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ABSTRACT
�e rapidly increasing ubiquity of computing puts a great demand
on next-generation human-machine interfaces. Natural language
interfaces, exempli�ed by virtual assistants like Apple Siri and Mi-
croso� Cortana, are widely believed to be a promising direction.
However, current natural language interfaces provide users with
li�le help in case of incorrect interpretation of user commands. We
hypothesize that the support of �ne-grained user interaction can
greatly improve the usability of natural language interfaces. In the
speci�c se�ing of natural language interfaces to web APIs, we con-
duct a systematic study to verify our hypothesis. To facilitate this
study, we propose a novel modular sequence-to-sequence model
to create interactive natural language interfaces. By decomposing
the complex prediction process of a typical sequence-to-sequence
model into small, highly-specialized prediction units called mod-
ules, it becomes straightforward to explain the model prediction
to the user, and solicit user feedback to correct possible prediction
errors at a �ne-grained level. We test our hypothesis by comparing
an interactive natural language interface with its non-interactive
version through both simulation and human subject experiments
with real-world APIs. We show that with interactive natural lan-
guage interfaces, users can achieve a higher success rate and a
lower task completion time, which lead to greatly improved user
satisfaction.

1 INTRODUCTION
With the meteoric growth of the digital world and the populariza-
tion of computing devices like smartphones and Internet-of-�ings
(IoT) devices among less technically pro�cient people, new ways
of human-computer interfacing are in great demand. Natural lan-
guage (NL) is the most common communication method used by
humans. Not surprisingly, natural language interfaces (NLIs) have
been an aspirational goal in human-computer interaction since the
very early days of digital computers [34]. �ey bear the promise
of providing a uni�ed interface for even technically non-pro�cient
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GET-Messages{

FILTER(isRead = FALSE),

SEARCH( PhD study   

ORDERBY(receivedDateTime, asc)}

Show me unread emails about PhD study, early ones first
Unread PhD study emails reverse ordered by time

Find those emails containing PhD study that I have not read, starting with the oldest ones
   

GET https://graph.microsoft.com/v1.0/<user-id>/messages?

$filter=isRead%20eq%20false&

$search= PhD%20study  

$orderby=receivedDateTime%20asc

Figure 1: Example of natural language interface to web API.
Top: Natural language utterances (commands). Middle: API
frame. An abstract representation that can be converted into
the real API call deterministically. Bo�om: Real API call to
the Microso� email search API.

users to access a wide range of heterogeneous data, services, and
devices.

�e core challenge of natural language interfaces is to map nat-
ural language u�erances (commands) from users to some formal
meaning representation, be it SQL for relational databases, SPARQL
for knowledge bases, or API (application program interface) for
so�ware applications, that is understandable by computers. Recent
advances in deep learning make it possible to develop generic nat-
ural language interfaces that are free of feature engineering and
can more easily generalize to di�erent domains. As a result, we
have recently witnessed a growth in neural network based natural
language interfaces to a wide range of data types such as knowledge
bases [21, 35], relational database-like tables [24, 30, 38], and APIs
to web services and Internet-of-�ings devices [7, 27].

One of the main challenges facing natural language interfaces is
that natural language is inherently ambiguous. Hence, it is unrealis-
tic to expect a natural language interface to perfectly understand all
natural language commands. Additionally, it is di�cult for a user
to assess the results and decide whether or not the model was able
to correctly interpret their commands. Even when they can do that,
in case of erroneous results their only resort is to reformulate their
command and try again. �is is especially true with mainstream
neural network models, which provide li�le insights to help users
interpret the predictions made by the model.



In this paper, we study interactive natural language interfaces,
which allow users to interact with the system and correct possible
errors. In particular, we hypothesize that the support of �ne-grained
user interaction can greatly improve the usability of natural lan-
guage interfaces. To test this hypothesis, we conduct a case study
in the context of natural language interfaces to web APIs (NL2API).
An example of NL2API can be found in Figure 1.

�e mainstream neural network model for natural language in-
terfaces is the sequence-to-sequence model [31]. However, it is
di�cult to create interactive natural language interfaces with the
vanilla sequence-to-sequence model. To facilitate our case study on
interactive natural language interfaces, we propose a novel modu-
lar sequence-to-sequence model. �e main idea is to decompose
the complex prediction process of a typical sequence-to-sequence
model into small prediction units called modules. Each module
is highly specialized at predicting a pre-de�ned kind of sequence
output, and their prediction can therefore be easily explained to
the user. �e user can then verify the correctness of the prediction
of each module, and give feedback to correct possible errors in the
module predictions. For every speci�c command only a few mod-
ules will be triggered, and a speci�cally designed controller will
read the input command to decide which modules to trigger. Both
the controller and the modules are neural networks. We further
propose an interaction mechanism based on the proposed model.

To test the hypothesis on interactive natural language interfaces,
we design both simulation and human subject experiments with
two deployed Microso� APIs, which are used for searching emails
and calendar events, respectively. In the simulation experiment, we
show that the interactive NLI can greatly improve the prediction
accuracy via only a small amount of extra user e�ort: with only
one round of user interaction, testing accuracy can be improved
from around 0.5 to over 0.9. In the human-subject experiment, we
conduct a comparative study. We compare the interactive NLI with
its non-interactive counterpart, which is similar to a traditional
search engine: If the model prediction is incorrect, a user will re-
formulate the command and try again. �rough log-based analysis
and user survey, we �nd that the interactive NLI outperforms the
non-interactive NLI on a variety of measures: �e interactive NLI
leads to higher task success rate, shorter task completion time (less
user e�ort), and remarkably higher user satisfaction. 85% of the
participants indicate that they prefer the interactive NLI over the
non-interactive NLI.

