2009.
[26] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen,

K. Mehlhorn, and K. Borgwardt. Weisfeiler-lehman
graph kernels. the Journal of Machine Learning Re-

search, 12:2539–2561, 2011.
[27] A. Smalter, J. Huan, Y. Jia, and G. Lushington. GPD:

a graph pattern di↵usion kernel for accurate graph clas-
sification with applications in cheminformatics. TCBB,
7(2):197–207, 2010.

[28] J. J. Sutherland, Lee A. O’Brien, and D. F. Weaver.
Spline-fitting with a genetic algorithm: A method
for developing classification structure-activity relation-
ships. Journal of Chemical Information and Computer

Sciences, 43(6):1906–1915, 2003.
[29] J. Vert. The optimal assignment kernel is not positive

definite. arXiv preprint arXiv:0801.4061, 2008.
[30] S.V.N. Vishwanathan, N. N. Schraudolph, R. Kondor,

and K. Borgwardt. Graph kernels. the Journal of

Machine Learning Research, 11:1201–1242, 2010.

