
A Random Walk Descriptor Generator

In this appendix, we give the definition of the random
walk (RW) descriptor generator, and show that its
iterative updating process will eventually converge to
a stationary distribution, which makes the generated
descriptor irrelevant to the initial labeling of a node and
its neighborhood.

We begin with the definition of the RW descrip-
tor generator. We will work on undirected con-
nected graphs. Let the alphabet of the categorical
attributes Σ = {l1, . . . , lL}, Lc be the labeling func-
tion, then the RW descriptor of a node v, frw(v) =
(A1(v), . . . , AL(v)), is a vector of length L, with the
ith component Ai(v) associated with the label li. Let
λ ∈ [0, 1] be a scalar, d(u) be the degree of node u.

f
(r)
rw (v) are recursively defined in the following way:

(1) Initialization:

A
(0)
i (v) =

{
1 if Lc(v) = li,

0 otherwise

(2) Updating:

A
(r+1)
i (v) = A

(r)
i (v)× (1− λ)−

∑
u∈N (v)

A
(r)
i (v)× λ

d(u)

for i = 1, . . . , L, ∀r ∈ N
For some label li, initially, A

(0)
i (v) is set to be 1

if li is v’s categorical label, and otherwise 0. In each
iteration, each node evenly distributes a λ fraction of
its value to all of its neighbors and obtains some value
from its neighbors in the same way. Therefore, the total
value

∑
v∈GAi(v) will not change during the iterative

process. Let C be the adjacency matrix of graph G,
D = diag(d(v1), . . . , d(vn)) the diagonal matrix of the
degrees of the nodes in G, and M = λI + (1−λ)D−1C,
where I is the identity matrix. The following lemma
directly follows from the definition.

Lemma A.1. Let A(r) be a L-by-n matrix constructed

by stacking f
(r)
rw (vi), 1 ≤ i ≤ n as columns, then

A(r+1) = A(r)M .

It is easy to see that each column of M sums to
1, which implies that M is the transition matrix of a
random walk on the graph. Let’s first focus on a single
label li and a graph G on which only one node v is
labeled li. Then the above iterative process corresponds
to a random walk on the graph starting at v with

transition matrix M . Let S = (d(v1)
2m , . . . , d(vn)2m ), where

n and m are the number of nodes and edges in the
graph. We show that S is a stationary distribution of
the random walk in the following theorem.

Theorem A.1. S is a stationary distribution of the
random walk defined by the transition matrix M , namely
S = SM .

Proof.

SM = S(λI + (1− λ)D−1C)

= λS + (1− λ)(SD−1)C

= λS + (1− λ)
1

2m
(1, 1, . . . , 1)C

= λS + (1− λ)S

= S

If this random walk is irreducible, which is the
case when λ < 1, the stationary distribution S is also
unique [3]. Therefore, regardless of the starting node,
the iterative updating process of the RW descriptor
generator on G will always converge to S. If there are
ni > 1 nodes labeled li in G, the iterative updating
process will correspond to ni independent random walks
starting at each of those nodes, and it will simply
converge to niS. This clearly shows the weakness of the
RW descriptor generator: two nodes in the same graph
with same degree will eventually end up with the same
descriptor, regardless of whether they have the same
label, and regardless of the probably different labeling
of their neighborhood. Therefore, the RW descriptor
generator doesn’t have the descriptor property.

Finally, when λ = 1, the above iterative updating
process may not converge. A simple example is a
graph with only two nodes v1 and v2, and Lc(v1) =
l1,Lc(v2) = l2, then frw(v1) will oscillate between (0, 1)
and (1, 0), which is obviously not a good descriptor for
v1.

B VG Kernel Example

We illustrate in Figure 1 how the VG pyramid matching
works with t = 3 and b = 2. The graph in the top
shows the hierarchical clustering structure, while the
rest illustrates the construction and matching of the
multi-resolution histograms for two graphs. (1) For the
hierarchical clustering, the level 0 cluster contains all
descriptors (points) in F(G), and the solid line indicates
the boundary of the two level 1 clusters, while the
dashed lines indicate the boundaries of level 2 clusters.
(2) The multi-resolution histograms are constructed as
in the bottom. Take G1 for example, the level 0 his-
togram H0(G1) = 11 as there is only one bin and there
are 11 descriptors of G1 in the level 0 cluster. The level
1 histogram H1(G1) = [5, 6] as there are 5 descriptors
in the first level 1 cluster and 6 in the second. The
level 2 histogram is set similarly. (3) Matching. Take
the first bin of the level 1 histogram and its two child
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Figure 1: Example for the VG pyramid matching kernel.

bins as example. J 1
2 (G1, G2) = I12 (G1, G2) =

min(H1
2 (G1), H1

2 (G2)) = 2, J 2
2 (G1, G2) =

I22 (G1, G2) = min(H2
2 (G1), H2

2 (G2)) = 2, and
I11 (G1, G2) = min(H1

1 (G1), H1
1 (G2)) = 5, therefore

J 1
1 (G1, G2) = I11 (G1, G2)−J 1

2 (G1, G2)−J 2
2 (G1, G2) =

1. In other words, there are 2 descriptors matched in
each of the first two bins in the level 2 histogram, and
one more match is found in the first bin of the level 1
histogram.

C Setup for Experiments on Real-world
Datasets

Here we give the detailed experiment setup. SP, WLSP,
CSM and GH require additional kernels to evaluate
attributes. Categorical attributes are evaluated by the
Dirac kernel for all the graph kernels. Partial charge
and SSE length are evaluated by the Brownian bridge
kernel (see [1]). The parameter c of the Brownian bridge
kernel for partial charge is selected from {0.5, 1, 1.5, 2},
and that for the SSE length is selected from {1, 3, 5, 7}.
For SP and WLSP, a triangular kernel whose c is
chosen from {1, 3, 5, 7, 9, 11} is employed to compare 3D
distance between atoms. For CSM, the 3D distance is
also evaluated by a triangular kernel, but c is fixed to
3, as suggested by the author. For GH, node numerical
attributes are all evaluated by a Gaussian kernel with
λ selected from {10−4, 10−3, . . . , 104} (see [2]). For
PK, we use the label diffusion process as propagation
scheme. The LSH metrics are ml = tv and ma =
l1. The LSH bin-width for categorical attributes wl is
selected from {10−5, 10−4, 10−3}, and that for numerical
attributes, wa, is fixed to 1. Both categorical and
numerical attributes are propagated (see [4]).

According to the suggestion from the original pa-
pers, we choose h from {0, ..., 10} for WL, from {0, ..., 3}

for WLSP. The maximum subgraph size k for the CSM
kernel is selected from {1, . . . , 7}. For PK and DM, h is
selected from {0, ..., 15}. The decay factor η is selected
from {1/2, 1/3}. For the VG kernel, t is selected from
{4, 5}, and b is selected from {10, 20}.

In order to adapt DM to handle edge numerical at-
tributes, we first generate node descriptors, and com-
pute the descriptor of an edge as the average of the
descriptors of its endpoints. Edge numerical attributes
are then appended. In this way, a graph is converted
into two sets of descriptors, node descriptors Fv and
edge descriptors Fe, and the DM kernel is then defined
as

kdm(G1, G2) = k(Fv(G1),Fv(G2))×k(Fe(G1),Fe(G2)),

which is still a valid kernel since it is a product of valid
kernels.

Finally, all kernel matrices are normalized before
classification. The parameter C for SVM is selected
from {10−7, 10−5, . . . , 107}/N , where N is the number
of graphs.
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