In summary, this work makes major contributions in problem
formulation, model, and experimentation:

• We conduct a systematic study on �ne-grained user inter-
action in natural language interfaces with a focus on web
APIs.
• We propose a novel modular sequence-to-sequence model

to facilitate the creation of interactive natural language
interfaces.

• We design both simulation and human subject experiments
with real-world APIs to demonstrate the bene�ts of inter-
active natural language interface along several dimensions
including task completion, user e�ort, and user satisfac-
tion.

Table 1: API parameter types.

Parameter Type Description
SEARCH(String) Search for resources containing speci�c keywords
FILTER(BoolExpr) Filter resources by some criteria, e.g., isRead=False
ORDERBY(Property,Order) Sort resources on a property in ’asc’ or ’desc’ order
SELECT(Property) Instead of full resources, only return a certain property
COUNT() Count the number of matched resources
Top(Integer) Only return the �rst certain number of results

2 NATURAL LANGUAGE INTERFACE TO
WEB API

A web API is a set of operations, associated data de�nitions, and
the semantics of the operations for accessing a Web-based so�ware
application. Web APIs provide the foundations for interacting with
applications such as email and calendar, customer relation manage-
ment [23], photo sharing services, social media platforms, online
shopping, and the Internet-of-�ings [11]. NL2API enables users to
access a wide range of applications in a uni�ed, natural way, while
staying agnostic to the heterogeneity of data and services that they
must handle when using traditional graphical user interfaces (e.g.,
learn and adapt to di�erent graphical user interfaces to use di�er-
ent applications). As a result, NL2APIs have a�racted increased
a�ention in recent times [7, 25, 27].

�e core task of NL2API is to map natural language u�erances
given by users into API calls. More speci�cally, we will follow
the se�ing de�ned by Su et al.[27] and focus on web APIs that
follow the REST architectural style [10], i.e., RESTful APIs. RESTful
APIs are widely used for web services [2], IoT devices [11], as
well as smartphone apps [37]. An example from [27] based on the
Microso� email search API1 is shown in Figure 1. �e top portion
of the �gure shows multiple natural language u�erances. �e same
user intent can be expressed in syntactically-divergent ways in
natural language, i.e., paraphrases, which should all be mapped
to the same API call. �e middle portion shows an API frame;
which represents a more compact representation of RESTful API
calls de�ned in [27], and can be mapped to the real API calls in a
deterministic way. �e bo�om portion shows a real API call. It
contains many irrelevant constituents such as URL conventions
that could be distracting in natural language interfaces. We will
use API frame in the following, and will use API frame and API call
interchangeably.

A RESTful API (e.g., GET-Messages) consists of an HTTP verb
(e.g., GET, PUT, and POST) and a set of resources (e.g., a user’s emails).
In addition, one can call an API with di�erent parameters to specify
advanced search requests, for example, �lter by some properties
of the resource (e.g., subject, isRead, receivedDateTime of
an email) or search for some keywords. �e full list of parameter
types can be found in Table 1. An API call is an API with a list of
parameters. It can be linearized into a sequence (Figure 1 middle).

De�nition 2.1 (Natural language interface to Web API). Given an
input u�erance x = {x1,x2, . . . ,xm }, the task of a natural language
interface to web API is to map x to the corresponding linearized
API call y = {y1,y2, . . . ,yn }.

1h�ps://developer.microso�.com/en-us/graph/



3 INTERACTIVE NATURAL LANGUAGE
INTERFACE

In this section, we discuss the di�erent levels of user interaction
that a natural language interface may support, and propose a mod-
ular sequence-to-sequence model which naturally supports user
interaction at the �ne-grained parameter level.

3.1 User Interaction
NL2API maps a command to an API call, which can be executed
and return the results to the user. Correspondingly, it is possible to
enable interaction and solicit feedback from users at three levels:
(1) Result level, by asking users to verify result correctness; (2) API
call level, by asking users to verify API call correctness, and; (3)
Parameter level, by asking users to interact with each parameter in
the predicted API call.

�e most straightforward way to interact is to execute the com-
mand and ask users to judge the correctness of the returned results.
However, this approach has two problems. First, it is not always
possible for a user to easily verify result correctness. If a user asked
“how many provinces are there in China?” and a system said “23”,
how could the user know that the system’s understanding is not
“the 9th prime number” or “the atomic number of vanadium?” Second,
the information provided by result correctness may be limited. If
a user indicates that the provided results are incorrect, how much
help does this new information provide to the system to select the
correct API call from possibly thousands of candidates?

Alternatively, we can ask users to verify the correctness of the
predicted API call. Such information is more de�nitive than result
correctness. Although it may be di�cult for general users to di-
rectly understand API calls, it is possible to design some rules to
automatically convert API calls into natural language u�erances
(e.g., [27]), which can be easily understood. However, similar to
result-level interaction, there is still the challenge of how to use
this new information and how much help it can bring. It is not
e�cient if a user needs to decline tens of incorrect API calls before
obtaining the correct one.

We believe it is more helpful if users can interact with the natu-
ral language interface at a �ner-grained parameter level. For the
example in Figure 1, if the natural language interface incorrectly
predicts a parameter FILTER(isRead = TRUE), the user may in-
teract with the system and indicate that the parameter value should
be changed to FALSE. Next, we will �rst review the mainstream
sequence-to-sequence model for natural language interfaces. We
then propose a modular sequence-to-sequence model, which natu-
rally supports parameter-level interaction.

