A Fast Kernel for Attributed Graphs

Yu Su’, Fangqiu Han', Richard E. Harang?, and Xifeng Yan’
"University of California, Santa Barbara, 2U.S. Army Research Lab

Introduction

e Agraph kernel defines a similarity measure over graphs, a
core problem of graph mining. Graph kernels have been
widely used in various application domains.
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e [rends and core challenges in the big data era:
(1) Increasing graph size calls for more efficient methods.
(2) Richer graph attributes calls for more versatile methods.

e \We propose a linear-time graph kernel which can handle
both categorical and numerical attributes. Extensive
experiments on both synthetic and real-world graph
datasets show promising performance in both accuracy
and efficiency.

Method: Descriptor Matching Kernel
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Method: Descriptor Matching Kernel (Cont’d)

Description Generation via Propagation

[Intuition] A descriptor needs to capture both the attributes
and the neighborhood information of a node. Similar nodes
should have similar descriptors
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(1) Initialization:
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fori=1,...,L, 0<r < h.

Descriptor Matching via Pyramid Matching Kernel

[Steps] (1) Hierarchical partitioning of the descriptor space
based on data distribution. (2) Representing each graph as a
multi-resolution histogram. (3) Bottom-up matching.
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Efficiency on Synthetic Graphs

Our DM kernel is
only slower than
the PK kernel, and
IS orders of
magnitude faster
than all the other
kernels on large
graphs with
I = thousands of

10 10° 10* 10 nodes.
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Accuracy on Real-world Graphs
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DM is among the best in 9 out of the 10 tested datasets.
Under student's t test at p=0.05, DM is significantly better
than PK on 8 datasets.

Conclusion

e \We proposed a graph kernel that can handle both
categorical and numerical attributes, while achieving a
runtime linear w.r.t. graph size.

e Experiments on synthetic and real-world graphs showed
competitive performance in both accuracy and efficiency.