3.2 Sequence-to-Sequence Model
�e core task of natural language interfaces, including NL2APIs,
can o�en be cast into a sequence to sequence prediction problem:
u�erance sequence as input, and formal meaning representation
sequence as output. �e sequence-to-sequence (Seq2Seq) neural
model [31] is a natural choice for this task, and has been widely
used for natural language interfaces to knowledge bases [17, 28],
relational databases [38], and web APIs [27]. Since we will use the
Seq2Seq model as a building block in the modular Seq2Seq model,
we �rst give its formal de�nition.

Unread   emails    about   PhD    study

Encoder Decoder

GET Messages { FILTER ( isRead = FALSE ) ...

Figure 2: Vanilla sequence-to-sequence model for NL2API.
In practice, constructs like bi-directional RNN encoder and
attention mechanisms (see de�nitions below) are usually
added to the vanilla model for better performance.

For an input sequence x = (x1,x2, . . . ,xm ), the Seq2Seq model
estimates the conditional probability distribution p(y |x) for all pos-
sible output sequences y = (y1,y2, . . . ,yn ). �e lengths m and n
can be di�erent, and both of them can be varied. An illustrative
example is shown in Figure 2.

�e encoder, which is implemented as a bi-directional recurrent
neural network (RNN), �rst encodes x into a sequence of state
vectors (h1,h2, . . . ,hm ). Suppose ϕ is a randomly initialized word
embedding layer that embeds every word into a low-dimensional
vector, the state vectors of the forward RNN and the backward RNN
are respectively computed as:

−→
h i = GRUf w (ϕ(xi ),

−→
h i−1)

←−
h i = GRUbw (ϕ(xi ),

←−
h i+1)

(1)

where gated recurrent unit (GRU) as de�ned in [8] is used as the
recurrence. We then concatenate the forward and backward state
vectors, hi = [

−→
h i ,
←−
h i ], i = 1, . . . ,m.

We use an a�entive RNN as the decoder, which will generate the
output tokens one at a time. We denote the state vectors of the
decoder RNN as (d1,d2, . . . ,dn ). �e a�ention takes a form similar
to [32] (also known as additive a�ention). For the decoding step j,
the decoder is de�ned as follows:

d0 = tanh(W0[
−→
hm ,
←−
h 1])

uji = v
T tanh(W1hi +W2dj )

α ji =
uji∑m

i′=1 uji′

h′j =
m∑
i=1

α jihi

dj+1 = GRU ([ϕ(yj ),h′j ],dj )
p(yj |x ,y1:j−1) ∝ exp(U [dj ,h′j ])

(2)

whereW0,W1,W2,v andU are model parameters. �e decoder �rst
calculates normalized a�ention weights α ji over encoder states,
and get a summary state h′j . �e summary state is then used to
calculate the next decoder state dj+1 and the output probability
distribution p(yj |x ,y1:j−1). During training, the sequence y1:j−1
is supplied using the gold output sequence; during testing, it is
generated by the decoder.

3.3 Modular Sequence-to-Sequence Model
We propose a novel modular sequence-to-sequence model (Figure
3) to enable �ne-grained interaction of natural language interfaces.



Unread   emails    about   PhD    study

Encoder Controller 

API FILTER(isRead)

GET Messages FILTER isRead = FALSE

SEARCH

SEARCH PhD study

Figure 3: Modular sequence-to-sequencemodel. �e controller triggers a fewmodules, each of which instantiates a parameter.

To achieve that, we decompose the decoder in the original Seq2Seq
model into multiple interpretable components called modules. Each
module is specialized at predicting a pre-de�ned kind of output, e.g.,
instantiating a speci�c parameter by reading the input u�erance in
NL2API. A�er some simple mapping, users can easily understand
the prediction of any module, and interact with the system at the
module level. It is similar in spirit to modular neural networks
[3, 4, 26]. But to the best of our knowledge, this is the �rst work to
study interactive natural language interfaces with modular neural
networks. Also, di�erent from previous modular neural networks,
each module in our model generates a sequential output instead of
a continuous state.

Module. We �rst de�ne modules. A module is a specialized neural
network, which is designed to ful�ll a speci�c sequence prediction
task. In NL2API, di�erent modules correspond to di�erent param-
eters. For example, for the GET-Messages API the modules are
FILTER(sender), FILTER(isRead), SELECT(attachments),
ORDERBY(receivedDateTime), SEARCH, etc. �e task of a mod-
ule, if triggered, is to read the input u�erance and instantiate a full
parameter. To do that, a module needs to determine its parameter
values based on the input u�erance. For example, given an input
u�erance “unread emails about PhD study”, the SEARCH module
needs to predict that the value of the SEARCH parameter is “PhD
study”, and generate the full parameter, “SEARCH PhD study”, as
its output sequence. Similarly, the FILTER(isRead) module needs
to learn that phrases such as “unread emails”, “emails that have not
been read”, and “emails not read yet” all indicate its parameter value
is False.

It is natural to implement the modules as a�entive decoders,
similar to the original Seq2Seq model. However, instead of a single
decoder for everything, now we have multiple decoders each of
which is specialized in predicting a single parameter. Moreover, as
we will show in Section 4, because each module has clearly de�ned
semantics, it becomes straightforward to enable user interaction at
the module level. Formally, a module Mk is an a�entive decoder
as de�ned in Eq (2), with the goal to estimate the conditional prob-
ability distribution pk (y |x), where y is from the set of API frame
symbols.

Controller. For any input u�erance, only a few modules will be
triggered. It is the job of the controller to determine which modules
to trigger. Speci�cally, the controller is also implemented as an
a�entive decoder. Using the encoding of the u�erance as input, it
generates a sequence of modules, called the layout. �e modules

Table 2: Example mapping of module output to natural lan-
guage explanation. A few rules su�ce for the mapping.

Parameter Syntax Natural Language Explanation

FILTER isRead = BOOLEAN is (not) read
SEARCH KEYWORDS contains keyword KEYWORDS
SELECT receivedDateTime return the receive time

then generate their respective parameters, and �nally the parame-
ters are composed to form the �nal API call. Formally, the controller
is an a�entive decoder as de�ned in Eq (2), with the goal to estimate
the conditional probability distribution pc (l |x), where the layout l
is from the set of modules.

Example. Take Figure 3 as example. �e controller �rst reads
the input u�erance and generates a sequence of modules, API,
FILTER(isRead), and SEARCH. Each module then reads the input
u�erance again to generate their respective parameter, where the
main work is to determine the correct parameter values based on
the u�erance.
Training Objective. Given a set of training examples {(xi , li ,yi )}Ni=1,
the loss function of the whole modular Seq2Seq model consists of
three kinds of losses:

Θ =
1
N

N∑
i=1
(Θc,i + Θm,i ) + λΘL2. (3)

For the i-th example, the controller loss is a cross-entropy loss on
the layout prediction:

Θc,i = − logpc (li |xi ). (4)
Suppose the gold layout of the i-th example li = {M1,M2, . . . ,Mt }
with respective gold parameters {yi,1,yi,2, . . . ,yi,t }, the module
loss is the average cross-entropy loss on the module predictions:

Θm,i = −
1
t

t∑
j=1

logpj (yi, j |xi ). (5)

Finally, we add an L2 regularization term ΘL2 with balance param-
eter λ to alleviate over��ing. We also apply dropout [12] on both
the input and the output of GRU cells to alleviate over��ing.

4 INTERACTION MECHANISM
In this section we present our interaction mechanism based on the
proposed modular Seq2Seq model.



Find all unread emails about PhD Study

is not read

Parameters:

Remove

Search

contains keyword phd study Remove Edit

None Add

Figure 4: Interactive natural language interface. Once the
user types in the command and clicks “Search,” the system
will generate the most probable API call from the modular
Seq2Seq model, convert the output of each module into nat-
ural language, and show the results to the user. �e user can
then interact with the system using a number of operations
such as adding or removing modules, selecting alternative
parameter values from drop-downmenus, or editing param-
eter values.

Interpretable module output. �e output of each module can
be easily explained to the user. Because each module is highly
specialized at predicting one pre-de�ned parameter, its output
highly conforms to the syntax of that parameter. For example, for
the FILTER(isRead) module, the parameter syntax is “FILTER
isRead = BOOLEAN”, where BOOLEAN is either TRUE or FALSE.
Similarly, for the SEARCH module, the parameter syntax is “SEARCH
KEYWORDS”, where KEYWORDS is a sequence of keywords. �erefore,
it is easy to use a simple rule to map the output of a module to a
natural language phrase that is understandable by general users.
Several examples are shown in Table 2.
Parameter value suggestion. Since the modules are neural de-
coders, each of them can generate a ranked list of outputs. For
example, for the input u�erance “unread emails about PhD study”,
the SEARCH module may generate the following list:

(1) SEARCH PhD

(2) SEARCH PhD Study

(3) SEARCH PhD study emails

�erefore, in addition to the top-ranked output, we can present to
the user several plausible suggestions (mapped to natural language
explanations as in Table 2). If the top-ranked output is incorrect,
the user may �nd the correct one in the suggestion list2.

Module suggestion. Sometimes the controller makes a mistake
when predicting the layout and misses some module. We also
provide a list of module suggestions and allow the user to add
modules from the list. Currently we run all the modules of an API
and include the top-ranked output in the suggestion list. One can
also only keep a few most probable ones to reduce the number of
suggestions.
Module removal. Similarly, the controller may make a mistake
when predicting the layout and adds an unnecessary module. To
address this, we allow the user to remove modules from the list.

2�e output space of a module is much smaller than the whole API call space, which
makes the suggestion task easier.

Currently, we allow the user to remove any module from the list
returned by the model.

We design a graphical user interface (Figure 4) to accommo-
date all the above interaction components. �e user is initially
shown a query box where she can type her query and click search.
Given an u�erance, our model will come up with the most likely
interpretation of the u�erance and show it to the user. Addition-
ally, a drop-down menu is shown corresponding to each module
in the interpretation. For example, the u�erance “�nd all un-
read emails about PhD study” shown in Figure 4 will result in the
following API call: GET-Messages{FILTER(isRead = FALSE),

SEARCH(‘‘PhD study’’)}. Hence, the interface will show the
two modules for �ltering based on isRead and searching. If any
of the module output is incorrect, the user can click on the module
output to select from a list of suggestions in a drop-down menu.
In rare cases, the user can also click the “edit” bu�on to input the
desired parameter value. Finally, the user can also remove a module
completely, or add a module from a drop-down list if some desired
modules are missing.

It is worth noting that the interaction mechanism can also be
implemented based on natural language communication instead
of display and click in a graphical user interface. We have opted
for a graphical user interface mainly because it naturally leads to a
compact interface to accommodate all interaction components as
in Figure 4, and allows for more e�cient user interaction.

5 EVALUATION
In this section we experimentally evaluate the proposed modular
Seq2Seq model and the interaction mechanism. �e main goal is
to test the hypothesis that �ne-grained user interaction can greatly
improve the usability of natural language interfaces. We carry out the
study in two experimental se�ings: (1) Using a simulated user on a
standard NL2API dataset, we show that the interaction mechanism
can signi�cantly improve the accuracy of NL2API, with only a small
number of interactions. (2) �rough a human user experiment, we
show that an interactive natural language interface, compared with
its non-interactive counterpart, leads to higher success rate, less
user e�ort, and higher user satisfaction.

While the main goal is to study �ne-grained user interaction, We
also compare several models in a non-interactive experiment that
performs a traditional evaluation over held-out test data. �e goal
is to show that modular Seq2Seq model can achieve competitive
performance in comparison with other models, to support its use
as the base model for the subsequent study on interactive natural
language interfaces.

5.1 Experimental Setup
Dataset. We use the NL2API dataset released in [27] to train our
model. It contains u�erance-API call pairs for two deployed Mi-
croso� APIs respectively for searching a user’s emails (GET-Messages)
and calendar events (GET-Events). �e dataset was collected via
crowdsourcing, and is split into a training set and a testing set. �e
training set contains some noise from crowdsourcing, while the
testing set is smaller but each example is manually checked for
quality. For model selection purpose we further hold out 20% of the
training data to form a validation set, and use the rest for training.



Table 3: Dataset statistics.

API Training Validation Testing

GET-Messages 3670 917 157
GET-Events 5036 1259 190

�e statistics can be found in Table 3. For the modular Seq2Seq
model, there are 19 modules for each API.

�is is a challenging dataset. A good portion of the testing set
(close to 40%) involves API calls that are more complex than those
covered by the training set (larger number of parameters than ever
seen in the training set). It is designed to test model generalizability
on more complex and unseen API calls. Also, because of the �exibil-
ity of natural language, the same API call can be represented using
di�erent natural language u�erances, i.e., paraphrases. So even if
an API call is covered by the training set with several u�erances,
the u�erances in the testing set are still unseen in training. A good
natural language interface therefore needs to be able to generalize
to both unseen API calls and unseen u�erances for covered API
calls.

Measures. For the non-interactive experiment (Section 5.2) and
the simulation experiment (Section 5.3), following the literature [17,
27], we use accuracy as the evaluation measure. It is the proportion
of testing examples for which the top API call generated by the
model exactly matches the correct API call. For the human subject
experiment (Section 5.4), we use a variety of measure such as task
success rate, completion time, and user satisfaction (more details
later).
Implementation details. We implement the proposed modular
Seq2Seq model in Tensor�ow [1]. �e Tensor�ow Fold [22] library
is employed to dynamically build the computation graph according
to the layout prediction from the controller. We use Adam [18] as
the optimizer. Hyper-parameters of the model are selected based
on the validation set. State size of the encoder is 100, and state
size of all the decoders, including the controller and the modules,
are 200. �e word embedding size is 300 for the encoder, and
50 for the decoders since their vocabulary is smaller. Input and
output dropout rate of the GRU cells are 0.3 and 0.5, respectively.
�e balance parameter for L2 regularization is 0.001. We use a
large mini-batch size. 2048, to fully take advantage of the dynamic
batching [22], which signi�cantly improves training speed. Early
stopping based on the validation set is used.

5.2 Non-interactive Experiment
We �rst evaluate the modular Seq2Seq model in a non-interactive
se�ing, where there is no user interaction involved. �e goals
are two-fold. First, through error analysis we can get additional
insights into the challenge of NL2API. Second, we show that the
modular Seq2Seq can achieve competitive performance compared
with other alternatives, which supports its use as the basis for an
interactive natural language interface.

�e testing accuracies on the NL2API dataset are shown in Table
4. Each model is trained on the training set and evaluated on the
testing set. As can be seen, the modular Seq2Seq model achieves
comparable performance with other models.

Table 4: Model accuracy in the non-interactive experiment.
Su et al. [27] use a vanilla Seq2Seq model for ranking API
calls. �e Seq2Seq model (second row) is the one with bi-
directional RNN encoder and attentive decoder as de�ned in
Section 3.2. Modular Seq2Seq model is the proposed model
as de�ned in Section 3.3. Both of these models directly gen-
erate an API call as output. For GET-Events, the three mod-
els happen tomake the samenumber of errors on the second
test set, but on di�erent examples.

Model/API GET-Messages GET-Events

Su et al. [27] 0.573 0.453
Seq2Seq 0.586 0.453
Modular Seq2Seq 0.599 0.453

We present an error analysis of the modular Seq2Seq model. �e
prediction of the model can have three types of errors, two from the
controller, i.e., having extra modules or missing required modules
in the predicted layout, and one from the modules, i.e., having incor-
rect prediction of parameter values (e.g., return read emails while
the user wants to �nd unread emails). For GET-Messages, 87.3%
of the error cases have missing modules, 25.4% have extra modules,
and 9.5% have erroneous parameter values. For GET-Events, 77.9%
of the error cases have missing modules, 23.1% have extra modules,
and 8.6% have erroneous parameter value. Note that some error
cases involve more than one type of errors. �erefore, most of the
errors come from the controller. A promising future direction is to
develop more advanced models for the controller. One possible way
is to allow the controller to access the module states in addition
to the input u�erance, so that it knows which parts in the input
u�erance have been processed by which modules, and which parts
are le� unprocessed that may need some additional modules.

�e current best accuracy is not su�cient for a practical natural
language interface in real use: it will fail on roughly one half of
the user commands. However, it should be noted that accuracy is a
strict binary measure: A model is correct on a testing example only
if the predicted API call exactly matches the correct one; otherwise,
it gets zero score. But most of the time the predicted API calls are
very close to the correct API calls, only missing one module or
ge�ing a parameter value slightly wrong. If users can interact with
the model to correct such errors, the model accuracy can be greatly
improved. With the original Seq2Seq model, it is di�cult for users
to correct possible errors. �e modular Seq2Seq model makes it
easier for users to understand model prediction, and interact with
the model at the �ne-grained module level to correct errors. In the
next two experiments, we show the e�ectiveness of the interaction
mechanism with both simulated users and real human subjects.

5.3 Simulation Experiment
Because the dataset contains the correct API call for each testing
example, we can use it to simulate a human user to interact with the
UI in Figure 4. Given a testing example, it �rst issues the u�erance
as input to the model. A�er obtaining the model prediction, the
simulated user will use the interaction actions introduced in Section
4 to correct possible errors until the prediction matches the correct



API call. We record the number of actions taken in this procedure.
More speci�cally,

Behavior . At the beginning of a task, the simulated user has an
u�erance and the correct API call. It issues the u�erance to the
search box in Figure 4. A�er ge�ing the initial model prediction,
it will try to match the prediction with the correct API call, and if
there are mismatches, it will carry out necessary actions to correct
the mismatches in the following order: (1) If there are modules
missing from the correct API call, add from the module list. (2)
If there are extra modules not in the correct API call, remove the
modules. (3) If there are modules with erroneous parameter value,
�rst try to select from the drop-down suggestion list. If the correct
parameter value is absent from the suggestion list, click the “edit”
bu�on and type in the correct parameter value.

Example. Suppose the u�erance is “unread emails about PhD
study” and the correct API call consists of two parameters, “FILTER
isRead = FALSE” and “SEARCH PhD study”, and the initial model
prediction has three parameters, “FILTER isRead = FALSE”, “SEARCH
PhD”, and “SELECT attachments”. �e simulated user will �rst
remove the SELECT parameter because it knows this one is not in
the correct API call. �en the simulated user will change the value
of the SEARCH parameter from “PhD” to “PhD study” by selecting
from the drop-down suggestion list. In total it takes two actions to
convert the initial model prediction to the correct API call.

�e experiment results are shown in Figure 5. When no inter-
action is involved (# of actions = 0), the model achieves the same
accuracy as in the non-interactive experiment (Table 4). A small
amount of user interaction can greatly improve the accuracy. Most
remarkably, with only one action from the simulated user, the accu-
racy can be improved to around 0.92 for both APIs. �is shows that
most of the time the initial model prediction is quite reasonable,
only one step away from the correct API call. However, this does
not necessarily mean that one can easily develop a be�er model
to do this last step without user interaction. One di�culty is that
some u�erances are inherently ambiguous and the correct interpre-
tation depends on the speci�c user or context. For example, with
the same u�erance “�nd the �rst unread email”, some users may
mean the earliest one, while some other users may mean the last
one. User interaction may be necessary to resolve such ambiguities
and improve personalization and context awareness. In summary,
the simulation experiment results show that the designed interac-
tive NLI can lead to remarkably be�er accuracy with only a small
amount of user interaction.

5.4 Human Subject Experiment
Study Methodology: To be�er understand the impact of the in-
teractive and the standard approaches for NL2API on the user
experience, we conducted a lab study using the web-based interface
described earlier for both the standard and interactive modes. Both
modes are based on the same trained modular Seq2Seq model. �e
only di�erence is that the standard mode does not allow user inter-
action. �e study used within-subject design with the interaction
mode as the factor.

For the standard interaction mode, the user issues a query and
gets the results back. �e user examines the results and then decides
if they satisfy her need or not. If they do, she stops. Otherwise,
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Figure 5: Simulation experiment results.

Table 5: Task examples.

Task Description Di�culty

List unread messages Easy
Find emails with high priority about ’PhD Study’ Medium
Find unread emails from John Smith with early ones �rst Hard
Find the a�achment of the most recent email in the Red category Very Hard

she may decide to try again by reformulating the query or give
up. For the interactive mode, the user gets to interact with the
results using the UX controls shown in Figure 4. For example, if
the user decides that the keyword in the keyword �lter should be
changed, she may simply edit the �lter. Similarly if she decides
that the results should be ordered by the received time, she may
select to add such a �lter. �e suggestions for adding, removing or
editing the �lters are provided by the model using the hypothesis
space it builds as it interprets the natural language command.
Participants: Twenty people participated in the study. Partici-
pants were recruited via email advertising to a group of people
a�liated with a large university in the US. Most participants were
students from various backgrounds with ages ranging between 20
and 30 years old. All participants were experienced with using
search engines and intelligent assistants such as Siri, Cortana or
Alexa.
Protocol: Upon starting, participants were given an overview of
the study. To familiarize themselves with the system, they were
given 6 experimental trail tasks (3 for each interaction mode). Data
from the trial tasks were not used for the results of this study. A�er
completing the experimental trails, participants were given 10 tasks
(5 for each mode), resulting a total of 200 tasks. �e order of the
tasks and which interaction mode they belong to was randomized
for each participant. Examples of the task are shown in Table 5.
Each task was assigned a di�culty level (based on the number of
parameters in the target API call). Tasks across the two interaction
modes had balanced di�culty level. To encourage participants to
come up with their own formulation of the query text, we showed
them the task description in another language (we used Chinese
and recruited participants that are �uent in both English and Chi-
nese). Previous work has used similar techniques such as giving
participants task descriptions in a di�erent language [20] or in a
recorded voice message [19].

A�er completing all the tasks, participants were asked to com-
plete a questionnaire about the system they preferred and they



Table 6: Average Number of Actions and Time to Comple-
tion for successful and abandoned tasks for the Standard
and Interactive Modes.

Mode Successful #Action Time to Completion
Standard No 6.39 119.08
Standard Yes 4.67 84.08
Standard All 5.10 92.83
Interactive No 4.30 47.40
Interactive Yes 3.45 29.81
Interactive All 3.73 35.54

were also asked to provide general feedback about the system.
Participants also answered questions about their background and
familiarity with the use of search and intelligent assistants.
Measures: Our overarching research question is: what are the
costs and bene�ts of the interactive NL2API compared to the standard
search engine-like approach? To answer this question, we used
a combination of log-based analysis and survey questions. We
implemented a rich instrumentation that records all interactions
between the participants and the system. For example, all queries,
clicks, query reformulation, etc. were logged using an event-based
schema that also recorded the time stamp of the event, a task id
and an anonymized study id. We also collected answers to survey
questions a�er the experiment and linked it to the same study id.
We describe more details of our measures as follows:
Task Completion: To study the e�ect of the interaction mode on the
task completion rate, we measured the outcome of the completion
of each task. Since the target result was known a priori, participants
get feedback about whether the system was able to retrieve the
correct answer or not. A task is considered successfully completed,
only when the system is able to generate the interpretation that
would retrieve the correct answer. Note that the participants were
given feedback about whether the model got a task correct or not.
In a real scenario, the users would be retrieving their own emails,
appointments, etc. and they can decide whether the current answer
satis�ed their need or not. If the user gives up without ge�ing the
correct result, the task is considered as not successfully completed.
E�ort: We also wanted to study the e�ort needed to achieve success
in each interaction mode. We do that by measuring the total number
of actions (e.g. queries, clicks, etc.) and the time to completion from
the start to the end of each task.
User Satisfaction: Finally, we assessed the overall user satisfaction
with the two interaction modes. We asked users to assess their
satisfaction with both systems and to assess their relative preference
between the two modes using a 5-point Likert scale.
Results:
Task Completion: �e top portion of Figure 6 compares the suc-
cess rate for the standard and interactive modes. Interactive mode
helped participants complete tasks successfully at a higher rate than
the standard mode. It was particularly helpful with harder tasks
where the model is more likely to make mistakes in translating the
natural language command to the correct API call.
E�ort: A 2 (interaction modes) by 4 (di�culty levels) ANOVA was
performed for the the number of actions and time to completion
for the standard and the interactive modes across di�erent task

Figure 6: Success Rate (Top), Number of Actions (Middle)
and Time to Completion (Bottom) for the Standard and In-
teractive Modes.

di�culty levels. �e result is also shown at middle and bo�om
portions of Figure 6. �e interactive mode resulted in a smaller
number of actions for all task di�culty levels (p � 0.001). �e
di�erence is smaller though for very hard tasks. �is suggests that
with harder tasks, participants had to either reformulate with the
query or interact with the results to get to complete their tasks.
Note that the actions are not equal though in terms of cost to the
user. For example, reformulating the query is likely more expensive
than editing the parameter of a �lter module. To capture this, we
use time to completion as a proxy to e�ort and compare the two
modes as shown in the bo�om portion of Figure 6. We see here that
the interactive model resulted in faster task completion than the
standard one (p � 0.0001), but unlike the number of actions, the
gap was consistently large even for harder tasks. Since not all tasks
have been completed successfully, we break down the di�erent



Table 7: Examples of tasks using the standard and the inter-
active mode. Each example is the sequence of actions taken
by a user to solve a task. �e examples are representative of
user behaviors with di�erent modes.

Standard Mode

Action Type Task Description

�ery show me unseen emails about PhD study
�ery show me emails about PhD study that I did not read
�ery show me the latest emails about PhD study that I did not read

Interactive Mode

Action Type Task Description

�ery show me unseen emails about PhD study
Add Module New �lter:“is not read”

measure of e�ort (number of actions and time to completion) by
whether the task was successfully completed or not in Table 6. A 2
(interaction modes) by 2 (successful or not) ANOVA was performed.
As expected, we see that the participants had to perform a higher
number of actions (p � 0.001) and longer time to completion
(p � 0.0001) when the task was not completed successfully and
the interactive mode resulted in less e�ort across the board.
User Satisfaction: Overall the interactive mode was overwhelmingly
preferred over the standard mode for the scenario we studied, with
17 participants preferring the interactive mode to the standard
mode. Participants also reported higher overall satisfaction level
with the interactive mode (60% were satis�ed or strongly satis�ed
with the mode) compared to only 35% reporting they were satis�ed
or strongly satis�ed with the standard mode. Participants also
indicated that they had to put in extra e�ort to complete tasks with
the standard system, with only 25% of them reporting that they only
needed li�le e�ort to complete the tasks. �is number increases to
70% for the interactive system.

In summary, the user study showed that interactive mode pro-
vides several bene�ts over the standard mode and results in higher
task completion rate, lower e�ort and higher overall user satis-
faction. �is can be more evident if we examine the u�erances
submi�ed by a user using the standard mode (see Table 7). In
this example, the standard model interpreted the u�erance mostly
correctly except for missing the “is not read” �lter. �e user refor-
mulated the query and this time the model got the missing �lter
right but missed the order by received time operator. A�er a third
reformulation, the model was able to get the correct interpretation.
Alternatively, if the user had used the interactive mode, she could
have simply added the “is not read” �lter which was ranked among
the top 3 in the module suggestions. �is would have resulted in
much faster task completion and hence higher user satisfaction.

6 RELATEDWORK
Natural language interface (also called semantic parsing in the
computational linguistics community) research has spanned several
decades [34]. Early NLIs are mostly rule-based. A set of rules are
carefully designed to map natural language u�erances in a domain
to the corresponding meaning representation [5, 34]. Rule-based
systems are characterized by a high precision on their admissible

inputs. However, also salient is the bri�leness of the systems when
facing inputs not covered by the pre-de�ned rules. Over the past
decade, statistical learning-based methods have gained momentum
as they can naturally handle the uncertainty and ambiguity of
natural language in a well-established statistical framework. Early
learning-based methods were based on manually-de�ned features
[6, 36]. With recent advances in deep learning, neural network
based methods have become the mainstream for natural language
interfaces [9, 21, 30, 35, 38], which are free of feature engineering
and can more easily generalize to di�erent domains. Our work
follows this trend toward neural-network-based methods.

With the growth of web services, IoT devices, and mobile apps,
natural language interfaces to API (NL2API) have a�racted signi�-
cant a�ention [7, 25, 27]. For example, �irk et al. [25] study how
to enable users to issue If-�is-�en-�at commands over a rich
set of APIs including social media, mobile apps, and web services.
Campagna et al. [7] present a virtual assistant system, at the core
of which is a natural language interface to map user commands
into APIs to IoT devices and mobile apps. Su et al. [27] study how
to train an NL2API model by collecting training data from crowd-
sourcing, and propose a sequence-to-sequence model for NL2API.
While the main goal of this paper is to study user interaction in
natural language interfaces, we conduct our study in the context of
NL2API, and bene�t from the insights from previous studies.

Natural language interfaces that can seek feedback from users to
improve prediction accuracy have also received signi�cant recent
a�ention [16, 20, 29, 33]. For example, Li and Jagadish [20] develop
an interactive natural language interface to relational databases
(NLIDB). �e mapping from natural language commands to SQL
queries is mainly done using a rule-based mechanism, and user feed-
back is solicited to resolve ambiguities in the rule-based mapping.
In contrast, we focus on neural-network-based natural language
interfaces targeting web APIs. Iyer et al. [16] and Su et al. [29]
study NLIDB and knowledge base search, respectively, and ask
users to verify the correctness of the �nal results generated by the
systems, and employ user feedback to improve system accuracy.
However, none of the previous studies allows for �ne-grained (e.g.,
module level) user interaction with neural network models.

Also related is a line of research on crowd-powered dialog sys-
tems [13, 14]. Di�erent from out approach of semantic parsing
with user feedback, these approaches leverage crowd workers to
address user commands, which reduces workload on users possi-
bly at the expense of response latency. Our work also resembles
mixed-initiative approaches [15], leveraging human-machine col-
laboration.

�e idea of modular neural networks are also explored in related
problems such as visual question answering [3, 4] and program
synthesis [26]. For example, Rabinovich et al. [26] propose a novel
abstract syntax network to generate the abstract syntax tree of
programs. In abstract syntax network, di�erent modules are com-
posed together to generate a full abstract syntax tree. Each module
usually only ful�lls a simple task, like choosing a value from a pre-
de�ned list. In our model, each module is itself an a�entive decoder,
and needs to generate a full parameter sequence by reading the
input u�erance. Moreover, the main goal of the proposed modu-
lar Seq2Seq model is to help create interactive natural language
interfaces, which has not been explored previously.



7 CONCLUSIONS
We conducted a systematic study on �ne-grained user interaction
in natural language interfaces, focused on web APIs. To facilitate
the creation of interactive natural language interfaces, we proposed
a novel modular sequence-to-sequence model. By decomposing the
prediction of a neural network into small, interpretable units called
modules, the proposed model allows users to easily interpret predic-
tions and correct possible errors. �rough extensive simulation and
human subject experiments with real-world APIs, we demonstrated
that �ne-grained user interaction can greatly improve the usability
of natural language interfaces. Speci�cally, in the human subject
experiment, we found that with the interactive natural language
interface, users achieve a higher task success rate and a lower task
completion time, greatly improving user satisfaction.

In this work, we focused on soliciting user feedback to improve
prediction accuracy in a single session. Going forward, we are
interested in the following question: Given a new API, can we �rst
cold-start an NL2API model with a reasonable prediction accuracy,
and then improve it through user interaction? In this vision, the in-
teractivity of the NL2API helps form a closed data loop: It improves
usability and thus a�racts more users to use the system, which in
turn accumulates more training data to improve the system.

REFERENCES
[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Je�rey Dean, Ma�hieu Devin, and
others. 2016. Tensor�ow: Large-scale machine learning on heterogeneous dis-
tributed systems. arXiv:1603.04467 [cs.DC] (2016).

[2] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. 2004. Web
services. In Web Services. Springer, 123–149.

[3] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. 2016. Learning
to compose neural networks for question answering. In Proceedings of the Annual
Conference of the North American Chapter of the Association for Computational
Linguistics.

[4] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. 2016. Neural
module networks. In Proceedings of the IEEE Conference on Computer Vision and
Pa�ern Recognition.

[5] Ion Androutsopoulos, Graeme D Ritchie, and Peter �anisch. 1995. Natural
language interfaces to databases–an introduction. Natural language engineering
1, 1 (1995), 29–81.

[6] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic
Parsing on Freebase from �estion-Answer Pairs. In Proceedings of Conference
on Empirical Methods in Natural Language Processing.

[7] Giovanni Campagna, Rakesh Ramesh, Silei Xu, Michael Fischer, and Monica S
Lam. 2017. Almond: �e architecture of an open, crowdsourced, privacy-
preserving, programmable virtual assistant. In Proceedings of the International
Conference on World Wide Web. 341–350.

[8] Kyunghyun Cho, Bart van Merriënboer, Çalar Gülçehre, Dzmitry Bahdanau,
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